# Biomagnetic Fluid Flow and Heat Transfer Study of Blood with Gold Nanoparticles over a Stretching Sheet in the Presence of Magnetic Dipole

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Problem Formulation

## 3. Solution Procedure

## 4. Numerical Method for Solution

## 5. Comparison with Previous Work and Values of Thermophysical Properties

## 6. Results and Discussion

## 7. Conclusions

- The velocity profiles of Au-pure blood and pure blood nanofluid increase with increasing values of suction parameter, slip parameter, Grashof number, magnetic field parameter and Prandtl number;
- The temperature profiles of Au-pure blood and pure blood nanofluid increase with increasing values of Ferromagnetic field parameter;
- The velocity profiles of pure blood nanofluid increase with increasing values of Biot number and Eckert number, whereas those of Au-pure blood decrease in these cases;
- The skin friction coefficient of Au-pure blood and pure blood nanofluid decreases with increased values of Prandtl number and slip parameter;
- The heat transfer rate of Au-pure blood and pure blood nanofluid is augmented with increasing values of Eckert number and ferromagnetic parameter;
- The heat transfer rate of Au-pure blood and pure blood nanofluid decreases with increasing values of Grashof number and suction parameter.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Misra, J.C.; Sinha, A.; Shit, G.C. Flow of a biomagnetic viscoelastic fluid: Application to estimate of blood flow in arteries during electromagnetic hyperthermia, a therapeutic procedure for cancer treatment. App. Math. Mech. Engl.
**2010**, 31, 1405–1420. [Google Scholar] [CrossRef] - Nelson, P.W.; Gilchrist, M.A.; Coombs, D.; Hyman, J.M.; Perelson, A.S. An age-structured model of HIV infection that allow for variations in the production rate of viral particles and the death rate of productively infected cells. Math. Biosci. Eng.
**2004**, 1, 267–288. [Google Scholar] [CrossRef] - Wang, J.; Dong, X. Analysis of an HIV infection model incorporating latency age and infection age. Math. Biosci. Eng.
**2018**, 15, 569–594. [Google Scholar] [CrossRef] [Green Version] - Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. In Proceedings of the ASME InternationalMechanical Engineering Congress and Exposition, San Francisco, CA, USA, 12–18 November 1995; pp. 99–105. [Google Scholar]
- Michael, Faraday’s Gold Colloids, The Royal Institution: Science Lives Here. Available online: www.rigb.org (accessed on 4 December 2015).
- Akbari, N.; Ganji, D.D.; Gholinia, M.; Gholinia, S. Computer simulation of blood flow with nanoparticles in a magnetic field as a third grade non-Newtonian through porous vessels by flex PDE software. Innov. Ener. Res.
**2017**, 6, 1–7. [Google Scholar] - Huang, X.; El-Sayed, M.A. Gold nanoparticles and implementations in cancer diagnosis and photo thermal therapy. J. Adv. Res.
**2010**, 1, 13–28. [Google Scholar] [CrossRef] [Green Version] - Olubode, K.K.; Issac, L.C.; Mahanthesh, B.; Salman, S. Heat transfer in the flow of Blood-gold carreaunanofluid induced by partial slip and buoyancy. Heat Transf. Asia Res.
**2018**, 47, 806–823. [Google Scholar] [CrossRef] - Srinivas, S.; Vijayalakshmi, A.; Reddy, A.S. Flow and heat transfer of gold-blood nanofluid in a porous channel with moving/stationary walls. J. Mech.
**2017**, 33, 395–404. [Google Scholar] [CrossRef] - Elgazery, N.S. Flow of non-Newtonian magneto fluid with gold and alumina nanoparticles through a non Darcian porous medium. J. Egypt. Math. Soc.
**2019**, 27. [Google Scholar] [CrossRef] [Green Version] - Eid, M.R. Effects of nanoparticles shapes on non-Newtonian Bio-nanofluid flow ina suction/Blowing process with convective condition: Sisko model. J. Non Equilib. Thermodyn.
**2019**, 45. [Google Scholar] [CrossRef] - Ferdows, M.; Khan, M.S.; Bég, O.A.; Azad, M.A.K.; Alam, M.M. Numerical study of transient magnetohydrodynamic radiative free convection nanofluid flow from a stretching permeable surface. J. Process. Mech. Eng.
**2014**, 228, 181–196. [Google Scholar] [CrossRef] - Jamal abadi, M.Y.A.; DaqiqShirazi, M.; Nasiri, H.; Safaei, M.R.; Nguyen, T.K. Modeling and analysis of biomagnetic blood Car reau fluid flow through a stenosis artery with magnetic heat transfer: A transient study. PLoS ONE
**2018**, 13, e0192138. [Google Scholar] - Ferdows, M.; Murtaza, M.G.; Tzirtzilakis, E.E.; Alzahrani, F. Numerical study of blood flow and heat transfer through stretching cylinder in the presence of a magnetic dipole. Z. Angew. Math. Mech.
**2020**, 100, e201900278. [Google Scholar] [CrossRef] - Umair, K.; Anum, S.; Aurang, Z.; El-Sayed, M.S.; Dumitru, B. MHD radiative blood flow embracing gold particles via a slippery sheet through an erratic heat source/sink. Mathematics
**2020**, 8, 1597. [Google Scholar] [CrossRef] - Mutuku-Njane, W.N.; Makinde, O.D. Combined effect of buoyancy force and Navier slip on MHD flow of a Nanofluid over a convectively heated vertical porous plate. Sci. World J.
**2013**. [Google Scholar] [CrossRef] [Green Version] - Tzirtzilakis, E.E. A simple numerical methodology for BFD problems using stream function vortices formulation. Commun. Numer. Methods Eng.
**2000**, 2, 1–6. [Google Scholar] - Anderson, H.I.; Valens, O.A. Flow of a heated Ferro fluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech.
**1998**, 28, 39–47. [Google Scholar] [CrossRef] - Daniel, Y.S. Steady MHD boundary-layer slip flow and heat transfer of Nanofluid over a convectively heated of a non-linear permeable sheet. J. Adv. Mech. Eng.
**2016**, 3, 1–14. [Google Scholar] [CrossRef] - Tzirtzilakis, E.E. A mathematical model for blood flow in magnetic field. Phys. Fluids
**2005**, 17, 077103. [Google Scholar] [CrossRef] - Gabriely, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol.
**1996**, 41, 2271–2293. [Google Scholar] [CrossRef] [Green Version] - Hinghofer-Szalkay, H. Volume and density changes of biological fluids with temperature. J. Appl. Physiol.
**1985**, 59, 1686–1689. [Google Scholar] [CrossRef] - Tzirtzilakis, E.E. Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles. Phys. Fluids
**2015**, 27, 061902. [Google Scholar] [CrossRef] - Reddy, S.R.R.; Reddy, P.B.A. Biomathematical analysis for the stagnation point flow over a nonlinear stretching surface with the second order velocity slip and Titanium alloy nanoparticle. Front. Heat Mass Transf.
**2018**, 10. [Google Scholar] [CrossRef] - Alam, M.J.; Murtaza, M.G. Two Dimensional Biomagnetic fluid flow and heat transfer over a nonlinear stretching sheet with temperature dependent viscosity. Sch. J. Phys. Math. Stat.
**2020**, 7, 131–142. [Google Scholar] [CrossRef] - Murtaza, M.G.; Ferdows, M.; Misra, J.C.; Tzirtzilakis, E.E. Three-dimensional biomagnetic Maxwell fluid flow over a stretching surface in presence of heat source/sink. Int. J. Biomath.
**2019**, 12, 1950036-20. [Google Scholar] [CrossRef]

Thermo Physical Properties | Blood | Gold |
---|---|---|

${C}_{p}\left(J/kgK\right)$ | $3.9\times {10}^{3}$ | 129 |

$\rho \left(Kg/{m}^{3}\right)$ | 1050 | 19,300 |

$\sigma \left(S/m\right)$ | 0.8 | $4.1\times {10}^{-7}$ |

$k\left(W/mK\right)$ | 0.5 | 318 |

$\beta \left(1/K\right)$ | $4\times {10}^{-4}$ | $1.4\times {10}^{-5}$ |

**Table 2.**Comparison for values of $-\theta \prime (0)$ between different values of $n$ and $\mathrm{Pr}$.

$\mathbf{Pr}$ | $\mathit{n}$ | Daniel [19] | Present Result | $\left|\mathit{e}\mathit{r}\mathit{r}\mathit{o}\mathit{r}\right|\%$ |
---|---|---|---|---|

1 | 0.2 | 0.610262 | 0.610112 | 0.0246 |

1 | 0.5 | 0.595277 | 0.595863 | 0.0984 |

1 | 1.5 | 0.574537 | 0.574898 | 0.0629 |

5 | 0.2 | 0.607175 | 0.607160 | 0.0024 |

5 | 0.5 | 1.586744 | 1.607160 | 1.2869 |

5 | 1.5 | 1.557413 | 1.557214 | 0.0128 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alam, J.; Murtaza, G.; Tzirtzilakis, E.; Ferdows, M.
Biomagnetic Fluid Flow and Heat Transfer Study of Blood with Gold Nanoparticles over a Stretching Sheet in the Presence of Magnetic Dipole. *Fluids* **2021**, *6*, 113.
https://doi.org/10.3390/fluids6030113

**AMA Style**

Alam J, Murtaza G, Tzirtzilakis E, Ferdows M.
Biomagnetic Fluid Flow and Heat Transfer Study of Blood with Gold Nanoparticles over a Stretching Sheet in the Presence of Magnetic Dipole. *Fluids*. 2021; 6(3):113.
https://doi.org/10.3390/fluids6030113

**Chicago/Turabian Style**

Alam, Jahangir, Ghulam Murtaza, Efstratios Tzirtzilakis, and Mohammad Ferdows.
2021. "Biomagnetic Fluid Flow and Heat Transfer Study of Blood with Gold Nanoparticles over a Stretching Sheet in the Presence of Magnetic Dipole" *Fluids* 6, no. 3: 113.
https://doi.org/10.3390/fluids6030113