# Subordination Principle for Generalized Fractional Zener Models

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

- (P1)
- The set $\mathcal{CMF}$ is a convex cone: ${\lambda}_{1}{f}_{1}+{\lambda}_{2}{f}_{2}\in \mathcal{CMF}$ for all ${f}_{1},{f}_{2}\in \mathcal{CMF}$ and ${\lambda}_{1},{\lambda}_{2}\ge 0$. Moreover, ${f}_{1}\xb7{f}_{2}\in \mathcal{CMF}$ for all ${f}_{1},{f}_{2}\in \mathcal{CMF}$. The set $\mathcal{CMF}$ is closed under pointwise limits;
- (P2)
- The sets $\mathcal{SF}$, $\mathcal{BF}$ and $\mathcal{CBF}$ are convex cones. They are closed under pointwise limits;
- (P3)
- Any Stieltjes function is completely monotone. Any complete Bernstein function is a Bernstein function;
- (P4)
- Let $\phi \in \mathcal{BF}$. Then, the function $\phi \left(s\right)/s$ is completely monotone;
- (P5)
- $\mathcal{CMF}\circ \mathcal{BF}\subset \mathcal{CMF}$, where ∘ denotes composition of functions from the corresponding sets;
- (P6)
- Every function $\phi \in \mathcal{SF}$, such that ${lim}_{s\to +\infty}\phi \left(s\right)=0$, is the Laplace transform of a function $f\left(t\right)$, which is locally integrable on ${\mathbb{R}}_{+}$ and completely monotone;
- (P7)
- $\phi \in \mathcal{SF}$ if and only if $s\phi \left(s\right)\in \mathcal{CBF}$;
- (P8)
- Let $\phi \ne 0$. Then, $\phi \left(s\right)\in \mathcal{CBF}$ if and only if ${\left(\phi \left(s\right)\right)}^{-1}\in \mathcal{SF}$;
- (P9)
- Let $\phi ,\psi \in \mathcal{CBF}$. Assume ${\mu}_{1},{\mu}_{2}\in (0,1)$ are such that ${\mu}_{1}+{\mu}_{2}\le 1$. Then,$${\phi}^{{\mu}_{1}}\left(s\right)\xb7{\psi}^{{\mu}_{2}}\left(s\right)\in \mathcal{CBF};$$
- (P10)
- Any function $\phi $ from the sets $\mathcal{CBF}$ or $\mathcal{SF}$ admits an analytic extension to the complex plane cut along the negative real axis $\mathbb{C}\backslash (-\infty ,0]$, which satisfies$$|arg\phi (z\left)\right|\le |argz|,z\in \mathbb{C}\backslash (-\infty ,0].$$

## 3. Completely Monotone Relaxation Modulus

**Theorem**

**1.**

**Proof.**

**Corollary**

**1.**

**Proof.**

## 4. Generalized Fractional Zener Wave Equation

#### 4.1. Propagation Function

**Proposition**

**1.**

**Proof.**

#### 4.2. Propagation Speed

**Theorem**

**2.**

## 5. Subordination Principle

#### 5.1. General Formulation

**Theorem**

**3.**

**Proof.**

#### 5.2. Applications

## 6. Numerical Results

**Example**

**1.**

**Example**

**2.**

**Example**

**3.**

## 7. Concluding Remarks

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Mainardi, F. An historical perspective on fractional calculus in linear viscoelasticity. Fract. Calc. Appl. Anal.
**2012**, 15, 712–717. [Google Scholar] [CrossRef] [Green Version] - Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity, 2nd ed.; World Scientific (Europe): London, UK, 2022. [Google Scholar] [CrossRef]
- Atanacković, T.M.; Pilipović, S.; Stanković, B.; Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes; John Wiley & Sons: London, UK, 2014. [Google Scholar]
- Samko, S.; Kilbas, A.; Marichev, O. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Caputo, M.; Mainardi, F. A new dissipation model based on memory mechanism. Pure Appl. Geophys.
**1971**, 91, 134–147. [Google Scholar] [CrossRef] - Caputo, M.; Mainardi, F. Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II)
**1971**, 1, 161–198. [Google Scholar] [CrossRef] - Bagley, R.L.; Torvik, P.J. On the fractional calculus model of viscoelastic behavior. J. Rheol.
**1986**, 30, 137–148. [Google Scholar] [CrossRef] - Hanyga, A. Physically acceptable viscoelastic models. In Trends in Applications of Mathematics to Mechanics; Hutter, K., Wang, Y., Eds.; Shaker Verlag GmbH: Aachen, Germany, 2005; pp. 125–136. [Google Scholar]
- Hanyga, A. Wave propagation in linear viscoelastic media with completely monotonic relaxation moduli. Wave Motion
**2013**, 50, 909–928. [Google Scholar] [CrossRef] [Green Version] - Konjik, S.; Oparnica, L.; Zorica, D. Waves in fractional Zener type viscoelastic media. J. Math. Anal. Appl.
**2010**, 365, 259–268. [Google Scholar] [CrossRef] [Green Version] - Atanacković, T.M. On a distributed derivative model of a viscoelastic body. C. R. Méc.
**2003**, 331, 687–692. [Google Scholar] [CrossRef] - Rossikhin, Y.; Shitikova, M. Analysis of rheological equations involving more than one fractional parameter by the use of the simplest mechanical systems based on these equations. Mech. Time-Depend. Mat.
**2001**, 5, 131–175. [Google Scholar] [CrossRef] - Rossikhin, Y.; Shitikova, M. Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of two different orders. Shock Vib. Digest
**2004**, 36, 3–26. [Google Scholar] [CrossRef] - Atanacković, T.; Konjik, S.; Oparnica, L.; Zorica, D. Thermodynamical restrictions and wave propagation for a class of fractional order viscoelastic rods. Abstr. Appl. Anal.
**2011**, 2011, 975694. [Google Scholar] [CrossRef] [Green Version] - Konjik, S.; Oparnica, L.; Zorica, D. Distributed-order fractional constitutive stress–strain relation in wave propagation modeling. Z. Angew. Math. Phys.
**2019**, 70, 51. [Google Scholar] [CrossRef] [Green Version] - Atanacković, T.M.; Janev, M.; Pilipović, S. Restrictions on parameters in distributed order fractional linear constitutive equations. Appl. Math. Model.
**2022**, 110, 99–111. [Google Scholar] [CrossRef] - Bazhlekova, E.; Bazhlekov, I. Complete monotonicity of the relaxation moduli of distributed-order fractional Zener model. AIP Conf. Proc.
**2018**, 2048, 050008. [Google Scholar] [CrossRef] - Gorenflo, R.; Mainardi, F. Fractional calculus: Integral and differential equations of fractional order. In Fractals and Fractional Calculus in Continuum Mechanics; Carpinteri, A., Mainardi, F., Eds.; Springer: Vienna, Austria, 1997; pp. 223–276. [Google Scholar]
- Kochubei, A. General fractional calculus, evolution equations, and renewal processes. Integr. Equ. Oper. Theory
**2011**, 71, 583–600. [Google Scholar] [CrossRef] [Green Version] - Luchko, Y.; Yamamoto, M. The general fractional derivative and related fractional differential equations. Mathematics
**2020**, 8, 2115. [Google Scholar] [CrossRef] - Sandev, T.; Tomovski, Z.; Dubbeldam, J.; Chechkin, A. Generalized diffusion-wave equation with memory kernel. J. Phys. A Math. Theor.
**2019**, 52, 015201. [Google Scholar] [CrossRef] [Green Version] - Luchko, Y. Operational calculus for the general fractional derivative and its applications. Fract. Calc. Appl. Anal.
**2021**, 24, 338–375. [Google Scholar] [CrossRef] - Górska, K.; Horzela, A.; Lenzi, E.; Pagnini, G.; Sandev, T. Generalized Cattaneo (telegrapher’s) equations in modeling anomalous diffusion phenomena. Phys. Rev. E
**2020**, 102, 023719. [Google Scholar] [CrossRef] - Dos Santos, M. Non-Gaussian distributions to random walk in the context of memory kernels. Fractal Fract.
**2018**, 2, 20. [Google Scholar] [CrossRef] [Green Version] - Bazhlekov, I.; Bazhlekova, E. A predictor-corrector numerical approach to equations with general fractional derivative. Int. J. Appl. Math.
**2022**, 35, 693–709. [Google Scholar] [CrossRef] - Atanacković, T.M.; Pilipović, S. Zener model with General Fractional Calculus: Thermodynamical restrictions. Fractal Fract.
**2022**, 6, 617. [Google Scholar] [CrossRef] - Schilling, R.L.; Song, R.; Vondraček, Z. Bernstein Functions: Theory and Applications; De Gruyter: Berlin, Germany, 2010. [Google Scholar]
- Gripenberg, G.; Londen, S.O.; Staffans, O. Volterra Integral and Functional Equations; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Clément, P.; Mitidieri, E. Qualitative properties of solutions of Volterra equations in Banach spaces. ISR J. Math.
**1988**, 64, 1–24. [Google Scholar] [CrossRef] - Bazhlekova, E.; Bazhlekov, I. Subordination approach to multi-term time-fractional diffusion-wave equations. J. Comput. Appl. Math.
**2018**, 339, 179–192. [Google Scholar] [CrossRef] [Green Version] - Prüss, J. Evolutionary Integral Equations and Applications; Birkhäuser: Basel, Switzerland, 1993. [Google Scholar]
- Bazhlekova, E. Subordination in a class of generalized time-fractional diffusion-wave equations. Fract. Calc. Appl. Anal.
**2018**, 21, 869–900. [Google Scholar] [CrossRef] - Bazhlekova, E.; Bazhlekov, I. Transition from diffusion to wave propagation in fractional Jeffreys-type heat conduction equation. Fractal Fract.
**2020**, 4, 32. [Google Scholar] [CrossRef] - Górska, K. Integral decomposition for the solutions of the generalized Cattaneo equation. Phys. Rev. E
**2021**, 104, 024113. [Google Scholar] [CrossRef] - Bazhlekova, E. Completely monotone multinomial Mittag-Leffler type functions and diffusion equations with multiple time-derivatives. Fract. Calc. Appl. Anal.
**2021**, 24, 88–111. [Google Scholar] [CrossRef] - Bazhlekova, E.; Pshenichnov, S. Wave propagation in viscoelastic half-space with memory functions of Mittag-Leffler type. Int. J. Appl. Math.
**2021**, 34, 423–440. [Google Scholar] [CrossRef]

**Figure 1.**Propagation function $w(x,t)$ as a function of x for $a=0.2$, $b=1.0$ and kernel (64); (

**a**) $\lambda =0$, $t=0.4$ and different values of $\alpha $; marked with a thinner line—the limiting elastic case $\alpha \to 0$; (

**b**) $\lambda =1$, $\alpha =1$ and $\beta =0.5$, marked with a thinner line—the function $exp(-\kappa x)$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bazhlekova, E.; Bazhlekov, I.
Subordination Principle for Generalized Fractional Zener Models. *Fractal Fract.* **2023**, *7*, 298.
https://doi.org/10.3390/fractalfract7040298

**AMA Style**

Bazhlekova E, Bazhlekov I.
Subordination Principle for Generalized Fractional Zener Models. *Fractal and Fractional*. 2023; 7(4):298.
https://doi.org/10.3390/fractalfract7040298

**Chicago/Turabian Style**

Bazhlekova, Emilia, and Ivan Bazhlekov.
2023. "Subordination Principle for Generalized Fractional Zener Models" *Fractal and Fractional* 7, no. 4: 298.
https://doi.org/10.3390/fractalfract7040298