Next Issue
Volume 4, March
Previous Issue
Volume 3, September
 
 

Vibration, Volume 3, Issue 4 (December 2020) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
24 pages, 7977 KiB  
Article
Investigating the Influence of Fluid-Structure Interactions on Nonlinear System Identification
by Skriptyan N. H. Syuhri, Hossein Zare-Behtash and Andrea Cammarano
Vibration 2020, 3(4), 521-544; https://doi.org/10.3390/vibration3040032 - 09 Dec 2020
Cited by 3 | Viewed by 3146
Abstract
A complex fluid-structure interaction can often create nonlinear dynamic behaviour in the structure. This can be better estimated using nonlinear modal analysis, capable of identifying and quantifying the nonlinearity in the structure. In this study, the case of a vibrating beam submerged in [...] Read more.
A complex fluid-structure interaction can often create nonlinear dynamic behaviour in the structure. This can be better estimated using nonlinear modal analysis, capable of identifying and quantifying the nonlinearity in the structure. In this study, the case of a vibrating beam submerged in liquid using a nonlinear parameter identification method is presented. This system is considered as an alternative propulsion mechanism, hence understanding the interaction between the fluid and the structure is necessary for its control. Here, impulse signals are used to characterise the numerical and experimental dynamics response of the system. Since the transient responses contain of a multi-component vibratory signals, a vibration decomposition method is used to separate the time response signals based on the dominant amplitude in the frequency response function. The separated time-series signals are then fitted to the nonlinear identification method to construct the backbone and damping curves. The modal parameters obtained from experimental data are then used as a base for the development of the analytical models. The analytical approaches are based on the Euler-Bernoulli beam theory with additional mass and quadratic damping functions to account for the presence of the fluid. Validations are carried out by comparing the dynamic responses of the analytical and experimental measurements demonstrating the accuracy of the model and hence, its suitability for control purposes. Full article
(This article belongs to the Special Issue Data-Driven Modelling of Nonlinear Dynamic Systems)
Show Figures

Figure 1

30 pages, 7790 KiB  
Article
Correlation of Short Pitch Rail Corrugation with Railway Wheel-Track Resonance at Low Frequencies of Excitation
by Bingo Masiza Balekwa and Daramy Vandi Von Kallon
Vibration 2020, 3(4), 491-520; https://doi.org/10.3390/vibration3040031 - 08 Dec 2020
Cited by 8 | Viewed by 3575
Abstract
As much as there has been a significant increase in the development of railway systems in recent years, one of the significant drawbacks on this mode of transport is ground-borne vibrations and noise emanating from vehicle-track interaction in service. This greatly affects the [...] Read more.
As much as there has been a significant increase in the development of railway systems in recent years, one of the significant drawbacks on this mode of transport is ground-borne vibrations and noise emanating from vehicle-track interaction in service. This greatly affects the ecology and physical surroundings of the railway track. Experimental tests and Finite Element modal and complex eigenvalue analysis are conducted to investigate the dynamics of a traction wheelset and rail track. This is done to establish the correlation between the short pitch rail corrugation in the Belfast to Steelpoort railway line, in the Limpopo Province of South Africa, with railway wheel-tract resonance at low frequencies of excitation. A 3D Finite Element Method (FEM) and complex eigenvalue analysis are used to validate the resonance modes of the wheelset and rail track obtained through experimental modal analysis. Mode shapes are determined for natural frequencies that match the excitation frequency induced by short pitch rail corrugation. The results show that based on average train speeds around track curves, the excitation frequency induced by corrugation matches (quite reasonably) natural frequencies of the wheelset. Whilst the wheelset FEM results are in better agreement, they rather prove the correlation to occur at 100 Hz. In a previous study by the authors, at the average speeds per track curve, the corrugation excitation frequency was found to be 108 Hz. The current study goes further by investigating natural frequencies of rail tracks. Moreover, mode shapes of a traction wheelset and rail tracks are also investigated, and the results are presented herein. Full article
Show Figures

Figure 1

13 pages, 3312 KiB  
Article
The Effect of Non-Conservative Compressive Force on the Vibration of Rotating Composite Blades
by Mohammadreza Amoozgar, Mahdi Bodaghi and Rafic M. Ajaj
Vibration 2020, 3(4), 478-490; https://doi.org/10.3390/vibration3040030 - 29 Nov 2020
Cited by 4 | Viewed by 2719
Abstract
This paper investigates the effectiveness of a resonance avoidance concept for composite rotor blades featuring extension–twist elastic coupling. The concept uses a tendon, attached to the tip of the blade, to apply a proper amount of compressive force to tune the vibration behavior [...] Read more.
This paper investigates the effectiveness of a resonance avoidance concept for composite rotor blades featuring extension–twist elastic coupling. The concept uses a tendon, attached to the tip of the blade, to apply a proper amount of compressive force to tune the vibration behavior of the blade actively. The tendon is simulated by applying a non-conservative axial compressive force applied to the blade tip. The main load carrying part of the structure is the composite spar box, which has an antisymmetric layup configuration. The nonlinear dynamic behavior of the composite blade is modelled by using the geometrically exact fully intrinsic beam equations. The resulting nonlinear differential equations are discretized using a time–space scheme, and the stationary and rotating frequencies of the blade are obtained. It is observed that the proposed resonance avoidance mechanism is effective for tuning the vibration behavior of composite blades. The applied compressive force can shift the frequencies and the location at which the frequency veering take place. Furthermore, the compressive force can also cause the composite blade to get unstable depending on the layup ply angle. Finally, the results, highlighting the importance of compressive force and ply angle on the dynamic behavior of composite blades, are presented and discussed. Full article
(This article belongs to the Special Issue Dynamics of Composite Wind Turbine Rotor Blades)
Show Figures

Figure 1

14 pages, 2299 KiB  
Article
The Effect of Long Duration Earthquakes on the Overall Seismic Behavior of Steel Structures Designed According to Eurocode 8 Provisions
by Panagiota Katsimpini, Foteini Konstandakopoulou, George A. Papagiannopoulos, Nikos Pnevmatikos and George D. Hatzigeorgiou
Vibration 2020, 3(4), 464-477; https://doi.org/10.3390/vibration3040029 - 18 Nov 2020
Viewed by 2127
Abstract
Premature and simultaneous buckling of several steel braces in steel structures due to the prolonged duration of a seismic motion is one of the issues that must be addressed in the next version of Eurocode 8. In an effort to contribute towards the [...] Read more.
Premature and simultaneous buckling of several steel braces in steel structures due to the prolonged duration of a seismic motion is one of the issues that must be addressed in the next version of Eurocode 8. In an effort to contribute towards the improvement of the seismic design provisions of Eurocode 8, an evaluation of the overall behavior of some steel building-foundation systems under the action of long duration seismic motions is performed herein by means of nonlinear time-history seismic analyses, taking into account soil–structure interaction (SSI) effects. In particular, the maximum seismic response results—in terms of permanent interstorey drifts, overturning moments and base shears of the steel buildings as well as of the permanent settlement and tilting of their foundations—are computed. It is found that the seismic performance of steel buildings when subjected to long duration seismic motions is: (i) acceptable for the two and five-storey fixed base steel buildings and for the two-storey steel buildings with SSI effects included; (ii) unacceptable for the eight-storey fixed base steel buildings and for the five and eight-storey steel buildings with SSI effects included. In all cases of steel buildings with SSI effects included, the seismic performance of the mat foundation, as expressed by the computed values of residual settlement and tilting, is always acceptable. Full article
(This article belongs to the Special Issue Nonlinear Structural Dynamics)
Show Figures

Figure 1

16 pages, 348 KiB  
Article
An Inverse Problem for Quantum Trees with Delta-Prime Vertex Conditions
by Sergei Avdonin and Julian Edward
Vibration 2020, 3(4), 448-463; https://doi.org/10.3390/vibration3040028 - 17 Nov 2020
Cited by 3 | Viewed by 2134
Abstract
In this paper, we consider a non-standard dynamical inverse problem for the wave equation on a metric tree graph. We assume that the so-called delta-prime matching conditions are satisfied at the internal vertices of the graph. Another specific feature of our investigation is [...] Read more.
In this paper, we consider a non-standard dynamical inverse problem for the wave equation on a metric tree graph. We assume that the so-called delta-prime matching conditions are satisfied at the internal vertices of the graph. Another specific feature of our investigation is that we use only one boundary actuator and one boundary sensor, all other observations being internal. Using the Neumann-to-Dirichlet map (acting from one boundary vertex to one boundary and all internal vertices) we recover the topology and geometry of the graph together with the coefficients of the equations. Full article
(This article belongs to the Special Issue Inverse Dynamics Problems)
Show Figures

Figure 1

23 pages, 14750 KiB  
Article
A Shake Table Frequency-Time Control Method Based on Inverse Model Identification and Servoactuator Feedback-Linearization
by José Ramírez Senent, Jaime H. García-Palacios and Iván M. Díaz
Vibration 2020, 3(4), 425-447; https://doi.org/10.3390/vibration3040027 - 03 Nov 2020
Cited by 5 | Viewed by 3021
Abstract
Shake tables are one of the most widespread means to perform vibration testing due to their ability to capture structural dynamic behavior. The shake table acceleration control problem represents a challenging task due to the inherent non-linearities associated to hydraulic servoactuators, their low [...] Read more.
Shake tables are one of the most widespread means to perform vibration testing due to their ability to capture structural dynamic behavior. The shake table acceleration control problem represents a challenging task due to the inherent non-linearities associated to hydraulic servoactuators, their low hydraulic resonance frequencies and the high frequency content of the target signals, among other factors. In this work, a new shake table control method is presented. The procedure relies on identifying the Frequency Response Function between the time derivative of pressure force exerted on the actuator’s piston rod and the resultant acceleration at the control point. Then, the Impedance Function is calculated, and the required pressure force time variation is estimated by multiplying the impedance by the target acceleration profile in frequency domain. The pressure force time derivative profile can be directly imposed on an actuator’s piston by means of a feedback linearization scheme, which approximately cancels out the actuator’s non-linearities leaving only those related to structure under test present in the control loop. The previous architecture is completed with a parallel Three Variable Controller to deal with disturbances. The effectiveness of the proposed method is demonstrated via simulations carried over a non-linear model of a one degree of freedom shake table, both in electrical noise free and contaminated scenarios. Numerical experiments results show an accurate tracking of the target acceleration profile and better performance than traditional control approaches, thus confirming the potential of the proposed method for its implementation in actual systems. Full article
(This article belongs to the Special Issue Inverse Dynamics Problems)
Show Figures

Figure 1

15 pages, 5669 KiB  
Article
Dynamic Behaviour of High Performance of Sand Surfaces Used in the Sports Industry
by Hasti Hayati, David Eager, Christian Peham and Yujie Qi
Vibration 2020, 3(4), 410-424; https://doi.org/10.3390/vibration3040026 - 29 Oct 2020
Cited by 10 | Viewed by 2782
Abstract
The sand surface is considered a critical injury and performance contributing factor in different sports, from beach volleyball to greyhound racing. However, there is still a significant gap in understanding the dynamic behaviour of sport sand surfaces, particularly their vibration behaviour under impact [...] Read more.
The sand surface is considered a critical injury and performance contributing factor in different sports, from beach volleyball to greyhound racing. However, there is still a significant gap in understanding the dynamic behaviour of sport sand surfaces, particularly their vibration behaviour under impact loads. The purpose of this research was to introduce different measurement techniques to the study of sports sand surface dynamic behaviour. This study utilised an experimental drop test, accelerometry, in-situ moisture content and firmness data, to investigate the possible correlation between the sand surface and injuries. The analysis is underpinned by data gathered from greyhound racing and discussed where relevant. Full article
(This article belongs to the Special Issue Inverse Dynamics Problems)
Show Figures

Figure 1

39 pages, 529 KiB  
Review
Jerk within the Context of Science and Engineering—A Systematic Review
by Hasti Hayati, David Eager, Ann-Marie Pendrill and Hans Alberg
Vibration 2020, 3(4), 371-409; https://doi.org/10.3390/vibration3040025 - 21 Oct 2020
Cited by 25 | Viewed by 7314
Abstract
Rapid changes in forces and the resulting changes in acceleration, jerk and higher order derivatives can have undesired consequences beyond the effect of the forces themselves. Jerk can cause injuries in humans and racing animals and induce fatigue cracks in metals and other [...] Read more.
Rapid changes in forces and the resulting changes in acceleration, jerk and higher order derivatives can have undesired consequences beyond the effect of the forces themselves. Jerk can cause injuries in humans and racing animals and induce fatigue cracks in metals and other materials, which may ultimately lead to structure failures. This is a reason that it is used within standards for limits states. Examples of standards which use jerk include amusement rides and lifts. Despite its use in standards and many science and engineering applications, jerk is rarely discussed in university science and engineering textbooks and it remains a relatively unfamiliar concept even in engineering. This paper presents a literature review of the jerk and higher derivatives of displacement, from terminology and historical background to standards, measurements and current applications. Full article
(This article belongs to the Special Issue Inverse Dynamics Problems)
Show Figures

Figure 1

14 pages, 584 KiB  
Article
Frequency Masking Effects for Vertical Whole-Body Vibration for Seated Subjects
by Anna Schwendicke and M. Ercan Altinsoy
Vibration 2020, 3(4), 357-370; https://doi.org/10.3390/vibration3040024 - 20 Oct 2020
Cited by 4 | Viewed by 3054
Abstract
Masking occurs when the perception of a stimulus is affected or covered by the presence of another signal in close proximity either in time or frequency. This study investigated frequency masking effects across a wide frequency range for whole-body vibration (WBV). The hypothesis [...] Read more.
Masking occurs when the perception of a stimulus is affected or covered by the presence of another signal in close proximity either in time or frequency. This study investigated frequency masking effects across a wide frequency range for whole-body vibration (WBV). The hypothesis that masking effects for WBV might be caused by sub-channels within the Pacinian channel was explored in two experiments. One experiment explored the masking effects of narrow band noise (NBN) on the perception threshold of sinusoidal vibrations; another explored the effect of different widths of NBN on the shift of the perception threshold for vertical vibration of seated subjects. The results show distinct masking effects for WBV based on frequency, albeit they do not support the existence of sub-channels within the Pacinian channel. Neither the typical masking effects associated with critical bands nor threshold shifts dependent on the bandwidth of the narrow band noise can be shown. Thus, the hypothesis does not appear to hold for WBV, but frequency masking must be considered for future studies and tactile applications. Full article
Show Figures

Figure 1

14 pages, 5411 KiB  
Article
Guided Wave Inspection of Bars in Reinforced-Concrete Beams Using Surface-Mounted Vibration Sensors
by Evelyne El Masri, Timothy Waters and Neil Ferguson
Vibration 2020, 3(4), 343-356; https://doi.org/10.3390/vibration3040023 - 27 Sep 2020
Cited by 3 | Viewed by 3515
Abstract
Steel reinforcement bars (rebars) in concrete structures are inaccessible and not conducive to many inspection methods. This paper proposes a non-invasive technique based on guided waves for detecting localised abnormalities in rebars embedded in concrete beams. The technique is predicated on previously published [...] Read more.
Steel reinforcement bars (rebars) in concrete structures are inaccessible and not conducive to many inspection methods. This paper proposes a non-invasive technique based on guided waves for detecting localised abnormalities in rebars embedded in concrete beams. The technique is predicated on previously published observations that guided waves are strongly reflected by discontinuities at the frequency at which they begin to propagate, i.e., at cut-on. The reflection coefficient at cut-on is estimated using a simple wave decomposition in which a near-zero wavenumber value is assumed. A simulated study is first carried out to evaluate the technique on a concrete beam featuring four rebars. The wave finite element approach is adopted to model two uniform beams which are coupled via a short, damaged section modelled in conventional finite element analysis. Estimated reflection coefficients arising from the discontinuity are close to the true values at cut-on and independent of frequency elsewhere, so that no prior knowledge of cut-on frequencies is required. Three steel-reinforced concrete beams were fabricated—one uniform and two with localised rebar damage—and reflection coefficients were estimated from measured transfer functions. As predicted, abrupt deviations in the reflection coefficient occurred at cut-on frequencies for both damaged beams. Full article
(This article belongs to the Special Issue Health Monitoring and Non-Destructive Evaluation of Structures)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop