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Abstract: A complex fluid-structure interaction can often create nonlinear dynamic behaviour in the
structure. This can be better estimated using nonlinear modal analysis, capable of identifying and
quantifying the nonlinearity in the structure. In this study, the case of a vibrating beam submerged in
liquid using a nonlinear parameter identification method is presented. This system is considered
as an alternative propulsion mechanism, hence understanding the interaction between the fluid
and the structure is necessary for its control. Here, impulse signals are used to characterise the
numerical and experimental dynamics response of the system. Since the transient responses contain of
a multi-component vibratory signals, a vibration decomposition method is used to separate the time
response signals based on the dominant amplitude in the frequency response function. The separated
time-series signals are then fitted to the nonlinear identification method to construct the backbone and
damping curves. The modal parameters obtained from experimental data are then used as a base for
the development of the analytical models. The analytical approaches are based on the Euler-Bernoulli
beam theory with additional mass and quadratic damping functions to account for the presence
of the fluid. Validations are carried out by comparing the dynamic responses of the analytical and
experimental measurements demonstrating the accuracy of the model and hence, its suitability for
control purposes.

Keywords: quadratic damping; nonlinear system identification; fluid-structure interaction; nonlinear
experimental modal analysis

1. Introduction

There are many examples of living organisms (e.g., flagellates, snakes, sandfish) which use body
undulations to create propulsion by inducing motion in the fluid surrounding their bodies. Taking
inspiration from these examples, alternative propulsion systems that use travelling waves can be
devised. Bio-inspired mechanisms based on the application of travelling waves have been considered
for novel designs, leading to innovative motors, pumps and transport devices [1]. In particular, this idea
played a fundamental role in mechanism-miniaturisation and led to the development of the smallest
motor and pump ever conceived [2]. One of the most common configurations to recreate a propulsion
system in a fluid environment is by using an elastic beam to generate bending travelling waves. Such
innovative devices can be made by simply manipulating the constraints of the beam. For example,
in the transport device, an artificial swimmer is created by attaching a permanent magnet at the tip of
a free-free beam [3]. By inducing magnetic fields around the beam, travelling waves can propagate
through the beam and, by interacting with the surrounding fluid, generate thrust. In micropumps [4-6],
a fixed-fixed beam is mounted on the top of a micro-channel to generate travelling waves for carrying
the fluid inside a micro pipe. A fixed-free beam model can also be used to create a micro-devices for
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either sensing or pumping purposes [7,8]. Based on these wide range of applications, studies on beams
submerged in fluid environments is both challenging and extremely timely.

The interaction between the beam and surrounding fluid in these applications creates a
multi-physics problem, often referred to as Fluid-Structure Interaction (FSI). To capture the full
behaviour of FSI problems, nonlinear equations that take into account the near field response in
proximity of the structure with the large deformations of the structure are necessary. The correct
representation of this problem requires a coupling algorithm capable of representing the mutual forces
between fluid and solid whilst preserving the continuity conditions in terms of displacements across
the fluid-structure interface [9]. Due to the complex nature of these problems, experiments [5,6,10]
and numerical modelling [11-13] are the preferred approach, leaving little space for analytical models.
Consequently, the optimisation of systems designed around FSI principles is complex and expensive,
both in terms of computational resources and time. Therefore, minute changes in the structure or fluid
parameters would require a substantial computational effort.

To approximate the motion of the beam interacting with a fluid, the complexity in the FSI model is
often reduced with assumptions that the presence of the fluid introduces a quadratic damping function
and an additional mass in the linear mass per unit length of the beam [14-16]. These assumptions
have been widely used in numerical simulations investigating the influence of different geometric
shapes [8,12], structural and fluid dynamic parameters [8,17]. Similar approaches have been used to
detect damage in a structure submerged in fluid [18] and explore the thrust generation in swimming
animals [19]. In particular, the quadratic damping function is simplified with linear damping to
obtain exact solutions [20,21]. This method, for instance, was used in [21] to present a study on wave
transmission aimed at enhancing the travelling wave and cancelling the standing wave formation.

Numerous factors contribute to the generation of damping—e.g., aspect ratio [22,23] and
fluid properties [13,24,25]—therefore estimating the exact damping values can be quite challenging.
Nonetheless erroneous damping estimations result in considerable errors in the prediction of the
dynamic responses, therefore this has been the topic of several research works. The most common
technique for calculating the damping is the quadrature peak picking method [26] (or the half-power
point method in [27]) which is largely used in FSI characterisations [13,22,23,25,28]. Some low excited
modes can create a distorted peak in the frequency response function which leads to an error in the
quadrature peak picking method. For this reason, Vu et al. [29] used an advanced modal parameter,
based on the time domain method utilising multivariable autoregressive model, to review the damping
changes in the modes of the submerged vibrating plate. Alternatively Liu et al. [30] used the PolyMAX
algorithm demonstrating that this led to comparable modal damping characteristics. All these methods
however can only extract the linear damping; in cases, where the effects of nonlinearities cannot be
neglected, a local linearisation of the damping curve is used in the estimation process. Due to the rapid
development of the nonlinear identification method, there are currently many tools readily available
for extracting modal parameters containing nonlinearities.

In this work, the nonlinearity of a beam immersed in liquid is assessed by a nonlinear parameter
identification method developed by Londofio et al. [31]. The method was chosen due to its simple
strategy for computing the relation between instantaneous amplitude and frequency. This will
give prompt results for identifying nonlinearities from very few decaying peaks in the oscillations.
Furthermore, the use of free vibration to investigate nonlinearities is favourable in this study where the
responses tend to decay in a swift manner, leading to a reduced computational time compared to that of
the forced vibration method. The procedure used in this work is slightly modified: it uses a particularly
designed pattern in the train of impulse to maximise the amount of information that can be extracted
from a single experiment. Instead of using the Resonance Decay Method [32], step input signals of
arbitrary amplitude will be used for generating transient responses so that the structure can experience
different force levels. This will allow for the characterisation of the system response over a wider
range of amplitudes, resulting in a larger portion of the damping and elastic backbone curves. In fact,
the vibration response will contain a multitude of time varying signals with different amplitudes.
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This can be used to study the mode contribution and the frequency content of the system response.
Since each mode may have a distinct decay rate, the time-varying vibration signals is separated in
several components based on the largest mode contribution. A detailed description of the technique is
provided in the following section.

The aim of this paper is to investigate the nonlinearity of a beam in fluid to improve the approximate
models for predicting its dynamics. The novelty in this study is the utilisation of the aforementioned
parameter identification technique to evaluate the damping functions. The paper is structured as
follows: Section 2 provides an overview of the vibration separation and the nonlinear identification;
procedures for generating transient response from experimental and numerical models are presented
in Section 3; investigations into frequency content, vibration separation as well as constructing the
backbone and damping curves are presented in Section 4; In Section 5, analytical models are developed
using the modal parameters estimated from the experiments and numerical results are generated for
validation and verification. Finally, conclusions are drawn in Section 6.

2. Theoretical Study

2.1. Vibration Decomposition

The Hilbert Vibration Decomposition (HVD) presented in [33] is one of the methods for extracting
non-stationery as well as multicomponent vibratory signals. This technique is primarily based on the
assumption that the signal can be represented as a sum of time-varying components with different
amplitudes and frequencies [34]. Therefore, it is not applicable for separating a signal composed of a
superposition of the same amplitude and frequency.

There are four major steps required to decompose a signal: estimating the dominant frequency,
applying a low-pass filter, calculating the amplitude as well as the phase shift correction, and finally,
subtracting the decomposed from the initial signal. Figure 1 illustrates the HVD procedure used for
vibration decomposition. The analytic signal is used to examine the direct vibration properties, such as
instantaneous vibration amplitude, frequency and phase utilising the Hilbert Transform. The key for
smooth decomposition results is the use of a low-pass filter after the derivative of the instantaneous
phase angle. The filter removes the high frequency components which create small oscillations in the
time series of the instantaneous frequency.
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Figure 1. The HVD procedure for extracting a multicomponent vibratory signal.

The purpose of the synchronous demodulation is to calculate the respective amplitude from the
estimated frequency. A signal with the estimated frequency and amplitude of the forcing signal is
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multiplied with the measured signal. This operation is repeated twice: in the first case the reconstructed
forcing signal is used, in the second case the same signal is shifted of 90° as follows [35],

x(t) = 0.5A(t) cosp(t) (1)

x(t) = 0.5A(t) sin(t) )

where x(t) is the initial signal from measurement and has a real value, A(t) is the instantaneous
amplitude, ¢(t) is the instantaneous phase and ¢ is the time. The result will be a signal proportional to
the in-phase (Q) and out-of-phase (I) components of the input. Low-pass filters are used to remove
high-frequency errors. The magnitude of the input signal is calculated by taking the sum of the squares
of I and Q, whereas the phase is evaluated by taking the arctangent of the ratio QJ/I.

The amplitude, A;(t), and phase shift, @(t), after the demodulation process can be estimated from
Equations (1) and (2) using the same techniques as shown in Figure 1. The phase shift correction is
important to make the decomposed signal in-phase with the initial or the reference signal. Therefore,
only the out of phase signal remains after the subtraction process. The procedure is repeated for an
arbitrary number of iterations.

2.2. Nonlinear Identification

There are many procedures for estimating the backbone and damping curves from free vibration.
The backbone curve shows the change of instantaneous frequency with respect to the instantaneous
amplitude. A simple method for assessing the instantaneous frequency, f (t fi)r is presented by
Londoiio [31] which considers the inverse of the instantaneous period as follows,

L 3)

f(tfi) = (

triv1 — tfi—l)

where t i s the series of the zero crossing time, i = [1, 2, 3,...], as illustrated with the blue circle
markers in Figure 2. Theoretically, the crossing time is determined at the amplitude equal to zero,
A = 0. However, t; is often acquired from a decay response at amplitude close to zero, A ~ 0, due to
discretisation of the signal. This condition leads to a noisy instantaneous frequency which requires a
filter to smooth out the result or an interpolation algorithm to obtain anideal t;; at A = 0.

tA1 ’A1

Figure 2. A typical response of an underdamped system.

The instantaneous amplitude can be observed by tracing the local minima or maxima from each
zero-crossing point of the transient response as indicated by the red cross markers in Figure 2. Since
the frequency is calculated based on one cycle of the curve, the number of the instantaneous frequency
data would be equal to that of the instantaneous amplitude, [ f (t fi)]mxn = [A(tai)],xn- Therefore,
the backbone curve can be compiled by pairing these data.
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The damping curve can be estimated by assuming that the decaying envelope, A(t), has a function
of the form,
A(t) = Age tH2nf ()t (4)

where Ay is the initial amplitude, ((t) is the damping ratio and f is the instantaneous frequency.
The damping ratio coefficient can be determined by using linear regression analysis of Equation (4)
as follows,

In A(to) 27‘(f(t0)t0 1
In|A(f1) B 2rnf(t)t 1 (b
: B : s { In|A| } ®
In|A(ty-1)] 2nf(tn-1)tna 1

where N is the number of data points. In other words, the linear damping ratio is extracted from the
gradient of a straight line when it is plotted in a logarithmic scale with respect to time. The damping,
however, can be represented with quadratic or even cubic functions. The coefficients for those functions
can be found using linear regression analysis. The nonlinear damping in Equation (4) may be written
as

A(t) = Aoe—(k1t3+k2t2+k3t) 6)
where the coefficients ky, kp, and k3 can be evaluated, according to [36], using the least-square solution
to 3 )

In|A (to) tg tg to 1 ky
In[A(tp) _ tl tl 5] 1 ky ”
z A
In|A(ty_1)| £, B, tnag 1]\ Inldol

Note that, although the coefficients of the nonlinear expansion of the damping are sought,
the method used in Equation (7) is linear in its nature.

3. Materials and Methods

The system under consideration is illustrated in Figure 3, where x and z define the physical
coordinate system. The beam is coupled with a permanent magnet at one side and free at the other
end. The magnet is used to either attract or repel the magnetic fields induced by an electromagnet
situated around the structure, inducing a periodic oscillation in the transverse direction. The beam is
composed of a uniform steel alloy material which has a density and modulus of elasticity of 7200 kg/m3
and 240 GPa, respectively. The beam has a rectangular geometry, 80 X 12.75 mm, with a thickness of
0.08 mm. The analysis is carried out in two different fluid media, namely air and water. Thus, the terms
“dry” and “wet” will be used here to represent the beam in air and liquid environments, respectively.
The air and water density are 1.26 kg/m> and 997 kg/m?, respectively.

Tank

Beam - El, u

T_, x  Magnet Liquid

Figure 3. Cantilevered beam immersed in a liquid excited by the translation of its base.




Vibration 2020, 3 526

3.1. Experimental Setup

To create an equivalent model of Figure 3, the beam, shown in Figure 4, is clamped on an LDS
V406 permanent magnet shaker to induce vibrations in the structure. A rigid extension is used to
fully immerse the beam in water and reproduce the rigid body movement of the magnet illustrated in
Figure 3. The velocity response of the beam is acquired from a single-pointer Polytech laser vibrometer
PDV-100, while the base acceleration, wy, is measured by an accelerometer. For the purpose of this
experiment, the extension can be considered rigid, i.e., its lowest natural frequency occurs far from the
frequency range of interest. Figure 4 shows the experimental setup for the beam in the wet condition,
whereas, in the dry condition, the tank is simply removed.

. Accelerometer
Extension

Beam

Laser pointer

Tank with liquid

Figure 4. Cantilevered beam immersed in a liquid excited by the translation of its base.
3.2. Numerical Simulation

A numerical model capable of simulating FSI is performed using Simcenter STAR-CCM+ to
reproduce the behaviour of this multiphysics system. The multiphysics solution is obtained by the
simultaneous computation of the solid and fluid domains. These two domains interface through
a coupling algorithm such that the fluid and solid exchange forces and displacements across the
fluid-structure interface. In the fluid solver, the implicit unsteady approach is used to perform the
transient and steady state simulations. The model assumes that the fluid density is steady throughout
the continuum. The laminar flow solver is used because the Reynold number is low enough to prevent
transition to turbulence. The flow equations such as the momentum and continuity equations are
solved in a segregated or uncoupled manner. In addition, the transport equations which describe the
mechanics of solid and fluid continua are derived based on gradient computation models.

In the solid domain, the system is modelled using three-dimensional elements and the motion
of the beam is restricted to the XZ-Plane to avoid torsion. The material is assumed to be isotropic
linear elastic in which only density, Poisson’s ratio and Young’s Modulus are used to define the
material properties. Although the model has linear geometry and material, the influence of fluid
forces may change the load orientation which results in generating large displacements and nonlinear
interactions. Thus, the feature of nonlinear geometry analysis in the solid solver is activated to capture
such phenomena. For the boundary conditions, the beam is only allowed to displace in z-direction at
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x = 0, and free at the other side to emulate the cantilever beam subject to base motion. The displacement
is computed via finite element method (FEM). The input for the simulation is in the form of a constant
base displacement, wy(x, t), and is assigned as a boundary condition.

4. Nonlinear System Identification

In the following section, the transient responses from experimental and numerical data are
presented and analysed by looking at the mode contributions. The first-two dominant modes are then
extracted from the decay response using the wave decomposition technique and are used to estimate
the backbone and damping curves.

4.1. Dry Model Analysis

To perform a numerical simulation for the dry model, the damping feature in the simulation
requires an initial assumption for the coefficients of the mass and stiffness matrices in the Rayleigh
damping model. Since the Rayleigh damping can be represented by a modal viscous damping assigned
in each mode of the system [37], the mass and stiffness damping coefficients are calculated with an
assumption of the damping ratio of 0.2% and 0.1% for the first and second modes, respectively using
the proportionality principle. This estimation is based on the common damping assumption for steel
which varies between 0.1-0.2% [38].

Using the step function as input signal, Figure 5a presents the time series of velocity for both
approaches in the dry condition acquired at the tip of the beam, x = L. From the figure, the decay rate
appears similar after 5 s for both cases indicating a slow-varying amplitude over time. Nonetheless, at the
beginning of the free decay measurement a rapid decay in oscillations is observed. This phenomenon
is further examined by looking at the frequency domain.
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Figure 5. (a) The time series of velocity at x = 8 cm, and the 3D plot of velocity in various frequency
and beam length of (b) the experimental model and (c) the numerical model.
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By implementing the Fast Fourier transform (FFT), the frequency responses are depicted in
Figure 5b,c for various locations along the length of the beam. From the figures, the red lines over
the local maxima (peaks) represent the first, second and third mode shapes of the beam. Note that
the peaks appeared at 150 Hz as well as 200 Hz in the experiment data shown in Figure 5b are the
aliasing errors. It can be seen from Figure 5b,c that the two models have different mode contributions.
The numerical model has equal first and second mode contributions, while the first mode contributes
the most in the experiment model. This occurrence can be related to the structure of the clamped
section of the beam depicted in Figure 4. The beam is mounted on the moving part of the shaker where
this element is held up by a flexible support that acts like a spring [27]. Therefore, there is a possibility
that the moving part of the shaker absorbs vibrations. We also noticed from physical observations that,
before the base of the shaker reaches the steady state, it goes through an overshoot followed by a small
oscillation in response to the step input signal. This phenomenon, however, will be investigated in
detail in the next section.

To examine the nonlinearity in each mode, the time series of velocity shown in Figure 5a is
decomposed using the wave separation technique presented in Section 2.1 to extract the first and second
modes. The third mode is not taken into account since it has very little contribution in the experimental
model. Therefore, there are only two iterations in the block diagram of the HVD procedure as illustrated
in Figure 1. Figure 6a,b present the decomposed signals for the experimental and numerical models,
respectively. The red and blue colours from both figures signify the first and second decomposed
signals, respectively. The notations ED1, ED2, ND1, ND2, ND3 and ND4 represent the instantaneous
amplitudes of the experimental (ED) and numerical data (ND). It is seen from the figures that the
amplitude of the decay response can be associated with the mode contributions in the frequency
domain of the initial signal. For instance, the initial amplitudes of the first and second decomposed
signals of the experimental model shown in Figure 6a have the same proportion as the peaks of the
initial signal in the frequency domain. In Figure 6b, interestingly, there are two distinct decay rates and
frequencies in one signal. We can assume that ND2 and ND3 have similar instantaneous frequency
properties and demonstrate very slow decaying rate compared to that of ND1 and ND4. The distinction
in the decay rate is of course due to the assumption that the damping ratio for the first mode is set to a
higher value than for the second mode.

The time series of velocity shown in Figure 6 is integrated numerically to obtain the relative
displacement of the beam. Using the nonlinear identification method to extract the instantaneous
amplitude and frequency presented above, the backbone curves for the first and second mode are
depicted in Figure 7a,b. From the figures, the backbone curves indicated with the legends ED1—ND4
are extracted from the instantaneous amplitudes shown in Figure 6. The instantaneous frequencies
however are not shown here for brevity. The backbone diagrams exhibit a straight-line indicating
that the system behaves linearly. The difference between the estimated frequency values between the
experimental and numerical models can be related to the filtering process in the HVD procedure to
smooth out the analytical signal, the instantaneous vibration properties and the demodulation process.
Nevertheless, the disparity between the two models are insignificant with errors less than 3% for the
two modes.

Figure 8a,b display the damping curve with respect to the displacement amplitude. As expected,
the experimental and numerical models exhibit linear damping characteristics. The damping curves of
the experimental and numerical results coincide with each other and agree with the initial assumption
of 0.2% and 0.1% damping ratio for the first and second modes, respectively. The presence of noise in
the second mode of the experimental model is due to rapid decay time of this mode. It is worth noting
that the purpose of the dry model analysis is not only for characterising the beam in air, but also to
prove that the procedures for identifying the nonlinear system are correct.
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Figure 6. The decomposed signals of the (a) experiment data and (b) numerical data.
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Figure 8. Damping curves of (a) the first and (b) second modes.

4.2. Wet Model Analysis

The first test for the wet model was carried out using the step function input signal. Figure 9a
shows the time series of the velocity response obtained at the tip of the beam. The results show a
satisfactory performance of the numerical model in order to replicate the response of the experimental
model, albeit with less oscillation. The frequency responses reveal that the three modes of the
experimental model appear just under 60 Hz as shown in Figure 9b. On the other hand, the only
obvious peak in the numerical model shown in Figure 9c is the first mode marked with the continuous
red line over the peaks along the beam length. The second and third modes exhibit highly damped
characteristics indicated with a rounded peak. There is no clear peak particularly in the third mode
which are hard to detect using standard algorithm to extract the local maxima. However, it can be seen
from visual observation that the patterns around 20 Hz and 60 Hz form the mode shapes of the second
and third resonant frequencies.

Figure 10a,b depict the decomposed signals of the experimental and numerical models, respectively.
From both figures, only the first decomposition signals indicated with the red lines provide very
apparent decaying oscillations. The envelopes over the decay signals denoted with “EW1” and
“NW1” signify the instantaneous amplitude of the experiment and numerical models respectively.
The envelope is chosen such that it is favourable for nonlinear identification analysis. It is reasonable
to assume that EW1 corresponds to the contribution of the second mode of the experimental model,
while NW1 is under the influence of the first mode of the numerical model. The identification process
for the numerical model becomes challenging since the envelope of NW1 contains a short time period
signal where the amplitude tends to decay very quickly. Consequently, the instantaneous amplitude is
comprised of a very few data points from several peaks for nonlinear analysis.
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model and (c) the numerical model.
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The second test was carried out with the derivative of ramp function. Figure 11a shows the
comparison of the time series of the experimental and numerical models acquired at the tip of the beam.
Although the first trough and peak have almost the same period and magnitude, it can be seen from the
figure that the oscillation of the numerical model decays faster than before. In contrast, the waveform
of the experimental model tends to oscillate longer and contains multiple frequencies. To investigate
this, the frequency response of the numerical model is plotted in Figure 11b. As expected, the input
signal successfully excites the second and third modes with the least contribution of the first mode.
The same phenomenon is also demonstrated by the numerical model shown in Figure 11c where the
dominant peaks lie within the range of the second mode. Although the high damping properties hides
the presence of the third mode.
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Figure 11. (a) The time series of velocity at x = 8 cm and the frequency series of (b) the experimental
model and (c) the numerical model.

The decomposed signals from the decay responses are plotted in Figure 12. In the experiment
model shown in Figure 12a, the second and third modes are successfully extracted from the initial signal
where the decaying oscillations provide a promising instantaneous amplitude for nonlinear modal
analysis indicated with the envelope EW2 and EW3. However, the decomposition of the numerical
model shown in Figure 12b suggests a very short period of the signal. The envelope of NW2 shows
very few peaks that can be acquired from the signal. Therefore, the NW2 is not sufficient to be used in
the system identification procedure.

For this purpose, we use the numerical model to produce a decaying signal to fit with the number
of data points of the nonlinear identification system. There are some techniques to increase the
oscillation such as increasing the inner iteration of the fluid solution or loosening the fluid mesh size.
These techniques would reduce the coupling of the fluid and structure leading to a decrease in the
fluid damping on the beam. However, it is worth mentioning that these methods create a noticeable
error in the natural frequency due to lack of the added mass. Consequently, the validation with the
experimental data is no longer valid. Alternatively, the amplitude of the input signal is reduced to
lessen the influence of the fluid damping without affecting the added mass. The terms of fluid damping
and added mass will be discussed in the next section in detail.
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Figure 12. The decomposed signals of (a) the experiment model and (b) the numerical model.

Figure 13a shows the time series of velocity generated using the step input with the base amplitude
of 0.01 mm. It is seen that the response undeniably oscillates for 4 s. The frequency response shown
in Figure 13b unveils that the second mode becomes prominent compared to that of the frequency
response in Figure 9c. Interestingly, the value of the second mode moves away from the origin
and becomes less important compared to that of the experiment model. Figure 13c exhibits the two
separated signals using the signal separation presented in Section 2. The first decomposed signal,
indicated with the red line, has a pronounced envelope, NW3, with slow-varying amplitude over the
period of time.

Figure 14 depicts the time series of the instantaneous frequency extracted from the decay responses
of the envelopes EW1, EW2, EW3, NW1 and NW3. From the figures, all models agree that there is no
sign of nonlinearity as demonstrated by the unchanging frequency over time. The backbone curves
are constructed by pairing those instantaneous frequencies with the instantaneous amplitudes as
illustrated in Figure 15. Note that the line NW1 shown in Figure 15a is formed with fewer data points
which create bias in the straight line. In addition, the line EW3 shown in Figure 15c¢ is also extracted
from the noisy signal of the third mode. Consequently, an arbitrary 5 point moving average filter is
applied to smooth out the line where the mean is calculated based on the current point, 5 elements
backward and 5 elements forward.
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Figure 13. (a) Time series of the velocity at the tip of the beam, (b) velocity amplitude vs. frequency at
several locations along the beam, and (c) time series of the first and second decomposed signals.
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Figure 14. Time series of frequency.

Figure 16 presents the velocity effect on the damping values. The markers on the lines represent
the number of data points. Figure 16a shows the damping curve extracted from the envelope NW1.
It can be seen that the decay value is in the range of 2 s™! to 7 s7!, rapidly reaching steady state in the
decay response. Nonetheless, the results are not so sufficient to justify whether the damping is linear
or not due to lack of data points. Figure 16b displays the damping curve from the envelope NW3,
while the damping curves from the experiments are plotted in the same figure, namely Figure 16c.
Interestingly, the results shown in Figure 16a,c have common characteristics where the nonlinearity
occurred in high amplitudes. The nonlinearity becomes negligible in the low amplitude as shown in
Figure 16b. In addition, the damping curves in Figure 16¢ will be used as the reference for deriving
analytical models capable of predicting dynamics behaviour of the beam.
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5. Analytical Approximation Methods

5.1. Analytical Model

From Figure 3, since the magnet has a modulus of elasticity and a material thickness of
approximately 100 times greater than those of the beam, the magnet is assumed to undergo rigid body
movement in z direction. Thus, the beam can be modelled as a clamped-free beam subject to translation
of its base. The beam experiences a relative movement with respect to the base. The absolute (global)
displacement, w(x, t), of each point of the beam can be written as [39],

w(x, t) = wb(x/t) +wrel(xr t) ®)

where w,,;(x, t) is the local displacement relative to the clamped end of the beam and wj(x, t) is the
base movement.

Note that the small rotation effect is neglected for the base motion due to the head constraint.
The basic modelling assumption for the beam is that the beam displacement at any point x and time ¢ in
the z direction is small compared with the total length, L, of the beam resulting in no axial (x direction)
displacement. Additionally, the thin-beam assumption is used in the analysis, vanishing the shear
deformation and the rotary inertia effects. Thus, the linear damped Euler-Bernoulli equation for free
beam vibration in the transverse direction can be written as [40],

azwrel(xr t)

awrel(x/ t) + 84wrel (xr t)
ot2

TG e ©)

where C; is the internal damping coefficient caused by the material.

When the beam submerged in fluid vibrates, the fluid around the beam is forced to move.
The movement of the fluid generates fluid forces that work on the beam. Those fluid forces depend on
the acceleration and velocity of the beam. When the beam is accelerated, the fluid around the beam is
forced to accelerate in the same direction. Consequently, it creates a reaction force that is associated
with the acceleration. For the rectangular plate, this association, which is called the added mass, M,
can be estimated as follows [21]:

M = pn(%)z (10)

where p is the fluid density and H is the beam width.

Similarly, the reaction force that corresponds to the fluid velocity introduces an added damping,
fp, on the beam which originates from the fluid viscosity. In the case of no external flow, the damping
force, fp, on the beam resulting from fluid motion is written as [15]:

fo = Cylifx (11)

where Cy is the damping coefficient and x is the local velocity of the beam which is in this case
dwye(x, 1)/ dt. Substituting these additional forces into Equation (9), the equation of motion in absolute
frame of reference can now be written as, recalling Equation (8),

82wrel (x/ t)
ot?

8wrel(xr t)
ot

9wy (x,t)

M
(p+M) 7

= ~(u+M)

)awrel (x, t) + Ela4wrel (X, t) (12)

+(Ci+Cf‘ 5 E

Note that unlike the previous equations, Equation (12) becomes the damped Euler-Bernoulli
equation with a time-varying distributed load.
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The solution of the damped Euler-Bernoulli equation can be represented by an infinite series of
separation variables involving space and time functions,

wrel(xlt) = an(x)q”<t) (13)

i=1

where g, (t) represent the generalized modal coordinate or the modal displacement of the beam in the
n-th mode and Wy, (x) is the normal mode-shape in the n-th mode corresponding to undamped free
vibration. The corresponding mode shape can be determined from the boundary conditions in which
the clamped-free boundary conditions give [26],

w(0,8) =0,  w,(0,) =0,  Elv (Lt) =0, Ew’(Lt =0 (14)

rel rel

Resulting in the normal mode shape, Wy, (x), of the form

. ﬁnx ﬁn . ﬁnx . ﬁnx
W, (x) = cosh [ oS~ ~0n sinh - —sin (15)
where the term »’ refers to the differentiation with respect to the x, B, is the weighted frequencies

obtained from the characteristic equation, cos fcosh = —1, and gy, is expressed as

_ sinhB, —sinfy

~ cosh B, — cos By (16)

It is common practice to omit damping terms in the modal decomposition procedure [41].
The damping is introduced to each mode after the decomposition has been applied. This method is
somehow mathematically convenient and extremely useful in modelling techniques without loss of
generality. Thus, the modal coordinate can be determined by substituting Equation (13) to Equation (12),
multiplying the result by an arbitrary mode shape, Wy, (x), and integrating from 0 to L based on the
orthogonality condition to give

L L
- 11’ w xt
(u+M) wan(x)wm +EIfW (X)gu(t) = —(u+ M) abt2 me (17)
n=1% 0

By using orthogonality conditions, Equation (17) can be expressed as an infinite mode number
of independent equations. For the cantilever beam, in the case of m = n, the multiplication of mode
shape and its integration over the length of the beam results in [41]:

L
f WO Walx) = L (18)
0
L ‘64
[ Wi wa = B 19
0

Equation (17) may now be simplified using the integrals of Equations (18) and (19), dividing by L,
and adding the damping terms to give

Elﬁn

(14 M), (6) + (i + ol (O () + Soan(t) = 3Qu(0) 0)
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where Q,(t) are the generalized force given by

L

2'(,0 X
Qu(t) = —<u+M>‘9;’% f W (x)dx 1)
0

And the constant b is the normalization condition of the eigenfunctions given by

b = f W2 (x)dx (22)

Equation (20) is basically the modal equation for a single mass with multi-degrees of freedom.
Since the equation contains a quadratic damping term, the modal displacement, g, (t), can be solved
by using, for instance, numerical integration based on Runge-Kutta methods [31].

5.2. Validation of Natural Frequencies

The natural frequencies are important characteristics where an error from this estimation would
create discrepancies in all analyses. To extract natural frequencies of the beam from experiment,
the shaker is driven by a random input signal from a signal generator. Both the signal generator
and the signal analyser are provided by SignalCalc Ace powered by the Quattro hardware platform.
The output signal from Quattro is amplified by an amplifier provided by LDS PA25E to meet the power
required by the shaker. The output voltages from the laser vibrometer and accelerometer are connected
to a signal analyser to estimate the frequency response function (FRF) using the fast Fourier transform
(FFT) spectrum analysis. Thus, the FRF is the magnitude of the transfer function of the beam velocity
from the laser vibrometer relative to the base acceleration. Figure 17 shows the FRF for the dry and
wet models indicated with the red and blue lines, respectively.

10°

1 1
Exp. Data - Dry | |

10°F -

Norm. Magnitude

0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

Norm. Magnitude

0 20 40 60 80 100 120
Frequency (Hz)

Figure 17. FRF of the beam in dry and wet conditions.
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The corresponding natural frequencies are indicated with local maxima at a certain range of
frequencies. There are four peaks under 500 Hz for the dry model, while the same peaks appear in just
up to 125 Hz for the wet model. The first mode shifts almost 9 Hz downward due to the influence of
the added mass, M, which contributes about 1733% to the linear mass of the beam, . On the other
hand, the undamped natural frequency from the analytical model can be derived from the stiffness
over the mass per unit length from Equation (20) to give,

4
W = (23)
(u+M)L4
where, in the case of clamped-free beam, 5, /L is 1.875, 4.694, 7.855 and 10.996 forn =1, ...,4 [26].

The comparison between analytical and experimental data is presented in Table 1. The error is
calculated by subtracting the two values and dividing the result by the experiment data. Overall, the
errors show less than 5% in the dry model indicating that the physical model is well approximated
by the analytical approach. In the wet model, the first and fourth modes have good agreement with
an error less than 4%, although there are some notable discrepancies, particularly in the second and
third modes.

Table 1. Natural frequencies from analytical and experimental data.

Dry
Exp. (Hz) Calc. (Hz) Error (%)
12.0313 11.5328 4.1431
71.9531 72.2747 0.4469
202.2656 202.3712 0.0522
393.7500 396.5668 0.7154
Wet
Exp. (Hz) Calc. (Hz) Error (%)
2.7344 2.6935 1.4947
18.6719 16.8799 9.5972
55.3125 47.2642 14.5506
96.1719 92.6190 3.6943

To investigate these phenomena, the FRF tests were conducted by measuring the base velocity to
the input signal from the signal generator as shown in Figure 18. The first test indicated with the blue
line was performed with the shaker in the unloaded condition (without the base), while the second test,
the red line, was carried out with the beam and its base mounted on the shaker. Thus, the normalised
magnitude in Figure 18 represents the transfer function of the base acceleration of the shaker relative
to the signal generator with respect to frequency. It is seen from the figure that the natural frequency
of the shaker appears around 47 Hz for the unloaded condition, while the peak displaces to 30 Hz
due to the additional masses from the base, extension and beam on the shaker. The presence of this
peak is due to the design of the shaker that uses spring components to hold the moving part [42,43].
Consequently, it tends to move the modes of the beam away from its origin, resulting in a noticeable
error in the validation [44].
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Figure 18. Frequency response of the base velocity relative to the input signal generator.

5.3. Discussion

In order to obtain the response of the analytical model, the linear, C;, and quadratic damping
functions, Cy, must first be determined. The combination of these damping functions can be
approximated by using the Harmonic Balance method to give [45],

8Cfa)n

C =G+ 37

(24)

where Cj is the equivalent damping and W is the maximum displacement amplitude or, in this case,
the displacement envelope. Therefore, the constants C; and Cy can be extracted from experiments by
fitting the first order polynomial to the damping data with respect to the instantaneous displacement
amplitude. In this case, we use the first decomposed signal of the experiment data presented in
Figure 12a where it shows a clear decaying oscillation. The velocity time series is integrated numerically
to obtain the displacement. If this procedure generates a peak at zero frequency, it means that the
signal average is non-zero over the temporal window considered. In other words, the displacement
response does not oscillate around zero. To centre the oscillation, a filter is applied in the frequency
domain to bring the amplitude at zero frequency to zero. The filtered displacement is obtained by
using the FFT inverse method.
The same procedures were applied to obtain the instantaneous vibration properties. The damping,
Cy, can be expressed by utilising the estimated damping ratio, ((t), and the instantaneous frequency,
f(t), to give
Cp = 20(t)(u + M)2rf (1) 5)

The result from Equation (25) is then plotted with respect to the displacement amplitude as
presented in Figure 19. From the figure, the blue line from the figure shows the curve fitting of the
experiment data to the first degree polynomial. It is seen from the figure that the linear regression
generates a satisfactory fit indicated with the R-Square of 91.4%. Therefore, the constant C; and C¢
can be obtained by using the linear equation shown in Figure 19 which gives C; = 0.65 and Cy = 33.0.
Following the procedure presented in [14,21], the quadratic damping values are estimated by

1
Cf = EpCdH (26)

where H is the beam width, and C; is the drag coefficient which has the value of 1.8 for the flat plate
model [46]. Substituting the parameters into Equation (26) would results in Cy = 11.4. Surprisingly,
the damping value from this evaluation is underestimated compared to that of the experimental model.
This is the reason why the analytical damping assumptions should be considered valid only for a small
range of frequencies.



Vibration 2020, 3 541

1 4 T T T T T T T T T x
X Experiment Data

ol2r Linear Fit 7
2

5_ 1 [ -
E y = 3012.1* + 0.65417
Qo8 R-Square : 0.914 .

RMSE : 0.04807

0-6 1 1 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2 2.2

Displacement (m) %107

Figure 19. The curve fitting method to obtain the damping coefficients.

To obtain the dynamics of the responses of the beam, the damping coefficients from the fitting
process are preferred to Equation (20). Figure 20a depicts the comparison of the instantaneous
amplitude of the analytical model compared to that of the experimental model. It is seen from the figure
that the envelope of the analytical model is capable of tracking the peaks of the experiment model over
time. Figure 20b displays the time series of the instantaneous frequency for both the analytical and
experiment models. The cause of the discrepancy between the two models was discussed in detail in
the validation of natural frequencies, Section 5.2.
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Figure 20. The time series of (a) displacement and (b) frequency.

By pairing the instantaneous amplitude with the instantaneous frequency, the backbone curve
can be constructed as illustrated in Figure 21a. The damping curves with respect to displacement
and velocity amplitudes are depicted in Figure 21b,c, respectively. Overall, the analytical model can
produce good agreement for predicting the dynamic behaviour of the structure in a fluid environment.
One might expect the damping curves from the analytical model pass through the experimental data
as illustrated in Figure 19. This is unlikely to occur due to the discrepancy in the natural frequencies
between the two models where the damping ratio is inversely proportional to the resonant frequency
based on Equation (25).
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Figure 21. (a) The backbone curve, and the damping curves with respect to (b) displacement and
(c) velocity.

6. Conclusions

The method presented here has enabled the computation of backbone and damping curves of a
fluid-structure interaction system particularly in the case of a beam immersed in liquid. All models
agree that the backbone curve showing the natural frequencies of the system are linear. The damping
curves from the experiments are successfully fitted with a first-degree polynomial equation which
represents a combination of linear and quadratic damping models. The analytical models also
demonstrate satisfactory performance using the damping computed from the experiments. However,
the theoretical damping (Equation (26)) is significantly lower than that of the experiments. This is an
indication that the theoretical damping estimation is only valid away from resonance. The numerical
models on the other hand, overestimate the damping value when compared with the experimental
results. For instance, at the instantaneous amplitude of 0.014 m/s, the numerical model generates a
damping ratio of 0.248, while the experimental data only show a damping ratio of 0.03. Since this
study only considers damping estimation at the tip of the beam and only some modes can be extracted
from the responses, future work will focus on conducting nonlinear modal analysis that can cover
several modes and evaluate the damping at various length.
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