
Citation: Bazhlekova, E.; Bazhlekov, I.

Subordination Principle for

Generalized Fractional Zener Models.

Fractal Fract. 2023, 7, 298. https://

doi.org/10.3390/fractalfract7040298

Academic Editors: Maria Manuela

Fernandes Rodrigues, Milton Ferreira

and Nelson Felipe Loureiro Vieira

Received: 28 February 2023

Revised: 22 March 2023

Accepted: 27 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Subordination Principle for Generalized Fractional
Zener Models
Emilia Bazhlekova * and Ivan Bazhlekov

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev, Block 8,
1113 Sofia, Bulgaria
* Correspondence: e.bazhlekova@math.bas.bg

Abstract: The fractional Zener constitutive law is frequently used as a model of solid-like viscoelastic
behavior. In this work, a class of linear viscoelastic models of Zener type, which generalize the
fractional Zener model, is studied by the use of Bernstein functions technique. We prove that the cor-
responding relaxation moduli are completely monotone functions under appropriate thermodynamic
restrictions on the parameters. Based on this property, we study the propagation function and estab-
lish the subordination principle for the corresponding Zener-type wave equation, which provides
an integral representation of the solution in terms of the propagation function and the solution of a
related classical wave equation. The analytical findings are supported by numerical examples.
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1. Introduction

The application of fractional derivatives in time in rheological constitutive equations
has a long history [1]. One of the advantages of fractional time-derivatives in linear
viscoelasticity is that with their help the damping behavior of viscoelastic media is described
by using less parameters, compared with integer-order models. For a review of the main
aspects of wave propagation in linear homogeneous viscoelastic media and the simplest
and most used fractional constitutive models, we refer to [2].

In linear viscoelasticity, the rheological properties of a viscoelastic medium are de-
scribed through a linear constitutive relation between stress σ and strain ε. Following [2],
we restrict our considerations to the uniaxial case, in which σ = σ(x, t) and ε = ε(x, t), and
consider systems quiescent for all times prior to some starting time t = 0.

The fractional Zener constitutive law is extensively used as a model of solid-like
viscoelastic behavior [2,3]. The fractional Zener stress–strain relation reads

(1 + aDα
t )σ(x, t) = (1 + bDα

t )ε(x, t), (1)

where Dα
t denotes the Riemann–Liouville fractional derivative [4] of order α ∈ (0, 1) and

a > 0, b > 0. Constitutive Equation (1) is introduced for the first time in 1971 by Caputo and
Mainardi [5,6]. Another early extensive study of model (1) can be found in [7]. A necessary
and sufficient condition for physical acceptability of model (1) is the restriction a ≤ b.
Under this condition, the corresponding relaxation modulus is a completely monotone
function, see, e.g., [2].

Recall that a functions f (t) is said to be completely monotone if it is real-valued and
infinitely differentiable on R+ and

(−1)n f (n)(t) ≥ 0, t > 0, n = 0, 1, 2, . . . (2)
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Completely monotonic relaxation moduli are commonly encountered in polymer
physics and other branches of rheology and mechanics [2,8,9]. For a discussion on the
importance of the complete monotonicity property of the relaxation moduli in linear
viscoelasticity, we refer to [9].

Wave equations in viscoelastic media described by the fractional Zener model are
studied in many works, see, e.g., [3,10] and the references cited there. Various types of
distributed-order generalizations of model (1) are proposed and studied along with the
corresponding wave equations: see, e.g., [11–16]. The complete monotonicity of the relax-
ation modulus for Zener-type constitutive equations with multiple time-derivatives and
distributed-order time-derivatives with power-type weight function is established in [17]
under appropriate constraints on the parameters. The proofs are based on a representation
of the relaxation modulus as a Laplace transform of a non-negative spectral function. For
other applications of this method, we refer to [2,18].

Recently, equations with general fractional differential operators have gained increas-
ing interest, see the pioneering work [19], the review [20], as well as [21–25], to mention
only few of many publications from the last years.

In the article [26], published very recently, a generalization of model (1) in the context of
general fractional calculus is proposed and studied. In this work, the fractional derivative
Dα

t in the constitutive Equation (1) is replaced by a general convolutional derivative.
For two specific cases of the kernel of this derivative, it is proven that the condition
a < b is sufficient for the dissipation inequality to hold and thus, for the thermodynamic
compatibility of the corresponding viscoelastic models.

Motivated by the work [26], in the present paper, we study the following generalized
fractional Zener model (

1 + aD(k)
t

)
σ(x, t) =

(
1 + bD(k)

t

)
ε(x, t). (3)

Here, a > 0 and b > 0 are given parameters, and D(k)
t is a generalized convolutional

derivative in the Riemann–Liouville sense, defined by

(D(k)
t f )(t) =

d
dt

∫ t

0
k(t− τ) f (τ)dτ, t > 0, (4)

where k is a locally integrable memory kernel, k ∈ L1
loc(R+). For the kernel k(t), we assume

in addition that its Laplace transform k̂(s) exists for all s > 0 and

k̂(s) ∈ SF , lim
s→+∞

sk̂(s) = +∞, (5)

where SF denotes the class of Stieltjes functions. The precise definition of this class is
given in the next section, see (6). The basic particular examples of operators D(k)

t , defined
in this way, are the first-order derivative (in this case, k̂(s) = 1), the Riemann–Liouville
fractional derivative of order α ∈ (0, 1) (corresponding to k̂(s) = sα−1), as well as linear
combinations with positive coefficients of such derivatives.

Let us note that assumptions (5) are slightly weaker than those required in the defini-
tion of the general fractional derivative, introduced in [19] and studied in detail in [20,22],
where additional assumptions on the limiting behavior of k̂(s) are imposed. We also point
out that the assumption k̂(s) ∈ SF , which is essential also in the definition of the general
fractional derivative in [19], allows the use of the convenient Bernstein functions technique
developed in [27].

In this work, based on the Bernstein functions technique, we establish the complete
monotonicity of the relaxation modulus for model (3), provided the constraint a ≤ b is
satisfied. This result is stronger than the thermodynamic compatibility results proven
in [26], since the dissipation inequality is satisfied for systems with completely monotone
relaxation moduli. The complete monotonicity property implies also the subordination
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principle for the generalized fractional Zener wave equation. The propagation function
is obtained as the solution of an equation governing wave propagation in a viscoelastic
half-space with the generalized fractional Zener model (3) and its properties are studied.
The relation between the propagation function and the subordination kernel is established.
Some examples of application of subordination principle are given. Numerical results for
specific cases of generalized derivatives are presented and discussed.

The rest of the paper is organized as follows. Section 2 contains preliminaries and
properties of Bernstein functions and related classes of functions, which are necessary for
the study. In Section 3, we establish the complete monotonicity property of the relaxation
modulus and discuss the relation of this property with thermodynamic compatibility
conditions. Propagation of waves in generalized fractional Zener medium is discussed
in Section 4. A subordination principle is formulated in Section 5 and applied to two
basic problems. Numerical examples for some specific kernels are discussed in Section 6.
The last Section 7 contains concluding remarks.

2. Preliminaries

This section contains preliminaries on the following functions classes: completely
monotone functions (CMF ), Stieltjes functions (SF ), Bernstein functions (BF ) and com-
plete Bernstein function (CBF ). Their definitions and properties, necessary for our proofs,
are given in the terminology of [27].

We use the following notations for the Laplace transform of a function

L{ f (t)}(s) = f̂ (s) =
∫ ∞

0
e−st f (t)dt.

The Laplace transform of a function u(x, t) with respect to the time variable t, where x
is considered as a parameter, is denoted by û(x, s) or L{u}(x, s).

We proceed with the definitions of the four special classes of functions. The def-
inition of the class CMF of completely monotone functions is already given in the
Section 1, see (2). The characterization of the class CMF is given by the Bernstein’s theorem:
a function is completely monotone if and only if it can be represented as the Laplace trans-
form of a non-negative (generalized) function.

The class BF of Bernstein functions consists of all non-negative functions f (t) defined
and infinitely differentiable on R+, such that f ′(t) ∈ CMF .

The class of Stieltjes functions (SF ) consists of all functions ϕ defined on R+ which
admit the representation (see [19])

ϕ(s) = ϕ0 +
∫ ∞

0
e−sτ f (τ) dτ, s > 0, (6)

where ϕ0 ≥ 0, f ∈ CMF ∩ L1
loc(R+), and the Laplace transform of f exists for any

s > 0. The constant ϕ0 can be determined from the identity (see, e.g., [28], Theorem 2.6)
ϕ0 = lims→+∞ ϕ(s).

The class CBF of complete Bernstein functions consists of all function ϕ defined on
R+, such that ϕ(s)/s ∈ SF , s > 0.

The simplest examples of functions from the classes CBF and SF are given as:

if α ∈ [0, 1] then sα ∈ CBF and s−α ∈ SF . (7)

The following properties are satisfied for s > 0:

(P1) The set CMF is a convex cone: λ1 f1 + λ2 f2 ∈ CMF for all f1, f2 ∈ CMF and
λ1, λ2 ≥ 0. Moreover, f1 · f2 ∈ CMF for all f1, f2 ∈ CMF . The set CMF is closed
under pointwise limits;

(P2) The sets SF , BF and CBF are convex cones. They are closed under pointwise limits;
(P3) Any Stieltjes function is completely monotone. Any complete Bernstein function is a

Bernstein function;
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(P4) Let ϕ ∈ BF . Then, the function ϕ(s)/s is completely monotone;
(P5) CMF ◦ BF ⊂ CMF , where ◦ denotes composition of functions from the correspond-

ing sets;
(P6) Every function ϕ ∈ SF , such that lims→+∞ ϕ(s) = 0, is the Laplace transform of a

function f (t), which is locally integrable on R+ and completely monotone;
(P7) ϕ ∈ SF if and only if sϕ(s) ∈ CBF ;
(P8) Let ϕ 6= 0. Then, ϕ(s) ∈ CBF if and only if (ϕ(s))−1 ∈ SF ;
(P9) Let ϕ, ψ ∈ CBF . Assume µ1, µ2 ∈ (0, 1) are such that µ1 + µ2 ≤ 1. Then,

ϕµ1(s) · ψµ2(s) ∈ CBF ;

(P10) Any function ϕ from the sets CBF or SF admits an analytic extension to the complex
plane cut along the negative real axis C\(−∞, 0], which satisfies

| arg ϕ(z)| ≤ | arg z|, z ∈ C\(−∞, 0].

Moreover, (ϕ(z))∗ = ϕ(z∗), where ∗ denotes the complex conjugate, and

=ϕ(z) · =z ≤ 0 for ϕ ∈ SF ; =ϕ(z) · =z ≥ 0 for ϕ ∈ CBF .

For details on the proofs, see [27,28], Theorem 2.6.
The Mittag–Leffler function is defined as follows:

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, (8)

where α > 0, β ∈ R and z ∈ C. If λ > 0 and 0 < α ≤ β ≤ 1, then the function of Mittag–
Leffler type tβ−1Eα,β(−λtα) is completely monotone for t > 0. The Laplace transform of
this function is given by the identity

L
{

tβ−1Eα,β(−λtα)
}
(s) =

sα−β

sα + λ
, t > 0. (9)

3. Completely Monotone Relaxation Modulus

Consider the generalized Zener constitutive Equation (3). We assume that ε(x, t) = 0
and σ(x, t) = 0 for all x ∈ R and t < 0. Moreover, we suppose that ε ∈ C1(R+).

Let us note that the assumption k̂(s) ∈ SF is equivalent to the following representation
of the kernel k(t)

k(t) = k0δ(t) + k1(t), (10)

where k0 ≥ 0, δ(·) denotes the Dirac delta function and k1(t) ∈ L1
loc(R+) is a completely

monotone function.
The relaxation modulus G(t) in a linear viscoelastic model is defined as the stress

response to a unit step of strain. Specifically, for a quiescent system at t = 0, the following
equation is satisfied [2]:

σ(x, t) =
∫ t

0
G(t− τ)

∂ε

∂τ
(x, τ)dτ. (11)

Applying formally the Laplace transform to (3) and taking into account the Laplace
transform identity L{D(k)

t u}(s) = sk̂(s), we deduce(
1 + ask̂(s)

)
σ̂(x, s) =

(
1 + bsk̂(s)

)
ε̂(x, s).
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This, together with the identity σ̂(x, s) = Ĝ(s)sε̂(x, s) (which follows from (11)), yields

Ĝ(s) =
1 + bsk̂(s)

s(1 + ask̂(s))
. (12)

We next discuss the properties of the relaxation modulus G(t), based on the Laplace
transform pair (12).

In a thermodynamically compatible model, the function G(t) is non-negative and
non-increasing. We prove next that these properties can be satisfied only if a ≤ b. Indeed,
since the rate of relaxation is non-increasing, G′(t) ≤ 0, it follows L{G′}(s) ≤ 0 for s > 0.
Therefore, taking into account identity (12), we obtain for s > 0

L
{

dG
dt

}
(s) = sĜ(s)− lim

t→0+
G(t) =

1 + bsk̂(s)
1 + ask̂(s)

− b
a
=

a− b
a(1 + ask̂(s))

≤ 0. (13)

Here, we have used that the initial value theorem for the Laplace transform implies

lim
t→0+

G(t) = lim
s→+∞

sĜ(s) = lim
s→+∞

1 + bsk̂(s)
1 + ask̂(s)

=
b
a

(14)

due to the assumption sk̂(s)→ +∞ as s→ +∞. The inequality in (13) implies a ≤ b, since
the denominator is a positive function. In this way, we have proved that condition a ≤ b is
necessary for viscoelastic model (3) to be physically acceptable.

We prove next that the restriction a ≤ b together with the assumptions (5) on the
kernel k(t) implies the complete monotonicity of the relaxation modulus for viscoelastic
model (3).

Theorem 1. Assume that 0 < a ≤ b and that conditions (5) on the kernel k(t) are satisfied. Then,
there exists a locally integrable and completely monotone function G(t), t ≥ 0, which Laplace
transform is given by the identity (12).

Proof. For the proof, we use the Bernstein functions technique. For s > 0, it holds

sĜ(s) =
1 + bsk̂(s)
1 + ask̂(s)

= 1 + (b− a)
1

(sk̂(s))−1 + a
∈ CBF . (15)

Here, we use the assumption k̂(s) ∈ SF , which is equivalent to (sk̂(s))−1 ∈ SF
(see properties (P7) and (P8)). Since a > 0, this implies (sk̂(s))−1 + a ∈ SF . By (P8),

this is equivalent to
(
(sk̂(s))−1 + a

)−1
∈ CBF , which, by noting that b− a ≥ 0, yields

sĜ(s) ∈ CBF . Applying again (P7), it follows Ĝ(s) ∈ SF . Moreover, (12) and assumption
sk̂(s)→ +∞ as s→ +∞ imply lims→+∞ Ĝ(s) = 0. Therefore, according to (P6), there exists
a locally integrable function G(t) ∈ CMF , which Laplace transform is given by (12).

By the uniqueness of Laplace transform, it follows that the function G(t) from the
above theorem coincides with the relaxation modulus of constitutive model (3). In this
way, we proved that the generalized Zener constitutive Equation (3) defines a viscoelastic
system with a completely monotonic relaxation modulus. It is known (see, e.g., [8]) that
systems with completely monotonic relaxation moduli obey the dissipation inequality, that
is, for any x ∈ R and T > 0, the following holds:∫ T

0
σ(x, t)

∂ε

∂t
(x, t)dt ≥ 0. (16)

Corollary 1. Under the conditions of Theorem 1, the dissipation inequality (16) is satisfied for
model (3).
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Proof. For completeness, we give a direct proof of (16). Taking into account (11), the
dissipation inequality (16) is equivalent to∫ T

0

(∫ t

0
G(t− τ)

∂ε

∂τ
(x, τ)dτ

)
∂ε

∂t
(x, t)dt ≥ 0. (17)

This is satisfied when G(t) is a function of positive type, that is,∫ T

0

(∫ t

0
G(t− τ)u(x, τ)dτ

)
u(x, t)dt ≥ 0 for every u ∈ L2(0, T). (18)

We will use the fact that every completely positive function is a function of positive
type, see, e.g., [29], Theorem 3.1. A function G(t) is called completely positive if it satisfies
the following conditions: G ∈ L1(0, T) and there exist γ ≥ 0 and a non-negative and
non-increasing function K ∈ L1(0, T), such that

γG(t) +
∫ t

0
K(t− τ)G(τ)dτ = 1, t ∈ [0, T]. (19)

It is known that any completely monotone function is completely positive, see, e.g., [29].
For completeness, we will check directly that the relaxation modulus G(t) for the gener-
alized Zener model (3) is a completely positive function. To this end, let us consider
the function

F(s) =
b− a

b(1 + bsk̂(s))
, s > 0.

Since sk̂(s) is a complete Bernstein function and b − a ≥ 0, property (P8) implies
F(s) ∈ SF . Moreover, lims→∞ F(s) = 0. Therefore, according to (P6), there exists a locally
integrable function K(t) ∈ CMF , such that K̂(s) = F(s). Then, identity (19) is satisfied
with K(t) defined in this way and γ = a/b. This can be easily checked by applying Laplace
transform since

γĜ(s) + K̂(s)Ĝ(s) = 1/s.

Therefore, the dissipation inequality (16) is satisfied for model (3).

Let us note that conditions for thermodynamic compatibility are considered in different
form in [7]. In our notation, these conditions read

<{iωĜ(iω)} ≥ 0, ={iωĜ(iω)} ≥ 0, ∀ ω > 0. (20)

For completely monotone functions G(t), conditions (20) are always fulfilled.
This follows from the fact that in this case, Ĝ(s) ∈ SF , which is equivalent to sĜ(s) ∈ CBF
(see (P7)), and then properties (P10) imply (20).

Let us point out that since sk̂(s) ∈ CBF , the limit lims→0+ sk̂(s) exists and is real
(see [27], Theorem 6.2), which implies

lim
t→+∞

G(t) = lim
s→0+

sĜ(s) = lim
s→0+

1 + bsk̂(s)
1 + ask̂(s)

> 0. (21)

This limit confirms that the class of models (3) govern solid-like behavior, see, e.g., [2].

4. Generalized Fractional Zener Wave Equation

The one-dimensional equation governing wave propagation in a viscoelastic medium
with the generalized Zener constitutive law is derived by combining constitutive Equation (3),
the one-dimensional equation of motion

∂

∂x
σ(x, t) + f (x, t) =

∂2

∂t2 u(x, t) (22)
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and the kinematic equation

ε(x, t) =
∂

∂x
u(x, t), (23)

where u(x, t) denotes the particle displacement, f (x, t) is the body force, x ∈ R, and
t > 0. Combining the three equations, we derive formally the following generalized wave
equation of Zener type

(
1 + aD(k)

t

) ∂2

∂t2 u(x, t) =
(

1 + bD(k)
t

) ∂2

∂x2 u(x, t) +
(

1 + aD(k)
t

)
f (x, t). (24)

It is worth noting that in the limiting case a = b, Equation (24) is the classical wave
equation, which is well studied. Therefore, in what follows, we consider only coeffi-
cients satisfying

0 < a < b.

Assuming the initial conditions

lim
t→0+

u(x, t) = v(x) and lim
t→0+

∂

∂t
u(x, t) = 0, (25)

we rewrite the wave Equation (24) as a Volterra integral equation as follows. Applying Laplace
transform to (24) and taking into account the initial conditions (25), we obtain

û(x, s) = v(x)
1
s
+

1 + bsk̂(s)
s2(1 + ask̂(s))

L
{

∂2u
∂x2

}
(x, s) +

1
s2 f̂ (x, s). (26)

Denote by ξ(t) the function with Laplace transform

ξ̂(s) =
1 + bsk̂(s)

s2(1 + ask̂(s))
.

According to (12), the function ξ(t) is well defined and

ξ(t) =
∫ t

0
G(τ)dτ, t ≥ 0. (27)

Taking the inverse Laplace transform in (26), we derive the following Volterra inte-
gral equation

u(x, t) = v(x) +
∫ t

0
ξ(t− τ)

∂2

∂x2 u(x, τ)dτ + h(x, t), (28)

where h(x, t) =
∫ t

0 (t− τ) f (x, τ)dτ. Let us note that G(t) ∈ CMF implies ξ(t) ∈ BF .
In what follows, we study Equation (28) as a model for wave propagation in a vis-

coelastic medium with the generalized Zener constitutive law (3). We consider different
possibilities for the domain of the spatial operator.

4.1. Propagation Function

Let us consider first the basic problem of wave propagation of impact waves in a
viscoelastic half-space with constitutive Equation (3):

w(x, t) =
∫ t

0
ξ(t− τ)

∂2

∂x2 w(x, τ)dτ, x, t > 0, (29)

w(0, t) = H(t), w→ 0 as x → ∞, t > 0, (30)

where the kernel ξ is defined in (27) and H(t) is the Heaviside unit step function. The solu-
tion w(x, t) is often referred to as propagation function, since it represents the propagation
in time of a disturbance at x = 0.
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It is worth noting that in the limiting case a = b, corresponding to the classical wave
equation, the propagation function is w(x, t) = H(t− x).

Let us also note that the initial conditions

lim
t→0+

w(x, t) = lim
t→0+

∂

∂t
w(x, t) = 0, (31)

follow from Equation (29), taking into account representation (27) for the kernel ξ(t).
By applying Laplace transform with respect to the temporal variable in (29) and (30),

we obtain the following ODE in x (with s considered as a parameter):

g(s)ŵ(x, s) =
∂2ŵ
∂x2 (x, s), ŵ(0, s) = 1/s, ŵ(x, s)→ 0 as x → ∞, (32)

where

g(s) =
1

ξ̂(s)
= s2 1 + ask̂(s)

1 + bsk̂(s)
. (33)

The solution of problem (32) is given by

ŵ(x, s) =
1
s

exp
(
−x
√

g(s)
)

. (34)

The following property is important in the study of the behavior of function w(x, t).

Proposition 1. If 0 < a ≤ b and k(t) satisfies conditions (5), then for the characteristic function
g(s), defined in (33), it holds √

g(s) ∈ CBF . (35)

Proof. Applying (33) and (12), we obtain the relation

g(s) =
s

Ĝ(s)
. (36)

Since s ∈ CBF and 1/Ĝ(s) ∈ CBF (here, we use Ĝ(s) ∈ SF , and property (P8)),
the function g(s) is a product of two functions from the set CBF . Then, (35) follows by
applying property (P9) with µ1 = µ2 = 1/2.

According to (35)
√

g(s) ∈ CBF ⊂ BF . Then, property (P5) implies

exp
(
−x
√

g(s)
)
∈ CMF (37)

with respect to s > 0 (and x > 0 considered as a parameter). Therefore, the function ŵ is a
product of two functions, completely monotone for s > 0, which yields ŵ(x, s) ∈ CMF .
This implies by Bernstein’s theorem w(x, t) ≥ 0. Moreover, the propagation function
w(x, t) is non-decreasing in t and non-increasing in x. This can be established in the
same way as Theorem 2.2 in [30] by proving that the Laplace transforms of the functions
∂w/∂t and −∂w/∂x are completely monotone functions. Indeed, since 1/s ∈ CMF , and√

g(s) ∈ CBF ⊂ BF , by property (P4) also
√

g(s)/s ∈ CMF . This, together with (37),
yields

L
{
−∂w

∂x

}
(x, s) = − ∂

∂x
ŵ(x, s) =

√
g(s)
s

exp
(
−x
√

g(s)
)
∈ CMF
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as products of two completely monotone functions. Further, since limt→0+ w(x, t) = 0, it
follows from (34) and (37)

L
{

∂w
∂t

}
(x, s) = sŵ(x, s)− lim

t→0+
w(x, t) = exp

(
−x
√

g(s)
)
∈ CMF .

4.2. Propagation Speed

Applying the general formula for the propagation speed c of a disturbance in a
viscoelastic medium [2,31], we obtain for the considered model (3) with conditions (5)

c = lim
s→∞

s√
g(s)

=

√
b
a

. (38)

This can be seen by inverting the Laplace transform in representation (34). Therefore, the
propagation speed is finite for model (3) and w(x, t) ≡ 0 for x > t

√
b/a.

From general theory (see, e.g., [31], Section 5.4) in the case of finite propagation speed
c, a jump discontinuity of the propagation function w(x, t) at the planar surface x = ct
exists only if

κ = lim
s→∞

(√
g(s)− s/c

)
< ∞. (39)

Moreover, this discontinuity is damped exponentially with exponent κ, i.e., w(x, t) ∼ exp(−κx)
as t→ x/c, and x < ct. In our specific case, it holds that

κ = lim
s→∞

s

(1 + ask̂(s)
1 + bsk̂(s)

)1/2

−
( a

b

)1/2
 = lim

s→∞

( a
b

)1/2
s

(1 + (ask̂(s))−1

1 + (bsk̂(s))−1

)1/2

− 1

.

We find the leading terms in the last expression as s → ∞ by taking into account
the expansion (1 + z)γ ∼ 1 + γz as z → 0, γ ∈ R, for z = (ask̂(s))−1 and z = (bsk̂(s))−1.
In this way, we deduce(

1 + (ask̂(s))−1

1 + (bsk̂(s))−1

)1/2

∼ 1 +
1

2ask̂(s)
− 1

2bsk̂(s)
, s→ ∞.

Therefore,

κ = lim
s→∞

( a
b

)1/2
(

1
a
− 1

b

)
1

2k̂(s)
. (40)

Therefore, a jump at the wave front exists only when lims→∞ k̂(s) > 0, i.e., only
when k0 6= 0 in the kernel representation (10). This is, for instance, the case with the
composite derivative D(k)

t = d
dt

+ λDα
t , where Dα

t denotes the Riemann–Liouville fractional
derivative of order α ∈ (0, 1) and λ ≥ 0. For λ = 0, the classical Zener model is recovered.
On the other hand, if lims→∞ k̂(s) = 0 (k0 = 0 in the kernel representation (10) and thus,
k(t) = k1(t) ∈ CMF ), the wave front is smooth. In this case, the coexistence of finite wave
speed and absence of jump discontinuity at the wave front is observed.

In the next theorem, we summarize the most important findings in this section con-
cerning the propagation function.

Theorem 2. Assume that 0 < a ≤ b and conditions (5) on the kernel k(t) are satisfied.
Then, the solution w(x, t) of problem (29) and (30) is a non-negative function, non-increasing in
x ≥ and non-decreasing in t ≥. Moreover, w(x, t) ≡ 0 for x > t

√
b/a. If lims→∞ k̂(s) > 0, a

jump discontinuity is observed at x = t
√

b/a, otherwise, the function is smooth.
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Plots of the propagation functions w(x, t) for specific kernels at different values of
the parameters are given in Figures 1 and 2. The observed behavior in the figures is in
agreement with the established properties of the propagation function.
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Figure 1. Propagation function w(x, t) as a function of x for a = 0.2, b = 1.0 and kernel (64); (a) λ = 0,
t = 0.4 and different values of α; marked with a thinner line—the limiting elastic case α → 0;
(b) λ = 1, α = 1 and β = 0.5, marked with a thinner line—the function exp(−κx).
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Figure 2. Propagation function w(x, t) as a function of x for (a) a = 0.2, b = 1.0 and Mittag–Leffler-
type kernel (65) with α = 0.1 and different values of β, t = 0.4; (b) distributed-order kernel (66),
different values of a ∈ (0, 1), b = 1, t = 0.3.

5. Subordination Principle

Subordination results for different types of generalized wave equations have been
established recently, see, e.g., [30,32–34]. Solution representations in the context of the
principle of subordination are useful, since they provide an integral decomposition of the
solution of such equations in terms of the solutions of two simpler problems.

In this section, we formulate the subordination principle for equations governing
wave propagation in media with the generalized Zener constitutive law (3). For the sake of
generality, we formulate the results in an abstract setting, using the terminology of [31].
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5.1. General Formulation

Let A be a closed operator on a Banach space X. Assume A is a generator of a strongly
continuous cosine family of operators Cos(t). This means that the second-order abstract
Cauchy problem

d2u
dt2 = Au(t), t > 0; u(0) = v ∈ X, lim

t→0

du
dt

= 0. (41)

is well posed, with solution operator Cos(t). The Laplace transform of the cosine family
Cos(t), generated by the operator A, is given by the identity∫ ∞

0
e−stCos(t)dt = s(s2 − A)−1, (42)

where (z− A)−1 denotes the resolvent operator of the operator A.
The problem for the abstract Volterra integral equation

u(t) =
∫ t

0
ξ(t− τ)Au(τ)dτ + f (t), t > 0, (43)

where ξ ∈ L1
loc(R+) is a scalar kernel and f -an X-valued function, is said to be well

posed if and only if there exists a solution operator S(t), i.e., a strongly continuous family
of bounded linear operators in X which commutes with A and such that the function
u(t) = S(t)v satisfies the equation

u(t) = v +
∫ t

0
ξ(t− τ)Au(τ)dτ, t > 0, v ∈ X. (44)

In this case, the solution of problem (43) is found by the variation of parameters
formula

u(t) =
d
dt

∫ t

0
S(t− τ) f (τ)dτ. (45)

The solution operator S(t) obeys the Laplace transform identity∫ ∞

0
e−stS(t)dt =

1
s
(1− ξ̂(s)A)−1. (46)

For detailed theory of abstract Volterra integral equations, we refer to [31].
Let ξ(t) be the kernel defined by (27). The corresponding function g(s) is given in (33).

Based on the property (35), the following subordination theorem can be established in an
analogous way as Theorem 3.1 in [30].

Theorem 3. Let 0 < a < b and the kernel k(t) satisfy conditions (5). Let operator A generate a
bounded cosine family Cos(t). Assume the kernel ξ(t) is defined by (27). Then, problem (43) is well
posed and the corresponding solution operator S(t) is related to Cos(t) as follows

S(t) =
∫ t
√

b/a

0
φ(t, τ)Cos(τ) dτ, t > 0. (47)

The subordination function φ(t, τ) satisfies the Laplace transform identity

φ̂(s, τ) =

√
g(s)
s

exp
(
−τ
√

g(s)
)

, (48)

where the function g(s) is defined in (33). Moreover, φ(t, τ) ≥ 0, φ(t, τ) = 0 for τ > t
√

b/a,
and

∫ ∞
0 φ(t, τ) dτ = 1.
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Proof. For completeness, we give a sketch of the proof. The well-posedness of the Volterra
equation follows by applying Theorem 4.3(ii) in [31]. According to this theorem, it suffices to
prove that ξ(t) is a creep function (i.e., it is non-negative, non-decreasing and concave) and
that the function ξ1(t) = ξ̇(t)− limt→∞ ξ(t)/t is log-convex. Indeed, representation (27),
together with complete monotonicity of G(t), implies that ξ(t) is a Bernstein function,
therefore, it is a creep function. Moreover, (27) yields ξ1(t) = G(t) − G(+∞). This is
a completely monotone function, which implies that ξ1(t) is log-convex (see, e.g., [28],
Theorem 2.8).

Let us check the next integral decomposition (47). Assume function φ is defined as in
(48). Application of Laplace transform implies by the use of (42)∫ ∞

0
e−st

(∫ ∞

0
φ(t, τ)Cos(τ)dτ

)
dt =

∫ ∞

0
φ̂(s, τ)Cos(τ)dτ

=

√
g(s)
s

∫ ∞

0
exp

(
−τ
√

g(s)
)

Cos(τ)dτ

=
g(s)

s
(g(s)− A)−1. (49)

Comparing (46)–(49), it follows by the uniqueness of the Laplace transform that

S(t) =
∫ ∞

0
φ(t, τ)Cos(τ)dτ, t > 0. (50)

Let us note that (34) and (48) imply the relation

φ(t, τ) = − ∂

∂x
w(x, t)

∣∣∣∣
x=τ

, (51)

where w(x, t) is the propagation function. Therefore, φ(t, τ) = 0 for τ > t
√

b/a and (50)
implies (47). We already proved the non-negativity of −∂w/∂x in the previous section,
which implies the non-negativity of φ(t, τ). Moreover, (51) implies∫ ∞

0
φ(t, τ)dτ = −

∫ ∞

0

∂w
∂x

(x, t)dx = w(t, 0)− w(t, ∞) = 1,

where the boundary conditions (30) are taken into account.

5.2. Applications

To demonstrate the applicability of Theorem 3, two examples are given next.
The first example is the following Cauchy problem for the generalized Zener-type

wave equation

u(x, t) = v(x) +
∫ t

0
ξ(t− τ)

∂2

∂x2 u(x, τ)dτ, x ∈ R, t > 0, (52)

lim
|x|→∞

u(x, t) = 0, t > 0, (53)

where the kernel ξ is defined in (27).
Let X = Lp(R), 1 ≤ p < ∞. Define the operator A by means of (Au)(x) = u′′(x), with

domain D(A) = {u ∈ X : u′, u′′ ∈ X, u(±∞) = 0}. Then, A generates a bounded cosine
family given by the d’Alembert formula

(Cos(t)v)(x) =
1
2
(v(x + t) + v(x− t)). (54)
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Inserting (54) in the subordination Formula (47), we obtain for the solution to problem
(52) and (53)

u(x, t) = (S(t)v)(x) =
∫ ct

0
φ(t, τ)(Cos(τ)v)(x)dτ =

1
2

∫ ct

−ct
φ(t, |σ|)v(x− σ)dσ, (55)

where φ is the subordination function from Theorem 3 and c =
√

b/a.
As a second example, let us consider the inhomogeneous Zener wave equation in

integral form (28) on a finite interval, x ∈ [0, 1], subject to boundary and initial conditions

u(0, t) = u(1, t) = 0, t > 0, u0(x) = 0, x ∈ [0, 1]. (56)

Let us set X = L2([0, 1]) and define the operator A by (Au)(x) = u′′(x), x ∈ [0, 1]
with domain D(A) = {u ∈ X : u′, u′′ ∈ X, u(0) = u(1) = 0}. The cosine family Cos(t) is
defined in this case by the solution of the following problem for the classical wave equation

∂2u
∂t2 =

∂2u
∂x2 , 0 < x < 1, t > 0, (57)

u(0, t) = u(1, t) = 0, t > 0; u(x, 0+) = v(x), lim
t→0+

∂u
∂t

= 0, 0 < x < 1.

Therefore, if v(x) admits the eigenfunction expansion v(x) = ∑∞
n=1 vn sin(nπx) then

(Cos(t)v)(x) =
∞

∑
n=1

vn sin(nπx) cos(nπt). (58)

Let f (x, t) admits the expansion f (x, t) = ∑∞
n=1 fn(t) sin(nπx). From the subordina-

tion identity (47) and the variation of parameters formula (45), we obtain for the solution of
the Zener-type wave Equation (28) with initial-boundary conditions (56)

u(x, t) =
∞

∑
n=1

sin(nπx)
∫ t

0
Sn(t− τ) fn(τ)dτ,

where

Sn(t) =
∫ t

0

(∫ cτ

0
φ(τ, σ) cos(nπσ)dσ

)
dτ.

Here, φ is the subordination function from Theorem 3 and c =
√

b/a.

6. Numerical Results

In this section, we present numerical examples. The function w(x, t) and the sub-
ordination kernel φ(t, τ) are computed for three types of kernels k(t). The numerical
computations are based on integral representations of these functions, obtained as follows.

Integral representation for the propagation function w(x, t) can be derived by inverting
its Laplace transform (34). Following the method of our previous work [30], Theorem 2.5,
which uses solely property (35) and g(s)→ +∞ as s→ +∞ (and not the specific form of
g(s)), we have the following integral representation for the propagation function:

w(x, t) =
1
2
+

1
π

∫ ∞

0
exp(−xK+(r)) sin(rt− xK−(r))

dr
r

, x, t > 0, (59)

where

K±(r) =
1√
2

((
A2(r) + B2(r)

)1/2
± A(r)

)1/2
, A(r) = <g(ir), B(r) = =g(ir). (60)
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In the case of characteristic function g(s), given in (33), we obtain for the functions
A(r) and B(r)

A(r) = −r2 (1 + ap(r))(1 + bp(r)) + abq(r)2

(1 + bp(r))2 + (bq(r))2 , B(r) =
r2(b− a)q(r)

(1 + bp(r))2 + (bq(r))2 , (61)

where p(r) = <{sk̂(s)} and q(r) = ={sk̂(s)}, for s = ir.
Further, the relation (51) and the integral representation (59) imply the following

integral representation for φ(t, τ):

φ(t, τ) =
1
π

∫ ∞

0
exp

(
−τK+(r)

)(
K+(r) sin

(
rt− τK−(r)

)
+ K−(r) cos

(
rt− τK−(r)

)) dr
r

, t, τ > 0. (62)

Here, K±(r) are the functions defined in (60) and (61).
Next, we list some examples of kernels k(t) in the generalized derivative D(k)

t , which
satisfy conditions (5). These conditions guarantee that the results obtained in this work
for constitutive model (3) with 0 < a < b are satisfied. The specific kernels are used in
numerical experiments, the results of which are discussed in this section.

Since the numerical experiments are based on the integral representations (59) for
the propagation function w(x, t) and (62) for the subordination function φ(t, τ), for each
kernel, we provide also the corresponding Laplace transforms and the expressions for the
functions p(r) and q(r), which appear in (61).

For the sake of brevity, we use the notation

ωα(t) =
tα−1

Γ(α)
, α > 0, t > 0. (63)

If α = 0, we set ω0(t) = δ(t), t > 0, where δ(t) is the Dirac delta function.

Example 1. Two-term composite derivative: D(k)
t = Dα

t + λDβ
t , where Dα

t and Dβ
t are Riemann–

Liouville fractional derivatives with orders satisfying 0 < β < α ≤ 1 and λ ≥ 0. In this case,

k(t) = ω1−α(t) + λω1−β(t), k̂(s) = sα−1 + λsβ−1, 0 < β < α ≤ 1, λ ≥ 0, (64)

and

p(r) = rα cos(απ/2) + λrβ cos(βπ/2), q(r) = rα sin(απ/2) + λrβ sin(βπ/2).

Example 2. Generalized derivative D(k)
t with a singular Mittag–Leffler-type kernel:

k(t) = tβ−1Eα,β(−tα), k̂(s) =
sα−β

sα + 1
, 0 < α ≤ β < 1. (65)

In this case,

p(r) =
r2α−β+1 sin(βπ/2) + rα−β+1 sin((β− α)π/2)

r2α + 2rα cos(απ/2) + 1
,

q(r) =
r2α−β+1 cos(βπ/2) + rα−β+1 cos((β− α)π/2)

r2α + 2rα cos(απ/2) + 1
.

Example 3. Distributed-order fractional derivative with uniform distribution over the interval [0, 1].
In this case,

k(t) =
∫ 1

0
ω1−α(t) dα, k̂(s) =

∫ 1

0
sα−1 dα =

s− 1
s ln s

, (66)

and
p(r) =

πr/2− ln r
ln2 r + π2/4

, q(r) =
r ln r + π/2
ln2 r + π2/4

.
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Another example of kernel, satisfying conditions (5), is the following

k(t) = ω1−α(t)e−µt, k̂(s) = (s + µ)α−1, (67)

where 0 < α < 1 and µ > 0. In fact, in [26], the generalized fractional Zener model is
studied for two types of kernels: (65) and (67). Generalizations of the Mittag–Leffler kernel
(65) can also be considered, such as the completely monotone multinomial Mittag–Leffler-
type functions, see, e.g., [35,36].

In the present work, we treat numerically only the cases in Examples 1–3. All men-
tioned kernels admit decomposition (10) and their Laplace transforms satisfy conditions (5).

In Figures 1 and 2, plots of propagation functions are given, while Figure 3 presents
plots of subordination functions for different kernels k(t). The numerical results provide a
numerical verification of the analytical findings in this paper.

In all figures, except Figure 2b, the parameters a and b are taken a = 0.2, b = 1.0, which
corresponds to a constant propagation speed, c =

√
b/a =

√
5. Therefore, in these figures,

w(x, t) vanishes for x > t
√

5 and φ(t, τ) vanishes for τ > t
√

5.
In Figure 1a, the propagation function w(x, t) is plotted for the kernel (64) with

λ = 0, which corresponds to the fractional Zener model (1) when α ∈ (0, 1). The function
w(x, t) is plotted as a function of x for t = 0.4 and for different values of the parameter α.
The limiting case α = 1 corresponds to the classical integer-order Zener model, where a
jump discontinuity is observed at the wave front. The step function given with thinner line
corresponds to α → 0, recovering the classical elastic wave equation. For α ∈ (0, 1), we
observe, as expected, the coexistence of a finite wave speed and smooth wave front.

In Figure 1b, the propagation function w(x, t) is plotted for the composite kernel (64)
with α = 1, λ = 1 and β = 0.5. The function w(x, t) is plotted as a function of x for different
times t. Since α = 1, it holds κ > 0, see (40). Therefore, a jump discontinuity at the wave
front is expected and observed. The thinner line is the graph of the function exp(−κx) and
it marks the height of the jump.

Figure 2a corresponds to the Mittag–Leffler-type kernel (65) with α = 0.1 and different
values of β, t = 0.4. Figure 2b corresponds to the distributed-order kernel (66), a takes
different values in the interval (0, 1), b = 1, t = 0.3. In Figure 2, the propagation function
w(x, t) is plotted as a function of x. Since lims→∞ k̂(s) = 0 for the considered kernels, the
propagation function is smooth at the wave front.

In Figure 3, the subordination function φ is plotted as a function of τ for two types of
kernels. Figure 3a corresponds to kernel (64) with α = 0.75 and β = 0.25, λ = 1. Different
values of t are considered. Figure 3b corresponds to the Mittag–Leffler-type kernel (65)
with α = 0.3 and different β, α ≤ β < 1; t = 0.4. The plotted functions in Figure 3 are
probability densities as functions of τ.
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Figure 3. Subordination kernel φ(t, τ) as a function of τ for a = 0.2, b = 1 and (a) kernel (64) with
α = 0.75, β = 0.25, λ = 1, and different values of t; (b) the Mittag–Leffler-type kernel (65) with
α = 0.3 and different β, t = 0.4.

7. Concluding Remarks

In this work, we study the Zener-type model of a viscoelastic body in the context of
general fractional calculus, proposed recently in [26]. The model is studied for a general
class of kernels by applying the Bernstein functions technique. This technique allows us to
prove that the thermodynamic constraint a < b, used in [26], implies not only the dissipa-
tion inequality, but also guarantees the complete monotonicity property of the relaxation
modulus G(t), which is a stronger result. Based on this property, the propagation function,
which is characteristic for the wave propagation in a viscoelastic medium, is studied and
the subordination principle is established for wave equations with generalized Zener-type
constitutive law. The subordination identity provides an integral decomposition of the
solution into two parts. The first part is a probability density, related to the propagation
function and depending only on the constitutive model. The second part is the solution
of a related classical wave equation and it depends only on the problem geometry. The
analytical findings are supported by numerical work.
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11. Atanacković, T.M. On a distributed derivative model of a viscoelastic body. C. R. Méc. 2003, 331, 687–692. [CrossRef]
12. Rossikhin, Y.; Shitikova, M. Analysis of rheological equations involving more than one fractional parameter by the use of the

simplest mechanical systems based on these equations. Mech. Time-Depend. Mat. 2001, 5, 131–175. [CrossRef]
13. Rossikhin, Y.; Shitikova, M. Analysis of the viscoelastic rod dynamics via models involving fractional derivatives or operators of

two different orders. Shock Vib. Digest 2004, 36, 3–26. [CrossRef]
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