-
Semi-Analytical Finite-Element Analysis for Free and Forced Wave Propagation Using COMSOL and LiveLink for Matlab
-
Effect of Whole-Body Vibration Exposure in Vehicles on Static Standing Balance after Riding
-
Adaptive Notch Filter in a Two-Link Flexible Manipulator for the Compensation of Vibration and Gravity-Induced Distortion
-
Free and Forced Vibration Behaviors of Magnetodielectric Effect in Magnetorheological Elastomers
Journal Description
Vibration
Vibration
is a peer-reviewed, open access journal of vibration science and engineering, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 22.8 days after submission; acceptance to publication is undertaken in 3 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Latest Articles
Vibration Therapy for Cancer-Related Bone Diseases
Vibration 2023, 6(2), 449-465; https://doi.org/10.3390/vibration6020028 (registering DOI) - 08 Jun 2023
Abstract
►
Show Figures
Patients undergoing cancer treatments and/or suffering from metastatic bone lesions experience various skeletal-related events (SREs), substantially reducing functional independence and quality of life. Therefore, researchers are working towards developing new interventions by harnessing the bone’s innate anabolic response to mechanical stimulations. Whole body
[...] Read more.
Patients undergoing cancer treatments and/or suffering from metastatic bone lesions experience various skeletal-related events (SREs), substantially reducing functional independence and quality of life. Therefore, researchers are working towards developing new interventions by harnessing the bone’s innate anabolic response to mechanical stimulations. Whole body vibration (WBV) has recently gained interest due to its nature of being safe, effective, and easy to perform. In this review, we will summarize the most cutting-edge vibration studies of cancer models and bone-cancer cell interactions. We will also discuss various parameters, including age, vibration settings, and differences between bone sites, which may affect vibration efficacy. Studies have shown that WBV improves bone mineral density (BMD) and bone volume in patients and mice with cancer. WBV also reduces tumor burden and normalizes bone vasculature in mice. At the cellular level, vibration promotes interactions between bone cells and cancer cells, which reduce osteoclastogenesis and inhibit cancer metastatic potential. Hence, WBV could potentially serve as a new intervention or adjuvant treatment to attenuate cancer progression while preserving bone health.
Full article
Open AccessArticle
Assessing the Welfare of Technicians during Transits to Offshore Wind Farms
Vibration 2023, 6(2), 434-448; https://doi.org/10.3390/vibration6020027 - 28 May 2023
Abstract
►▼
Show Figures
Available decision-support tools rarely account for the welfare of technicians in maintenance scheduling for offshore wind farms. This creates uncertainties, especially since current operational limits might make a wind farm accessible but the vibrations from transits might be unacceptable to technicians. We explore
[...] Read more.
Available decision-support tools rarely account for the welfare of technicians in maintenance scheduling for offshore wind farms. This creates uncertainties, especially since current operational limits might make a wind farm accessible but the vibrations from transits might be unacceptable to technicians. We explore technician exposure to vibration in transit based on the levels of discomfort and the likelihood of seasickness occurring on crew transfer vessels (CTVs). Vessel motion monitoring systems deployed on CTVs operating in the North Sea and sea-state data are used in a machine learning (ML) process to model the welfare of technicians based on operational limits applied to modelled proxy variables including composite weighted RMS acceleration (aWRMS) and motion sickness incidence (MSI). The model results revealed poor to moderate performance in predicting the proxies based on selected model evaluation criteria, raising the possibility of more data and relevant variables being needed to improve model performance. Therefore, this research presents a framework for an ML approach towards accounting for the wellbeing of technicians in sailing decisions once the highlighted limitations can be addressed.
Full article

Figure 1
Open AccessArticle
Vibration Distribution Measurement of Car Door and Engine Head Using OPPA Vibration Distribution Analyzer
Vibration 2023, 6(2), 421-433; https://doi.org/10.3390/vibration6020026 - 03 May 2023
Abstract
►▼
Show Figures
In order to address the issue of vibration, it is crucial to accurately measure the vibration distribution. The authors previously developed the one-pitch phase analysis (OPPA) method, which allows for rapidly capturing the three-dimensional shape of a flat object. By integrating this method
[...] Read more.
In order to address the issue of vibration, it is crucial to accurately measure the vibration distribution. The authors previously developed the one-pitch phase analysis (OPPA) method, which allows for rapidly capturing the three-dimensional shape of a flat object. By integrating this method into a system, an OPPA vibration distribution measurement system was created, utilizing a line light source consisting of LEDs or optical fibers and also a high-speed camera to measure the vibrations of three-dimensional objects without physical contact. To further extend the application of the OPPA method to larger objects, such as cars, in this paper, a new system is introduced using a commercially available projector using a liquid crystal display (LCD) instead of a liner light source and a glass grating. This new system, which employs an ultra-short throw projector, is highly sensitive in displacement measurements and provides a wide-area analysis. These kinds of projectors produce noises at the frequency of the cooling fan and the refresh rate of the LCD. However, in this study, these noise sources were also examined. The capabilities of the new system are demonstrated through its application to the measurement of vibrations in a car door and an engine head. The measurement system and examples of its application are presented.
Full article

Figure 1
Open AccessArticle
Basic Study on Mechanical Vibration Suppression System Using 2-Degree-of-Freedom Vibration Analysis
by
, , , , , , , , , , and
Vibration 2023, 6(2), 407-420; https://doi.org/10.3390/vibration6020025 - 01 May 2023
Abstract
Mechanical vibrations adversely affect mechanical components, and in the worst case, lead to serious accidents by breaking themselves. To suppress vibrations, various studies have been conducted on vibration isolation, suppression, and resistance. In addition, technologies to actively suppress vibration have been rapidly developed
[...] Read more.
Mechanical vibrations adversely affect mechanical components, and in the worst case, lead to serious accidents by breaking themselves. To suppress vibrations, various studies have been conducted on vibration isolation, suppression, and resistance. In addition, technologies to actively suppress vibration have been rapidly developed in recent years, and it has been reported that vibrations can be suppressed with higher performance. However, these studies have been conducted mostly for low-order systems, and few studies have employed control models that consider the complex vibration characteristics of multi-degree-of-freedom (DOF) systems. This study is a basic study that establishes a control model for complex control systems, and the vibration characteristics of a 2-DOF system are calculated using the vibration analysis of a multi-DOF system. Furthermore, the vibration suppression performance of the 2-DOF system is investigated by performing vibration experiments.
Full article
(This article belongs to the Special Issue Advancing Engineering Technologies and Applications in Structural Dynamics and Vibrations)
►▼
Show Figures

Figure 1
Open AccessArticle
Acute Effects of Whole-Body Vibration on Quadriceps Isometric Muscular Endurance in Middle-Aged Adults: A Pilot Study
by
, , , , , and
Vibration 2023, 6(2), 399-406; https://doi.org/10.3390/vibration6020024 - 22 Apr 2023
Abstract
This study analysed the acute effects of whole-body vibration (WBV) on quadriceps isometric muscular endurance. Fifteen healthy middle-aged males performed an endurance isometric strength test after three different warm-up conditions: static half squat plus WBV (HSV), static half squat without WBV (HS), and
[...] Read more.
This study analysed the acute effects of whole-body vibration (WBV) on quadriceps isometric muscular endurance. Fifteen healthy middle-aged males performed an endurance isometric strength test after three different warm-up conditions: static half squat plus WBV (HSV), static half squat without WBV (HS), and control condition (CC). The endurance isometric strength test consisted of 10 maximal isometric contractions held for 4 s and interspersed by 2 s of rest between each repetition. Rate of Perceived Exertion (RPE) was assessed after warm-up (RPE1) and at the end of the testing session (RPE2). During each testing session, participant’s heart rate (HR) was continuously recorded. For each trial, the mean force across the 10 repetitions and fatigue index were evaluated. Mean force was significantly higher (p < 0.01) in CC than in the other two conditions. Both RPE1 and RPE2 were significantly lower (p < 0.01) in CC than HSV and HS condition. Warm-up HR and the mean testing session HR were significantly lower in CC than the other two conditions (p < 0.01). No significant differences were observed in fatigue index between conditions (p > 0.05) or in HR during the endurance protocol. Performing half-squat with or without vibration stimuli does not increase isometric muscular endurance and does not influence fatigue index.
Full article
(This article belongs to the Special Issue Vibrations in Sports)
►▼
Show Figures

Figure 1
Open AccessArticle
Influence of Coupling Forces and Body Posture on the Rotational Hand–Arm Impedance in yh Direction
Vibration 2023, 6(2), 375-398; https://doi.org/10.3390/vibration6020023 - 12 Apr 2023
Abstract
►▼
Show Figures
This manuscript investigates the rotational mechanical impedance of the human hand–arm system with respect to vibration excitation around the gripping axis of the hand under the influence of body posture, gripping force, and push force. Knowledge of rotational mechanical impedance is required for
[...] Read more.
This manuscript investigates the rotational mechanical impedance of the human hand–arm system with respect to vibration excitation around the gripping axis of the hand under the influence of body posture, gripping force, and push force. Knowledge of rotational mechanical impedance is required for deriving models of hand–arm biodynamics. These models are used in the validation of power tools to predict further vibrational human–machine interactions. In the current state of research, such models exist for translational but not rotational vibration excitation. Consequently, this study investigates the properties of a hand–arm system with respect to rotational vibration excitation. In the study, the rotational impedance of the hand–arm systems of 13 adults was measured at various gripping and push forces applied in different body postures. The setup of the test used in this study consisted of a shaker that applied rotational vibrations at certain frequencies to the subjects’ hand–arm systems via a cylindrical handle. The results of the study indicate a spring–damper dynamic of the hand–arm system. The gripping force strongly influences the magnitude of rotational impedance across the frequency spectrum. Regarding push force and posture, no corresponding influence could be determined. The results suggest that the frictional contact between the hand and handle might confer a damping effect.
Full article

Figure 1
Open AccessArticle
Semi-Analytical Finite-Element Analysis for Free and Forced Wave Propagation Using COMSOL and LiveLink for Matlab
Vibration 2023, 6(2), 359-374; https://doi.org/10.3390/vibration6020022 - 03 Apr 2023
Abstract
The Semi-Analytical Finite-Element (SAFE) method represents one of the most established numerical approaches for predicting the propagation of elastic waves in one-dimensional structures of arbitrary cross-sections. Its implementation in the commercial finite-element software COMSOL Multiphysics has been proposed in recent years; however, it
[...] Read more.
The Semi-Analytical Finite-Element (SAFE) method represents one of the most established numerical approaches for predicting the propagation of elastic waves in one-dimensional structures of arbitrary cross-sections. Its implementation in the commercial finite-element software COMSOL Multiphysics has been proposed in recent years; however, it is limited to only the free wave propagation for computing dispersion curves. To overcome this limitation, this paper proposes an extension of this approach that combines COMSOL and its Livelink for Matlab tool. This enables the extraction from COMSOL of the assembled mass and stiffness SAFE matrices to solve problems of both free and forced wave propagation in the Matlab environment. The resulting customised software takes advantage of both the potential of commercial FE software and the power of Matlab without worrying about compatibility issues. A model of a simply supported plate strip and that of a more complex geometry are implemented to validate, respectively, the SAFE matrix extraction procedure and the implemented forced response formulation. The results agree well with corresponding analytical and numerical results validating the proposed implementation of the SAFE method.
Full article
(This article belongs to the Special Issue Advancing Engineering Technologies and Applications in Structural Dynamics and Vibrations)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Whole-Body Vibration Exposure in Vehicles on Static Standing Balance after Riding
by
and
Vibration 2023, 6(2), 343-358; https://doi.org/10.3390/vibration6020021 - 01 Apr 2023
Abstract
►▼
Show Figures
This study aims to investigate the effects of whole-body vibration (WBV) exposure on the disturbance of standing balance function assuming that the cause of slip, trip and fall accidents in the land transportation industry is related to WBV exposure when traveling in vehicles.
[...] Read more.
This study aims to investigate the effects of whole-body vibration (WBV) exposure on the disturbance of standing balance function assuming that the cause of slip, trip and fall accidents in the land transportation industry is related to WBV exposure when traveling in vehicles. In the experiment, ten participants underwent 60 min of virtual driving in a driving simulator (DS) for WBV exposure. In addition, standing balance measurements were conducted before exposure, immediately after exposure, 2 min after exposure and 4 min after exposure. Four conditions were considered by combining two magnitudes of WBV exposure and the driver and passenger conditions. This study focused on two indexes of standing balance, namely, total length and enveloped area and the rate of change relative to the value before the vibration exposure was calculated. The rate of change remained almost constant at 1.0 in the control condition without vibration exposure, whereas that under vibration exposure conditions varied. Interestingly, the rate of change at 2 min after exposure remained high in the driver condition, but it decreased to almost 1.0 in the passenger condition. Since no difference appeared in the vibration acceleration measured at the seating surface between the driver and passenger conditions, it was believed that the difference between the driving and passenger conditions was related to fatigue caused by the accelerator-pedal operation. As a result of considering the percentage of the standing balance that returned to 1.0 after 4 min in most conditions, this study proposed that a rest period of several minutes be allowed from the experiment in which the participants were exposed to vibration at rms for 60 min at the DS. Further basic experiments will be conducted to introduce another WBV exposure assessment, including loss of standing balance as a health indicator, to ISO 2631-1.
Full article

Figure 1
Open AccessArticle
Radio Frequency Cavity’s Analytical Model and Control Design
Vibration 2023, 6(2), 319-342; https://doi.org/10.3390/vibration6020020 - 25 Mar 2023
Abstract
Reduction or suppression of microphonic interference in radio frequency (RF) cavities, such as those used in Electron Linear Accelerators, is necessary to precisely control accelerating fields. In this paper, we investigate modeling the cavity as a cylindrical shell and present its free vibration
[...] Read more.
Reduction or suppression of microphonic interference in radio frequency (RF) cavities, such as those used in Electron Linear Accelerators, is necessary to precisely control accelerating fields. In this paper, we investigate modeling the cavity as a cylindrical shell and present its free vibration analysis along with an appropriate control scheme to suppress vibrations. To this end, we first obtain an analytical mechanical dynamic model of a nine-cell cavity using a modified Fourier-Ritz method that provides a unified solution for cylindrical shell systems with general boundary conditions. The model is then verified using the ANSYS software in terms of a comparison of eigenfrequencies which prove to be identical to the proposed model. We also present an active observer-based vibration control scheme to suppress the dominant mechanical modes of the cavity. The control system performance is investigated using simulations.
Full article
(This article belongs to the Special Issue Advancing Engineering Technologies and Applications in Structural Dynamics and Vibrations)
►▼
Show Figures

Figure 1
Open AccessArticle
Prescribed Performance Control-Based Semi-Active Vibration Controller for Seat Suspension Equipped with an Electromagnetic Damper
by
, , , , , and
Vibration 2023, 6(1), 303-318; https://doi.org/10.3390/vibration6010019 - 11 Mar 2023
Abstract
Seat suspension plays a vital role in improving riding comfort and protecting drivers’ health. This paper develops semi-active seat suspension that equips a controllable electromagnetic damper (EMD) and proposes a prescribed performance control-based semi-active vibration controller with experimental validation. The semi-active EMD mainly
[...] Read more.
Seat suspension plays a vital role in improving riding comfort and protecting drivers’ health. This paper develops semi-active seat suspension that equips a controllable electromagnetic damper (EMD) and proposes a prescribed performance control-based semi-active vibration controller with experimental validation. The semi-active EMD mainly consists of a permanent magnet synchronous motor, a ball screw, a three-phase rectifier, and a controllable external resistor, which can vary its damping from to by tuning the controllable external resistor in real-time. The EMD is applied to seat suspension, and a semi-active controller is proposed for the EMD seat suspension. In order to control the seat suspension vibration, a prescribed performance method is applied to obtain a desired control force and then a force-tracking strategy is designed to make the EMD track the desired control force. Finally, the semi-active seat suspension with the proposed controller is tested in experiments with different vibration conditions. The semi-active seat suspension performs excellently for the bump, sine wave and random vibration. The root mean square (RMS) acceleration, the frequency-weighted RMS acceleration and the acceleration’s fourth power vibration dose value were reduced by , , and , respectively, in the random vibration, compared with a passive system.
Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
►▼
Show Figures

Figure 1
Open AccessArticle
Adaptive Notch Filter in a Two-Link Flexible Manipulator for the Compensation of Vibration and Gravity-Induced Distortion
Vibration 2023, 6(1), 286-302; https://doi.org/10.3390/vibration6010018 - 10 Mar 2023
Abstract
This paper presents a 2-link, 2-DOF flexible manipulator control using an inverse feedforward controller and an adaptive notch filter with a direct strain feedback controller. In the flexible manipulator, transient and residue vibrations inhibit the full potential of the manipulator. Vibrations caused by
[...] Read more.
This paper presents a 2-link, 2-DOF flexible manipulator control using an inverse feedforward controller and an adaptive notch filter with a direct strain feedback controller. In the flexible manipulator, transient and residue vibrations inhibit the full potential of the manipulator. Vibrations caused by abrupt changes in the direction of the links are referred to as transient vibrations, whereas residual vibrations occur when the arm takes too long to settle after engaging in the intended task. The feedforward adaptive notch filter will reduce transient vibration caused by the manipulator arm beginning and halting suddenly, while the strain feedback will assure the quick decay of leftover vibrations. Maple, Maplesim, and MATLAB tools were used to model the manipulator and create the inverse controller and adaptive notch filter. The experiments took place in the dSPACE control desk environment. The experimental results of the spectral power of strain resulting from the two strategies are compared. From the results, the adaptive notch filter control had over an 80% improvement in the reduction in resonant frequencies that contribute to vibration. The results confirmed the feasibility of the approach, characterized by very minimal transient vibrations and a quick settling of the end effector.
Full article
(This article belongs to the Special Issue Advancing Engineering Technologies and Applications in Structural Dynamics and Vibrations)
►▼
Show Figures

Figure 1
Open AccessArticle
Free and Forced Vibration Behaviors of Magnetodielectric Effect in Magnetorheological Elastomers
by
and
Vibration 2023, 6(1), 269-285; https://doi.org/10.3390/vibration6010017 - 03 Mar 2023
Abstract
This paper is concerned with the free and forced vibration responses of a magneto/electroactive dielectric elastomer, emphasizing the chaotic phenomena. The dielectric elastomers under external magnetic and electrical excitations undergo large elastic deformation. The magnetodielectric elastomer is modeled based on the Gent–Gent strain
[...] Read more.
This paper is concerned with the free and forced vibration responses of a magneto/electroactive dielectric elastomer, emphasizing the chaotic phenomena. The dielectric elastomers under external magnetic and electrical excitations undergo large elastic deformation. The magnetodielectric elastomer is modeled based on the Gent–Gent strain energy function to incorporate the influence of the second invariant and the strain stiffening. The viscoelasticity of the active polymer is also considered in the form of Rayleigh’s dissipation function. The equation of motion is governed with the aid of the Lagrangian equation in terms of a physical quantity, namely, the stretch of the elastomer. An energy-based approach is utilized to re-evaluate the static and DC voltage instabilities of the resonator. Time-stretch response (time history behavior), phase plane diagram, Poincaré map, and fast Fourier transform are numerically obtained and presented to explore the chaotic oscillation behavior of the active polymer actuators. The results reveal that the magnetic field may tune the stability and instability regions of the active polymeric membrane. It has also been shown that the applied magnetic field may lead to chaotic vibration responses when a sinusoidal voltage is applied simultaneously to the system. The results presented in this paper can be effectively used to design magnetic and electrical soft robotic actuators and elastomer membranes under electrical and magnetic stimulants.
Full article
(This article belongs to the Special Issue Advancing Engineering Technologies and Applications in Structural Dynamics and Vibrations)
►▼
Show Figures

Figure 1
Open AccessArticle
Usability and Vibration Analysis of a Low-Profile Automatic Powered Wheelchair to Motor Vehicle Docking System
by
, , , , , , and
Vibration 2023, 6(1), 255-268; https://doi.org/10.3390/vibration6010016 - 24 Feb 2023
Abstract
►▼
Show Figures
The QLX is a low-profile automatic powered wheelchair docking system (WDS) prototype developed to improve the securement and discomfort of wheelchair users when riding in vehicles. The study evaluates the whole-body vibration effects between the proposed QLX and another WDS (4-point tiedown system)
[...] Read more.
The QLX is a low-profile automatic powered wheelchair docking system (WDS) prototype developed to improve the securement and discomfort of wheelchair users when riding in vehicles. The study evaluates the whole-body vibration effects between the proposed QLX and another WDS (4-point tiedown system) following ISO 2631-1 standards and a systematic usability evaluation. Whole-body vibration analysis was evaluated in wheelchairs using both WDS to dock in a vehicle while riding on real-world surfaces. Also, participants rated the usability of each WDS while driving a wheelchair and while riding in a vehicle in driving tasks. Both WDSs showed similar vibration results within the vibration health-risk margins; but shock values below health-risk margins. Fifteen powered wheelchair users reported low task load demand to operate both WDS; but better performance to dock in vehicles with the QLX (p = 0.03). Also, the QLX showed better usability (p < 0.01), less discomfort (p’s < 0.05), and greater security compared to the 4-point tiedown while riding in a vehicle (p’s < 0.05). Study findings indicate that both WDS maintain low shock exposure for wheelchair users while riding vehicles, but a better performance overall to operate the QLX compared to the 4-point tiedown system; hence enhancing user’s autonomy to dock in vehicles independently.
Full article

Figure 1
Open AccessArticle
Study of an Optimized Mechanical Oscillator for the Forced Vibration of the Soil Cutting Blade
by
Vibration 2023, 6(1), 239-254; https://doi.org/10.3390/vibration6010015 - 21 Feb 2023
Abstract
In the nursery sector, the transport and planting of trees must occur with the roots wrapped in a ball of the original earth. The cutting of the original soil can be carried out with a semicircular vibrating blade moved by an oscillator mounted
[...] Read more.
In the nursery sector, the transport and planting of trees must occur with the roots wrapped in a ball of the original earth. The cutting of the original soil can be carried out with a semicircular vibrating blade moved by an oscillator mounted on a self-propelled machine. The oscillator produces an excitation torque supplied to the blade together with the soil cutting torque. The advantage of the vibrating blade is a reduction in the cutting torque of up to 70%. However, to correctly design the oscillator, we need to investigate the link between the maximum displacement of the blade, the maximum oscillation velocity, the cutting velocity, the dry friction, the excitation torque, the elastic torque, the cutting torque, the required power, the required energy, and the excitation frequency. The maximum displacement and velocity ratio need to have the right values to minimize the cutting torque and to avoid the springs reaching the end of stroke; otherwise, vibrations are transmitted to the machine and to the operator. Therefore, starting from the forced oscillation differential equation and using an approximate solution method developed by Den Hartog, along with some experimental data, a mathematical model was constructed to optimize the oscillator design. After construction, it was coupled to blades of various diameters (0.6, 0.9, and 1.2 m) to undergo experimental tests. The soil cutting tests highlighted the achievement of the above objectives and, at the same time, confirmed the validity of the Den Hartog equations used to calculate the phase lag and the maximum displacement, resulting in an average error of 4.4% and a maximum error of 6.4%.
Full article
(This article belongs to the Special Issue Vibrations in Materials Processing Machines)
►▼
Show Figures

Figure 1
Open AccessReview
Deep Transfer Learning Models for Industrial Fault Diagnosis Using Vibration and Acoustic Sensors Data: A Review
by
and
Vibration 2023, 6(1), 218-238; https://doi.org/10.3390/vibration6010014 - 17 Feb 2023
Cited by 4
Abstract
In order to evaluate final quality, nondestructive testing techniques for finding bearing flaws have grown in favor. The precision of image processing-based vision-based technology has greatly improved for defect identification, inspection, and classification. Deep Transfer Learning (DTL), a kind of machine learning, combines
[...] Read more.
In order to evaluate final quality, nondestructive testing techniques for finding bearing flaws have grown in favor. The precision of image processing-based vision-based technology has greatly improved for defect identification, inspection, and classification. Deep Transfer Learning (DTL), a kind of machine learning, combines the superiority of Transfer Learning (TL) for knowledge transfer with the benefits of Deep Learning (DL) for feature representation. As a result, the discipline of Intelligent Fault Diagnosis has extensively developed and researched DTL approaches. They can improve the robustness, reliability, and usefulness of DL-based fault diagnosis techniques (IFD). IFD has been the subject of several thorough and excellent studies, although most of them have appraised important research from an algorithmic standpoint, neglecting real-world applications. DTL-based IFD strategies have also not yet undergone a full evaluation. It is necessary and imperative to go through the relevant DTL-based IFD publications in light of this. Readers will be able to grasp the most cutting-edge concepts and develop practical solutions to any IFD challenges they may encounter by doing this. The theory behind DTL is briefly discussed before describing how transfer learning algorithms may be included into deep learning models. This research study looks at a number of vision-based methods for defect detection and identification utilizing vibration acoustic sensor data. The goal of this review is to assess where vision inspection system research is right now. In this respect, image processing as well as deep learning, machine learning, transfer learning, few-shot learning, and light-weight approach and its selection were explored. This review addresses the creation of defect classifiers and vision-based fault detection systems.
Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
►▼
Show Figures

Figure 1
Open AccessArticle
Influence of Coexistence of Pitting and Cracking Faults on a Two-Stage Spur Gear System
Vibration 2023, 6(1), 195-217; https://doi.org/10.3390/vibration6010013 - 08 Feb 2023
Abstract
►▼
Show Figures
This work considers forced vibrations in a rotating structure consisting of a two-stage spur gear system with coexisting defects, specifically pitting and cracking. Numerical simulations and experimental analysis in various scenarios of the system in operation were conducted using the RPM–Frequency mapping technique.
[...] Read more.
This work considers forced vibrations in a rotating structure consisting of a two-stage spur gear system with coexisting defects, specifically pitting and cracking. Numerical simulations and experimental analysis in various scenarios of the system in operation were conducted using the RPM–Frequency mapping technique. To identify fault characteristics, the analysis performed assumed the gear system had been misadjusted by a combination of pitting and cracking on the gear teeth. The correlation of the system-forced responses under regular and chaotic vibrations revealed that the system is far more sensitive to the crack than to the pitting when there are fluctuating harmonic peaks present at high vibration levels.
Full article

Figure 1
Open AccessArticle
Gender and Anthropometric Effects on Seat-to-Head Transmissibility Responses to Vertical Whole-Body Vibration of Humans Seated on an Elastic Seat
Vibration 2023, 6(1), 165-194; https://doi.org/10.3390/vibration6010012 - 08 Feb 2023
Abstract
This study investigated the effects of gender and ten different anthropometric parameters on the vertical vibration transmission from seat to the head of the body seated on an elastic seat. The seat-to-head transmissibility (STHT) responses in the vertical and fore-aft directions of 58
[...] Read more.
This study investigated the effects of gender and ten different anthropometric parameters on the vertical vibration transmission from seat to the head of the body seated on an elastic seat. The seat-to-head transmissibility (STHT) responses in the vertical and fore-aft directions of 58 participants (31 males and 27 females) were measured under three levels of vertical vibration (root mean square acceleration: 0.25, 0.50, and 0.75 m/s2) in the 0.50–20 Hz range, when sitting on a viscoelastic seat with and without a vertical back support, and with hands on a steering wheel. Apart from the important effects of elastic coupling between the body and seat, the results show distinctly different vertical and fore-aft STHT responses from the two genders. Moreover, the gender effect was strongly coupled with back support and excitation conditions. The primary resonance frequencies of male subjects were higher than those of female subjects, while the peak vertical STHT magnitudes were comparable. Owing to the strong coupled effects of gender and anthropometric dimensions, the study is designed to reduce the coupling by considering datasets for subjects with comparable chosen dimensions. Among the various anthropometric dimensions considered, the body mass and fat mass revealed strong influences on the primary resonance frequency, which was similar for male and female subjects with comparable body mass index and body fat mass. The vertical STHT magnitude of the two genders with the same lean body mass was also nearly identical. The peak fore-aft STHT magnitudes of the male subjects were notably higher than those of the female subjects with comparable anthropometric dimensions with the exception of the body mass.
Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
►▼
Show Figures

Figure 1
Open AccessArticle
Vibration Transmission across Seismically Damaged Beam-to-Column Junctions of Reinforced Concrete Using Statistical Energy Analysis
Vibration 2023, 6(1), 149-164; https://doi.org/10.3390/vibration6010011 - 02 Feb 2023
Abstract
To detect human survivors trapped in buildings after earthquakes by using structure-borne sound it is necessary to have knowledge of vibration transmission in collapsed and fragmented reinforced-concrete buildings. In this paper, statistical energy analysis (SEA) is considered for modelling vibration transmission in seismically
[...] Read more.
To detect human survivors trapped in buildings after earthquakes by using structure-borne sound it is necessary to have knowledge of vibration transmission in collapsed and fragmented reinforced-concrete buildings. In this paper, statistical energy analysis (SEA) is considered for modelling vibration transmission in seismically damaged, reinforced concrete, beam-to-column junctions where the connection between the beam and the column is made only via the steel reinforcement. An ensemble of 30 randomly damaged beam-to-column junctions was generated using a Monte Carlo simulation with FEM. Experimental SEA (ESEA) is then considered with two or three subsystems to determine the coupling loss factors (CLFs) between the beam and the column with either bending modes or the combination of all mode types. It is shown that bending modes dominate the dynamic response and that the uncertainty of predicting the CLFs using FEM with ESEA is sufficiently low that it should be feasible to estimate the coupling even when the exact angle between the beam and the column is unknown. In addition, the use of two rather than three subsystems for the junction significantly decreases the number of negative coupling loss factors with ESEA. An initial analysis of the results in this paper was presented at the 50th International Congress and Exposition on Noise Control Engineering.
Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
►▼
Show Figures

Figure 1
Open AccessEditorial
Acknowledgment to the Reviewers of Vibration in 2022
Vibration 2023, 6(1), 147-148; https://doi.org/10.3390/vibration6010010 - 28 Jan 2023
Abstract
High-quality academic publishing is built on rigorous peer review [...]
Full article
Open AccessArticle
On the Critical Velocity of Moving Force and Instability of Moving Mass in Layered Railway Track Models by Semianalytical Approaches
Vibration 2023, 6(1), 113-146; https://doi.org/10.3390/vibration6010009 - 26 Jan 2023
Abstract
This article presents a comparison between layered models of a railway track. All analyses are based on semianalytical approaches to show how powerful they can be. Results are presented in dimensionless form, making them applicable to a wide range of possible real-world scenarios.
[...] Read more.
This article presents a comparison between layered models of a railway track. All analyses are based on semianalytical approaches to show how powerful they can be. Results are presented in dimensionless form, making them applicable to a wide range of possible real-world scenarios. The main results and conclusions are obtained using repeated exact calculations of the equivalent flexibility of supporting structure related to each model by contour integration. New terms and a fundamentally different approach with respect to other published works underline the scientific contribution to this field. Semianalytical methods demonstrate that the intended results can be obtained easily and accurately. However, this benefit cannot be extended to a large number of models due to the simplifications that must be introduced in order to apply such methods. It turns out that even though the one-layer model is the furthest away from reality, it is easy to handle analytically because it has a regular and predictable behavior. The three-layer model, on the other hand, has many unpredictable properties that will be detailed in this article.
Full article
(This article belongs to the Special Issue Feature Papers in Vibration)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Actuators, Materials, Micromachines, Sensors, Vibration
Advances in Piezoelectric/Ultrasonic Sensors and Actuators
Topic Editors: Junhui Hu, Ming YangDeadline: 31 July 2023

Conferences
Special Issues
Special Issue in
Vibration
Feature Papers in Vibration
Guest Editor: Aleksandar PavicDeadline: 30 July 2023
Special Issue in
Vibration
Aeroacoustics and Advanced Noise Control
Guest Editors: Atef Mohany, Marwan HassanDeadline: 31 August 2023
Special Issue in
Vibration
Vibrations in Materials Processing Machines
Guest Editors: Pavlo Krot, Volodymyr Gurski, Vitaliy Korendiy, Alhussein AlbarbarDeadline: 20 September 2023
Special Issue in
Vibration
Advancing Engineering Technologies and Applications in Structural Dynamics and Vibrations
Guest Editors: Kai Zhou, Hongling Ye, Qi ShuaiDeadline: 15 October 2023