Previous Issue
Volume 5, March
 
 

Neuroglia, Volume 5, Issue 2 (June 2024) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 618 KiB  
Review
Microbiome-Glia Crosstalk: Bridging the Communication Divide in the Central Nervous System
by Mitra Tabatabaee
Neuroglia 2024, 5(2), 89-104; https://doi.org/10.3390/neuroglia5020007 - 21 Apr 2024
Viewed by 366
Abstract
The traditional neuron-centric view of the central nervous system (CNS) is shifting toward recognizing the importance of communication between the neurons and the network of glial cells. This shift is leading to a more comprehensive understanding of how glial cells contribute to CNS [...] Read more.
The traditional neuron-centric view of the central nervous system (CNS) is shifting toward recognizing the importance of communication between the neurons and the network of glial cells. This shift is leading to a more comprehensive understanding of how glial cells contribute to CNS function. Alongside this shift, recent discoveries have illuminated the significant role of the human microbiome, comprising trillions of microorganisms, mirroring the number of human cells in an individual. This paper delves into the multifaceted functions of neuroglia, or glial cells, which extend far beyond their traditional roles of supporting and protecting neurons. Neuroglia modulate synaptic activity, insulate axons, support neurogenesis and synaptic plasticity, respond to injury and inflammation, and engage in phagocytosis. Meanwhile, the microbiome, long overlooked, emerges as a crucial player in brain functionality akin to glial cells. This review aims to underscore the importance of the interaction between glial cells and resident microorganisms in shaping the development and function of the human brain, a concept that has been less studied. Through a comprehensive examination of existing literature, we discuss the mechanisms by which glial cells interface with the microbiome, offering insights into the contribution of this relationship to neural homeostasis and health. Furthermore, we discuss the implications of dysbiosis within this interaction, highlighting its potential contribution to neurological disorders and paving the way for novel therapeutic interventions targeting both glial cells and the microbiome. Full article
Show Figures

Graphical abstract

9 pages, 1926 KiB  
Communication
Metformin Reduces Viability and Inhibits the Immunoinflammatory Profile of Human Glioblastoma Multiforme Cells
by Daewoo Hong, Regina Ambe, Jose Barragan, Kristina Marie Reyes and Jorge Cervantes
Neuroglia 2024, 5(2), 80-88; https://doi.org/10.3390/neuroglia5020006 - 31 Mar 2024
Viewed by 543
Abstract
Glioblastoma (GBM) is the predominant primary malignant brain tumor. Metformin, a well-known antidiabetic medication, has emerged as a potential therapeutic candidate in the treatment of GBM. We have herein investigated two aspects of the effect of MTF on GBM cells: the effect of [...] Read more.
Glioblastoma (GBM) is the predominant primary malignant brain tumor. Metformin, a well-known antidiabetic medication, has emerged as a potential therapeutic candidate in the treatment of GBM. We have herein investigated two aspects of the effect of MTF on GBM cells: the effect of MTF on GBM cell viability, as previous studies have shown that MTF can selectively affect human GBM tumors; and the immunomodulatory effect of MTF on GBM, as there is evidence that inflammation is associated with GBM growth and progression. The human GBM cell line (U87) was exposed to various doses of MTF (1 mM, 20 mM, and 50 mM), followed by examination of cell viability and inflammatory mediator secretion at various time points. We observed that MTF treatment exerted a dose-response effect on glioblastoma multiforme cell viability. It also had an immunomodulatory effect on GBM cells. Our study identified several mechanisms that led to the overall inhibitory effect of MTF on human GBM. Further inquiry is necessary to gain a better understanding of how these in vitro findings would translate into successful in vivo approaches. Full article
Show Figures

Figure 1

17 pages, 7593 KiB  
Review
Ketogenic Diet in the Management of Glioblastomas: A Bibliometric Analysis
by Alexandros G. Brotis, Christina Arvaniti, Marina Kontou, Alexandros Tsekouras and Kostas N. Fountas
Neuroglia 2024, 5(2), 63-79; https://doi.org/10.3390/neuroglia5020005 - 22 Mar 2024
Viewed by 674
Abstract
Glioblastoma is a highly aggressive brain tumor that has a poor prognosis despite various treatments like surgery, chemotherapy, and irradiation. However, a restricted ketogenic diet (RKD), which has been proven to be effective in treating drug-resistant epilepsy, could be a potential adjunct in [...] Read more.
Glioblastoma is a highly aggressive brain tumor that has a poor prognosis despite various treatments like surgery, chemotherapy, and irradiation. However, a restricted ketogenic diet (RKD), which has been proven to be effective in treating drug-resistant epilepsy, could be a potential adjunct in the treatment of certain GBM cases. Our study aimed to highlight the existing knowledge, identify collaboration networks, and emphasize the ongoing research based on highly cited studies. During the literature search, we found 119 relevant articles written between 2010 and 2023. Among the top 20 most cited articles, there were seven laboratory and five clinical studies. The works of Olson LK, Chang HT, Schwartz KA, and Nikolai M from the Michigan State University, followed by Seyfried TN and Mukherjee P from Boston College, and Olieman JF, and Catsman-Berrevoets CE from the University Medical Center of Rotterdam, were significant contributions. The laboratory studies showed that RKD had a significant antitumor effect and could prolong survival in mouse glioblastoma models. The clinical studies verified the tolerability, efficacy, and safety of RKD in patients with GBM, but raised concerns about whether it could be used as a single therapy. The current research interest is focused on the efficacy of using RKD as an adjunct in selected chemotherapy regimens and demonstrates that it could provide GBM patients with better treatment options. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop