# Bivariate Thiele-Like Rational Interpolation Continued Fractions with Parameters Based on Virtual Points

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

- How to construct a proper polynomial or rational interpolation with explicit mathematical expression and a simple calculation which make the function easy to use and convenient to study theoretically;
- For the given data, how to modify the curve or surface shape to enable the function to meet the actual requirements.

## 2. Univariate Thiele-Like Interpolation Continued Fractions with Parameters

_{0},y

_{0}),(x

_{1},y

_{1}),…(x

_{n},y

_{n})} on interval $\left[a,b\right]$, we can gain the following classical Thiele-like rational interpolation continued fractions [1]:

#### 2.1. Thiele-Like Rational Interpolation Continued Fractions with Parameter

#### 2.2. The Interpolation Problem with Unattainable Points

**Definition**

**1**

**.**Suppose the given point is $D=\{({x}_{i},{y}_{i})|i=0,1,\dots ,n\}$ and ${x}_{i}$ is diverse, $R(x)=\frac{N(x)}{D(x)}$ is the Thiele-type interpolation continued fractions in Formula (1) if $({x}_{k},{y}_{k})$ satisfies

**Theorem**

**1**

**.**Suppose the given point is $D=\{({x}_{i},{y}_{i})|i=0,1,\dots ,n\}$, and ${x}_{i}$ is diverse, the Thiele-type interpolation continued fraction is as shown in Formula (1), where ${b}_{k}\ne \infty $, $(k=0,1,\dots ,n-1)$, ${b}_{n}\ne 0$, and then the necessary and sufficient condition of $({x}_{k},{y}_{k})$ for an unattainable point is

**Theorem**

**2.**

**Proof.**

#### 2.3. The Thiele-Like Rational Interpolation Continued Fractions Problem with a Nonexistent Inverse Difference

## 3. Multivariate Thiele-Like Branched Rational Interpolation Continued Fractions with Parameters

**Theorem**

**3**

#### 3.1. Bivariate Thiele-Type Branched Rational Interpolation Continued Fractions with a Single Parameter

Algorithm 1 Algorithm of the bivariate Thiele-like branched rational interpolation continued fractions with a single parameter |

Step 1: Initialization.
$${f}_{i,j}^{\left(0,0\right)}=f({x}_{i},{y}_{j}),i=0,1,\dots ,m;\text{\hspace{0.17em}}j=0,1,\dots ,n.$$
Step 2: For $j=0\text{\hspace{0.17em}},\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,n\text{\hspace{0.17em}};\text{\hspace{0.17em}}p=\text{\hspace{0.17em}}1\text{\hspace{0.17em}},2\text{\hspace{0.17em}},\dots ,m\text{\hspace{0.17em}};i=p\text{\hspace{0.17em}},p+\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,m\text{\hspace{0.17em}}$,
$${f}_{i,j}^{\left(p,0\right)}=\frac{{x}_{i}-{x}_{p-1}}{{f}_{i,j}^{\left(p-1,0\right)}-{f}_{p-1,j}^{\left(p-1,0\right)}}.$$
Step 3: For $i=0\text{\hspace{0.17em}},\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,k-1\text{\hspace{0.17em}},\text{\hspace{0.17em}}k+1,\dots ,m\text{\hspace{0.17em}};\text{\hspace{0.17em}}q=\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\text{\hspace{0.17em}}2,\dots ,n\text{\hspace{0.17em}};j=q\text{\hspace{0.17em}},q+\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,n\text{\hspace{0.17em}}$,
$${f}_{i,j}^{(i,q)}=\frac{{y}_{j}-{y}_{q-1}}{{f}_{i,j}^{(i,q-1)}-{f}_{i,q-1}^{(i,q-1)}}.$$
Step 4: By introducing parameter $\lambda $ into the formula ${f}_{k,j}^{\left(k,0\right)}(j=0,1,\dots ,n)$, then one can calculate them with Formulas (2)–(5), and mark the final results as
$${({a}_{k,0},\text{\hspace{0.17em}}{a}_{k,1}\text{\hspace{0.17em}},\dots \text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,l},\text{\hspace{0.17em}}{a}_{k,l+1\text{\hspace{0.17em}}}^{0},\text{\hspace{0.17em}}{a}_{k,l+1},\text{\hspace{0.17em}}{a}_{k,l+2}\text{\hspace{0.17em}},\text{\hspace{0.17em}}\dots \text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,n})}^{T}.$$
Step 5: Using the elements in Formulas (19) and (20), the Thiele-like interpolation continued fractions with a single parameter with respect to $y$ can be constructed:
$${A}_{i}(y)=\{\begin{array}{l}{f}_{i,0}^{(i,0)}+\frac{y-{y}_{0}}{{f}_{i,1}^{(i,1)}}\text{\hspace{0.17em}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{1}}{{f}_{i,2}^{(i,2)}}\text{\hspace{0.17em}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\text{\hspace{0.17em}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{n-1}}{{f}_{i,n}^{(i,n)}},\text{\hspace{0.17em}}\begin{array}{cc}& \end{array}i=0,1,\dots ,k-1,k+1,\dots ,m,\\ {a}_{k,0}+\frac{y-{y}_{0}}{{a}_{k,1}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l-1}}{{a}_{k,l}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l}}{{a}_{k,l+1}^{0}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l}}{{a}_{k,l+1}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l+1}}{{a}_{k,l+2}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{n-1}}{{a}_{k,n}},\begin{array}{cc}& i=k,\end{array}\end{array}.$$
Step 6: Let
$${R}_{m,n}^{0}(x,y)={A}_{0}(y)+\frac{x-{x}_{0}}{{A}_{1}(y)}\begin{array}{c}\\ +\end{array}\frac{x-{x}_{1}}{{A}_{2}(y)}\begin{array}{c}\\ +\cdots +\end{array}\frac{x-{x}_{m-1}}{{A}_{m}(y)}.$$
Then, ${R}_{m,n}^{0}(x,y)$ is a bivariate Thiele-like branched rational interpolation continued fractions with a single parameter. |

**Theorem**

**4.**

**Proof.**

#### 3.2. Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions with Multiple Parameters

#### 3.2.1. Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions with Two Parameters Based on a Virtual Treble Point

Algorithm 2 Algorithm of the bivariate Thiele-like rational interpolation continued fractions with two parameters |

Step 1: Initialization: Step 2: If $j=0\text{\hspace{0.17em}},\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,n\text{\hspace{0.17em}};\text{\hspace{0.17em}}p=\text{\hspace{0.17em}}1\text{\hspace{0.17em}},2\text{\hspace{0.17em}},\dots ,m\text{\hspace{0.17em}};i=p\text{\hspace{0.17em}},p+\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,m\text{\hspace{0.17em}}$, |

Step 3: For $i=0\text{\hspace{0.17em}},\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,k-1\text{\hspace{0.17em}},\text{\hspace{0.17em}}k+1,\dots ,m\text{\hspace{0.17em}};\text{\hspace{0.17em}}q=\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\text{\hspace{0.17em}}2,\dots ,n\text{\hspace{0.17em}};j=q\text{\hspace{0.17em}},q+\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,n\text{\hspace{0.17em}}$,
$${f}_{i,j}^{(i,q)}=\frac{{y}_{j}-{y}_{q-1}}{{f}_{i,j}^{(i,q-1)}-{f}_{i,q-1}^{(i,q-1)}}.$$
By introducing parameters $\alpha ,\beta $ into the formula ${f}_{k,j}^{\left(k,0\right)}(j=0,1,\dots ,n)$, then one can calculate the final result as
$${({a}_{k,0},\text{\hspace{0.17em}}{a}_{k,1},\text{\hspace{0.17em}}\dots ,\text{\hspace{0.17em}}{a}_{k,l},\text{\hspace{0.17em}}{a}_{k,l+1}^{0},\text{\hspace{0.17em}}{a}_{k,l+1}^{1}\text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,l+1},\text{\hspace{0.17em}}{a}_{k,l+2},\text{\hspace{0.17em}}\dots ,\text{\hspace{0.17em}}{a}_{k,n})}^{T}.$$
Step 4: By using the elements in Formulas (26) and (27), the Thiele-like interpolation continued fractions with a single parameter with respect to $y$ can be constructed:
$${A}_{i}(y)=\{\begin{array}{l}{f}_{i,0}^{(i,0)}+\frac{y-{y}_{0}}{{f}_{i,1}^{(i,1)}}\text{\hspace{0.17em}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{1}}{{f}_{i,2}^{(i,2)}}\text{\hspace{0.17em}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\text{\hspace{0.17em}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{n-1}}{{f}_{i,n}^{(i,n)}},\text{\hspace{0.17em}}\begin{array}{cc}& \end{array}i=0,1,\dots ,k-1,k+1,\dots ,m,\\ {a}_{k,0}+\frac{y-{y}_{0}}{{a}_{k,1}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l-1}}{{a}_{k,l}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l}}{{a}_{k,l+1}^{0}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l}}{{a}_{k,l+1}^{1}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l}}{{a}_{k,l+1}^{}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l+1}}{{a}_{k,l+2}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{n-1}}{{a}_{k,n}},\begin{array}{cc}& i=k,\end{array}\end{array}$$
Step 5: Let
$${R}_{m,n}^{1}(x,y)={A}_{0}(y)+\frac{x-{x}_{0}}{{A}_{1}(y)}\begin{array}{c}\\ +\end{array}\frac{x-{x}_{1}}{{A}_{2}(y)}\begin{array}{c}\\ +\cdots +\end{array}\frac{x-{x}_{m-1}}{{A}_{m}(y)}.$$
Then, ${R}_{m,n}^{1}(x,y)$ is a bivariate Thiele-like branched rational interpolation continued fractions with two parameters based on a treble virtual point. |

**Theorem**

**5.**

#### 3.2.2. Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions with Two Parameters Based on Two Virtual Double Points in the Same Column

Algorithm 3 Algorithm of the Thiele-like branched rational interpolation continued fractions with two parameters in the same column |

Step 1: Initialization: Step 2: If $j=0\text{\hspace{0.17em}},\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,n\text{\hspace{0.17em}};\text{\hspace{0.17em}}p=\text{\hspace{0.17em}}1\text{\hspace{0.17em}},2\text{\hspace{0.17em}},\dots ,m\text{\hspace{0.17em}};i=p\text{\hspace{0.17em}},p+\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,m\text{\hspace{0.17em}}$, Step 3: For $i=0\text{\hspace{0.17em}},\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,k-1\text{\hspace{0.17em}},\text{\hspace{0.17em}}k+1,\dots ,m\text{\hspace{0.17em}};\text{\hspace{0.17em}}q=\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\text{\hspace{0.17em}}2,\dots ,n\text{\hspace{0.17em}};j=q\text{\hspace{0.17em}},q+\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,n\text{\hspace{0.17em}}$,
$${f}_{i,j}^{(i,q)}=\frac{{y}_{j}-{y}_{q-1}}{{f}_{i,j}^{(i,q-1)}-{f}_{i,q-1}^{(i,q-1)}}.$$
Step 4: By introducing parameters $\varphi ,\delta $ into ${f}_{k,j}^{\left(k,0\right)}(j=0,1,\dots ,n)$, then one can calculate them with inverse differences similar to Equation (2)–(5) , and mark the final results as
$${({a}_{k,0}\text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,1}\text{\hspace{0.17em}},\text{\hspace{0.17em}}\dots ,\text{\hspace{0.17em}}{a}_{k,l}\text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,l+1\text{\hspace{0.17em}}}^{0}\text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,l+1}\text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,l+2}\text{\hspace{0.17em}},\text{\hspace{0.17em}}\dots \text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,s}\text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,s+1\text{\hspace{0.17em}}}^{0}\text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,s+1}\text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,s+2}\text{\hspace{0.17em}},\text{\hspace{0.17em}}\dots ,\text{\hspace{0.17em}}{a}_{k,n})}^{T}.$$
Step 5: Using the elements in Formulas (52) and (53), the univariate Thiele-like interpolation continued fractions with two parameters with respect to $y$ can be constructed:
$${A}_{i}(y)=\{\begin{array}{l}{f}_{i,0}^{(i,0)}+\frac{y-{y}_{0}}{{f}_{i,1}^{(i,1)}}\text{\hspace{0.17em}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{1}}{{f}_{i,2}^{(i,2)}}\text{\hspace{0.17em}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\text{\hspace{0.17em}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{n-1}}{{f}_{i,n}^{(i,n)}},\text{\hspace{0.17em}}\begin{array}{cc}& \end{array}i=0,1,\dots ,k-1,k+1,\dots ,m,\\ {a}_{k,0}+\frac{y-{y}_{0}}{{a}_{k,1}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l-1}}{{a}_{k,l}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l}}{{a}_{k,l+1}^{0}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l}}{{a}_{k,l+1}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l+1}}{{a}_{k,l+2}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\\ \frac{y-{y}_{s-1}}{{a}_{k,s}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{s}}{{a}_{k,s+1}^{0}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{s}}{{a}_{k,s+1}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{s+1}}{{a}_{k,s+2}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{n-1}}{{a}_{k,n}},\begin{array}{cc}& i=k,\end{array}\end{array}.$$
Step 6: Let
$${R}_{m,n}^{2}(x,y)={A}_{0}(y)+\frac{x-{x}_{0}}{{A}_{1}(y)}\begin{array}{c}\\ +\end{array}\frac{x-{x}_{1}}{{A}_{2}(y)}\begin{array}{c}\\ +\cdots +\end{array}\frac{x-{x}_{m-1}}{{A}_{m}(y)}.$$
Then, ${R}_{m,n}^{2}(x,y)$ is a bivariate Thiele-type branched interpolation continued fraction with two parameters based on two virtual double nodes in the same column. |

**Theorem**

**6.**

#### 3.2.3. Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions with Two Parameters Based on Two Virtual Double Points in Different Columns

Algorithm 4 Algorithm of the Thiele-like rational interpolation continued fractions with two parameters on the different columns |

Step 1: Initialization. Step 2: If $j=0\text{\hspace{0.17em}},\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,n\text{\hspace{0.17em}};\text{\hspace{0.17em}}p=\text{\hspace{0.17em}}1\text{\hspace{0.17em}},2\text{\hspace{0.17em}},\dots ,m\text{\hspace{0.17em}};i=p\text{\hspace{0.17em}},p+\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,m\text{\hspace{0.17em}}$, Step 3: For $i=0\text{\hspace{0.17em}},\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,k-1\text{\hspace{0.17em}},\text{\hspace{0.17em}}k+1,\dots ,s-1\text{\hspace{0.17em}},\text{\hspace{0.17em}}s+1,\dots ,m\text{\hspace{0.17em}};\text{\hspace{0.17em}}q=\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\text{\hspace{0.17em}}2,\dots ,n\text{\hspace{0.17em}};j=q\text{\hspace{0.17em}},q+\text{\hspace{0.17em}}1\text{\hspace{0.17em}},\dots ,n\text{\hspace{0.17em}}$,
$${f}_{i,j}^{(i,q)}=\frac{{y}_{j}-{y}_{q-1}}{{f}_{i,j}^{(i,q-1)}-{f}_{i,q-1}^{(i,q-1)}}.$$
Step 4: By introducing parameter $\phi $ into ${f}_{k,j}^{\left(k,0\right)}\text{\hspace{0.17em}}(j=0,1,\dots ,n)$, we can calculate them by using Formulas (2)–(5) and mark the final results as
$${({a}_{k,0},\text{\hspace{0.17em}}{a}_{k,1}\text{\hspace{0.17em}},\text{\hspace{0.17em}}\dots \text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,l},\text{\hspace{0.17em}}{a}_{k,l+1\text{\hspace{0.17em}}}^{0}\text{\hspace{0.17em}}{a}_{k,l+1}\text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,l+2},\text{\hspace{0.17em}}\dots \text{\hspace{0.17em}},\text{\hspace{0.17em}}{a}_{k,n})}^{T}.$$
Step 5: By introducing parameter $\varpi $ into ${f}_{s,j}^{\left(s,0\right)}\text{\hspace{0.17em}}(j=0,1,\dots ,n)$, we can calculate them by using Formulas (2)–(5), and mark the final results as
$${({a}_{s,0},{a}_{s,1},\dots ,{a}_{s,t},{a}_{s,t+1}^{0},{a}_{s,t+1},{a}_{s,t+2},\dots ,{a}_{s,n})}^{T}.$$
Step 6: By using the elements in Formulas (40)–(42), the Thiele-like interpolation continued fractions with a single parameter with respect to $y$ was constructed:
$${A}_{i}(y)=\{\begin{array}{l}{f}_{i,0}^{(i,0)}+\frac{y-{y}_{0}}{{f}_{i,1}^{(i,1)}}\text{\hspace{0.17em}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{1}}{{f}_{i,2}^{(i,2)}}\text{\hspace{0.17em}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\text{\hspace{0.17em}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{n-1}}{{f}_{i,n}^{(i,n)}},\text{\hspace{0.17em}}\begin{array}{cc}& \end{array}i=0,1,\dots ,k-1,k+1,\dots ,s-1,s+1,\dots ,m,\\ {a}_{k,0}+\frac{y-{y}_{0}}{{a}_{k,1}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l-1}}{{a}_{k,l}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l}}{{a}_{k,l+1}^{0}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l}}{{a}_{k,l+1}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{l+1}}{{a}_{k,l+2}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{n-1}}{{a}_{k,n}},\begin{array}{cc}& i=k,\end{array}\\ {a}_{s,0}+\frac{y-{y}_{0}}{{a}_{s,1}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{t-1}}{{a}_{s,t}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{t}}{{a}_{s,t+1}^{0}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{t}}{{a}_{s,t+1}}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{t+1}}{{a}_{s,t+2}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{n-1}}{{a}_{s,n}},\begin{array}{cc}& \begin{array}{l}i=s,\\ \end{array}\end{array}\end{array}.$$
Step 7: Let
$${R}_{m,n}^{3}(x,y)={A}_{0}(y)+\frac{x-{x}_{0}}{{A}_{1}(y)}\begin{array}{c}\\ +\end{array}\frac{x-{x}_{1}}{{A}_{2}(y)}\begin{array}{c}\\ +\cdots +\end{array}\frac{x-{x}_{m-1}}{{A}_{m}(y)}.$$
Then, ${R}_{m,n}^{3}(x,y)$ is a bivariate Thiele-like branched rational interpolation continued fractions with two parameters based on two virtual double points in the different columns. |

**Theorem**

**7.**

#### 3.3. Dual Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions with a Single Parameter

Algorithm 5 Algorithm of the dual bivariate Thiele-like branched rational interpolation continued fractions with a single parameter |

Step 1: Initialization: Step 2: If $i=0,1,\dots ,m;q=1,2,\dots ,n;j=q,q+1,\dots ,n$,
$${f}_{i,j}^{(0,q)}=\frac{{y}_{j}-{y}_{q-1}}{{f}_{i,j}^{(0,q-1)}-{f}_{i,q-1}^{(0,q-1)}}.$$
Step 3: For $j=0,1,\dots ,l-1,l+1,\dots ,n;p=1,2,\dots ,m;i=p,p+1,\dots ,m$,
$${f}_{i,j}^{\left(p,j\right)}=\frac{{x}_{i}-{x}_{p-1}}{{f}_{i,j}^{\left(p-1,j\right)}-{f}_{p-1,j}^{\left(p-1,j\right)}}.$$
Step 4: By introducing a parameter $\theta $ into ${f}_{i,l}^{\left(0,l\right)}(i=0,1,\dots ,m)$, we can calculate them using Formulas (2)–(5) and mark the final results as
$${a}_{0,l},{a}_{1,l},\dots ,{a}_{k,l},{a}_{k+1,l}^{0},{a}_{k+1,l},{a}_{k+2,l},\dots ,{a}_{m,l}.$$
Step 5: By using the elements in Formulas (48) and (49), the Thiele-type interpolation continued fractions with a single parameter regarded to $x$ can be constructed:
$${A}_{j}(x)=\{\begin{array}{l}{f}_{0,j}^{(0,j)}+\frac{x-{x}_{0}}{{f}_{1,j}^{(1,j)}}\begin{array}{c}\\ +\end{array}\frac{x-{x}_{1}}{{f}_{2,j}^{(2,j)}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\frac{x-{x}_{m-1}}{{f}_{m,j}^{(m,j)}},\begin{array}{cc}& \end{array}j=0,1,\dots ,l-1,l+1,\dots ,n,\\ {a}_{0,l}+\frac{x-{x}_{0}}{{a}_{1,l}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\frac{x-{x}_{k-1}}{{a}_{k,l}}\begin{array}{c}\\ +\end{array}\frac{x-{x}_{k}}{{a}_{k+1,l}^{0}}\begin{array}{c}\\ +\end{array}\frac{x-{x}_{k}}{{a}_{k+1,l}}\begin{array}{c}\\ +\end{array}\frac{x-{x}_{k+1}}{{a}_{k+2,l}}\begin{array}{c}\\ +\end{array}\begin{array}{c}\\ \cdots \end{array}\begin{array}{c}\\ +\end{array}\frac{x-{x}_{m-1}}{{a}_{m,l}},\begin{array}{cc}& j=l,\end{array}\end{array}.$$
Step 6: Let
$${R}_{m,n}^{4}(x,y)={A}_{0}(x)+\frac{y-{y}_{0}}{{A}_{1}(x)}\begin{array}{c}\\ +\end{array}\frac{y-{y}_{1}}{{A}_{2}(x)}\begin{array}{c}\\ +\cdots +\end{array}\frac{y-{y}_{n-1}}{{A}_{n}(x)}.$$
Then, ${R}_{m,n}^{4}(x,y)$ is a dual bivariate Thiele-like branched rational interpolation continued fractions with a single parameter. |

**Theorem**

**8.**

**Proof.**

#### 3.4. Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions with Unattainable Points

**Definition**

**2.**

**Theorem**

**9**

**.**Suppose the bivariate Thiele-like branched rational interpolation continued fractions which is diverse for the given point set $D=\{({x}_{i},{y}_{j},{f}_{i,j})|i=0,1,\dots ,m,j=0,1,\dots ,n\}$, shown in Formula (15), satisfies

**Theorem**

**10.**

#### 3.5. Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions for Nonexistent Partial Inverse Difference

## 4. Numerical Examples

**Example**

**1.**

**Example**

**2.**

**Example**

**3.**

**Example**

**4.**

## 5. Conclusions and Future Work

- How to select appropriate parameters and suitably alter the shape of the curves or surfaces according to actual requirements.
- The geometric properties of curves/surfaces based on the Thiele-like rational interpolation continued fractions function with parameters.
- How to design geometric modeling using Thiele-like rational interpolation continued fractions functions with parameters.
- The proposed Thiele-like rational interpolation continued fractions with parameters algorithm can be implemented in other pixel level image processing, such as image inpainting, removal of salt and pepper noise, image rotation, image super-resolution reconstruction, image metamorphosis and image upscaling.
- How to generalize the proposed algorithms to lacunary rational interpolants, rational interpolants over triangular grids.

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Tan, J. Theory of Continued Fractions and Its Applications; Science Publishers: Beijing, China, 2007. [Google Scholar]
- Wang, R.; Zhu, G. Approximation of Rational Interpolation and Its Application; Science Publishers: Beijing, China, 2004. [Google Scholar]
- Kuchmins’ka, K.; Vonza, S. On Newton-Thiele-like Interpolating Formula. Commun. Anal. Theory Contin. Fractions
**2000**, 8, 74–79. [Google Scholar] - Pahirya, M.; Svyda, T. Problem of Interpolation of Functions by Two-Dimensional Continued Fractions. Ukrai. Math. J.
**2006**, 58, 954–966. [Google Scholar] [CrossRef] - Li, S.; Dong, Y. Viscovatov-Like Algorithm of Thiele-Newton’s Blending Expansion for a Bivariate Function. Mathematics
**2019**, 7, 696. [Google Scholar] [CrossRef][Green Version] - Cuyt, A.; Celis, O. Multivariate Data Fitting With Error Control. Bit Numer. Math.
**2019**, 59, 35–55. [Google Scholar] [CrossRef] - Li, G.; Zhang, X.; Yang, H. Numerical Analysis, Circuit Simulation, And Control Synchronization of Fractional-Order Unified Chaotic System. Mathematics
**2019**, 7, 1077. [Google Scholar] [CrossRef][Green Version] - Xu, Q.; Liu, Z. Scattered Data Interpolation and Approximation with Truncated Exponential Radial Basis Function. Mathematics
**2019**, 7, 1101. [Google Scholar] [CrossRef][Green Version] - Massopust, P. Non-Stationary Fractal Interpolation. Mathematics
**2019**, 7, 666. [Google Scholar] [CrossRef][Green Version] - Akal, C.; Lukashov, A. Newton-Padé Approximations for Multivariate Functions. Appl. Math. Comput.
**2018**, 334, 367–374. [Google Scholar] [CrossRef] - Cuyt, A.; Verdonk, B. General Order Newton-Padé Approximants for Multivariate Functions. Numer. Math.
**1984**, 43, 293–307. [Google Scholar] [CrossRef] - Ravi, M.S. Geometric Methods in Rational Interpolation Theory. Linear Algebra Appl.
**1997**, 258, 159–168. [Google Scholar] [CrossRef][Green Version] - Bertrand, F.; Calvi, J. The Newton Product of Polynomial Projectors Part 1: Construction and Algebraic Properties. Int. J. Math.
**2019**, 30, 1950030. [Google Scholar] [CrossRef] - Akal, C.; Lukashov, A. Scale of Mean Value Multivariate Padé Interpolations. Filomat
**2017**, 31, 1123–1128. [Google Scholar] [CrossRef] - Li, H.B.; Song, M.Y.; Zhong, E.J.; Gu, X.M. Numerical Gradient Schemes for Heat Equations Based on the Collocation Polynomial and Hermite Interpolation. Mathematics
**2019**, 7, 93. [Google Scholar] [CrossRef][Green Version] - Yu, K.; Wang, C.; Yang, S.; Lu, Z.; Zhao, D. An Effective Directional Residual Interpolation Algorithm for Color Image Demosaicking. Appl. Sci.
**2018**, 8, 680. [Google Scholar] [CrossRef][Green Version] - Zhou, X.; Wang, C.; Zhang, Z.; Fu, Q. Interpolation Filter Design Based on All-Phase DST And Its Application to Image Demosaicking. Information
**2018**, 9, 206. [Google Scholar] [CrossRef][Green Version] - Min, H.; Jia, W.; Zhao, Y. LATE: A Level Set Method Based on Local Approximation of Taylor Expansion for Segmenting Intensity Inhomogeneous Images. IEEE Trans. Image Process.
**2018**, 27, 5016–5031. [Google Scholar] [CrossRef] - He, L.; Tan, J.; Xing, Y.; Hu, M.; Xie, C. Super-Resolution Reconstruction Based on Continued Fractions Interpolation Kernel in The Polar Coordinates. J. Electron. Imaging
**2018**, 27, 043035. [Google Scholar] [CrossRef] - He, L.; Tan, J.; Su, Z.; Luo, X.; Xie, C. Super-resolution by polar Newton-Thiele’s rational kernel in centralized sparsity paradigm. Signal Process. Image Commun.
**2015**, 31, 86–99. [Google Scholar] [CrossRef] - Yao, X.; Zhang, Y.; Bao, F.; Liu, F.; Zhang, M. The Blending Interpolation Algorithm Based on Image Features. Multimed. Tools Appl.
**2018**, 77, 1971–1995. [Google Scholar] [CrossRef] - Zhang, Y.; Fan, Q.; Bao, F.; Liu, Y.; Zhang, C. Single-Image Super-Resolution Based on Rational Fractal Interpolation. IEEE Trans. Image Process.
**2018**, 27, 3782–3797. [Google Scholar] - Ahn, H.E.; Jeong, J.; Kim, J.W.; Kwon, S.; Yoo, J. A Fast 4K Video Frame Interpolation Using a Multi-Scale Optical Flow Reconstruction Network. Symmetry
**2019**, 11, 1251. [Google Scholar] [CrossRef][Green Version] - Wei, X.; Wu, Y.; Dong, F.; Zhang, J.; Sun, S. Developing an Image Manipulation Detection Algorithm Based on Edge Detection and Faster R-CNN. Symmetry
**2019**, 11, 1223. [Google Scholar] [CrossRef][Green Version] - Zhang, Y.; Bao, F.; Zhang, M. A Rational Interpolation Surface Model and Visualization Constraint. Sci. Sin. Math.
**2014**, 44, 729–740. [Google Scholar] [CrossRef] - Zhang, Y.; Bao, X.; Zhang, M.; Duan, Q. A Weighted Bivariate Blending Rational Interpolation Function and Visualization Control. J Comput. Anal. Appl.
**2012**, 14, 1303–1320. [Google Scholar] - Zou, L.; Tang, S. New Approach to Bivariate Blending Rational Interpolants. Chin. Q. J. Math.
**2011**, 26, 280–284. [Google Scholar] - Zou, L.; Tang, S. General Structure of Block-Based Interpolational Function. Commun. Math. Res.
**2012**, 28, 193–208. [Google Scholar] - Zou, L.; Tang, S. A New Approach to General Interpolation Formulae for Bivariate Interpolation. Abstr. Appl. Anal.
**2014**, 2014, 421635. [Google Scholar] [CrossRef] - Zhao, Q.; Tan, Q. Block-based Thiele-like Blending Rational Interpolation. J. Comput. Appl. Math.
**2006**, 195, 312–325. [Google Scholar] [CrossRef][Green Version] - Zhu, X.; Zhu, G. A Study of the Existence of Vector Valued Rational Interpolation. J. Inf. Comput. Sci.
**2005**, 2, 631–640. [Google Scholar] - Zhu, X. Research and Application of Rational Function Interpolation. Ph.D. Thesis, University of Science and Technology of China, Hefei, China, 2002. [Google Scholar]
- Zou, L.; Song, L.; Wang, X.; Huang, Q.; Chen, Y.; Tang, C.; Zhang, C. Univariate Thiele Type Continued Fractions Rational Interpolation with Parameters. In International Conference on Intelligent Computing; Springer: Cham, Switzerland, 2019; pp. 399–410. [Google Scholar]
- Huang, D.; Huang, Z.; Hussain, A. Intelligent Computing Methodologies; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Li, C.W.; Zhu, X.L.; Pan, Y.L. A Study of The Unattainable Point for Rational Interpolation. Coll. Math.
**2010**, 26, 50–55. [Google Scholar] - Zhao, Q.; Tan, Q. Successive Newton-Thiele’s Rational Interpolation. J. Inf. Comput. Sci.
**2005**, 2, 295–301. [Google Scholar] - Zhao, Q.; Tan, Q. Block-based Newton-like Blending Rational Interpolation. J. Comput. Math.
**2006**, 24, 515–526. [Google Scholar] - Siemazko, W. Thiele-type Branched Continued Fractions for Two Variable Functions. J. Comput. Appl. Math.
**1983**, 9, 137–153. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**(

**a**) Graph of ${R}_{2}(x)$ with $\lambda =-3$, (

**b**) graph of ${R}_{2}(x)$ with $\lambda =80$.

**Figure 3.**The zoomed images by factor 2 based on four different interpolant methods. (

**a**) The zoomed images by factor 2 based on the nearest-neighbor interpolation method, (

**b**) the zoomed images by factor 2 based on the bilinear interpolation, (

**c**) the zoomed images by factor 2 based on the bicubic interpolation, (

**d**) the zoomed images by factor 2 based on the proposed method.

**Figure 4.**Comparison of eye effects of the nearest neighbor interpolation and the proposed rational interpolation. (

**a**) The zoomed images by factor 4 based on the nearest-neighbor interpolation method, (

**b**) the zoomed images by factor 4 based on the proposed method.

Nodes | 0 Order Inverse Differences | 1 Order Inverse Differences | $\mathit{k}$ | $\mathit{k}+1\text{}\mathbf{Order}\text{}\mathbf{Inverse}\text{}\mathbf{Differences}$ | $\mathit{k}+2\text{}\mathbf{Order}\text{}\mathbf{Inverse}\text{}\mathbf{Differences}$ | $\mathit{n}+1\text{}\mathbf{Order}\text{}\mathbf{Inverse}\text{}\mathbf{Differences}$ | ||
---|---|---|---|---|---|---|---|---|

${x}_{0}$ | ${y}_{0}^{0}$ | |||||||

${x}_{1}$ | ${y}_{1}^{0}$ | ${y}_{1}^{1}$ | ||||||

$\begin{array}{c}\vdots \end{array}$ | $\begin{array}{c}\vdots \end{array}$ | $\begin{array}{c}\vdots \end{array}$ | $\ddots $ | |||||

${x}_{k}$ | ${y}_{k}^{0}$ | ${y}_{k}^{1}$ | $\cdots $ | ${y}_{k}^{k}$ | ||||

${x}_{k}$ | ${y}_{k}^{0}$ | ${y}_{k}^{1}$ | $\cdots $ | ${y}_{k}^{k}$ | $\frac{1}{\eta}$ | |||

${x}_{k+1}$ | ${y}_{k+1}^{0}$ | ${y}_{k+1}^{1}$ | $\cdots $ | ${y}_{k+1}^{k}$ | ${y}_{k+1}^{k+1}$ | ${z}_{k+1}^{k+1}$ | ||

$\begin{array}{c}\vdots \end{array}$ | $\begin{array}{c}\vdots \end{array}$ | $\begin{array}{c}\vdots \end{array}$ | $\cdots $ | $\vdots $ | $\vdots $ | $\vdots $ | $\ddots $ | |

${x}_{n}$ | ${y}_{n}^{0}$ | ${y}_{n}^{1}$ | $\cdots $ | $\begin{array}{c}{y}_{n}^{k}\end{array}$ | ${y}_{n}^{k+1}$ | ${z}_{n}^{k+1}$ | $\cdots $ | ${z}_{n}^{n}$ |

${\mathit{x}}_{\mathit{i}}$ | $\mathit{f}({\mathit{x}}_{\mathit{i}})=\frac{1}{1+25{\mathit{x}}_{\mathit{i}}^{2}}$ | $\mathbf{Newton}\text{}\mathbf{Interpolation}\text{}{\mathit{p}}_{6}(\mathit{x})$ | Thiele Continued Fractions Interpolation | Thiele Continued Fractions Interpolation with c = 1 | Thiele Continued Fractions Interpolation with c = −10 |
---|---|---|---|---|---|

−1.00 | 0.03846 | 0.03846 | 0.03846000000 | 0.03846000000 | 0.03846000000 |

−0.96 | 0.04160 | 0.03298 | 0.04159488287 | 0.04159595868 | 0.04159595865 |

−0.90 | 0.04706 | 0.03770 | 0.04705547745 | 0.04705768836 | 0.04705768826 |

−0.86 | 0.05131 | 0.04534 | 0.05130475006 | 0.05130739205 | 0.05130739185 |

−0.80 | 0.05882 | 0.05882 | 0.05882000000 | 0.05882000000 | 0.05882000000 |

−0.76 | 0.06477 | 0.06763 | 0.06476367286 | 0.06476628712 | 0.06476628741 |

−0.70 | 0.07547 | 0.07971 | 0.07546947663 | 0.07547137553 | 0.07547137561 |

−0.66 | 0.08410 | 0.08737 | 0.08410290267 | 0.08410410847 | 0.08410410852 |

−0.60 | 0.10000 | 0.10000 | 0.09999999823 | 0.10000000000 | 0.10000000000 |

−0.56 | 0.11312 | 0.11071 | 0.11312302677 | 0.11312226113 | 0.11312226113 |

−0.50 | 0.13793 | 0.13338 | 0.13793269272 | 0.13793118870 | 0.13793118867 |

−0.46 | 0.15898 | 0.15487 | 0.15898409183 | 0.15898264914 | 0.15898264914 |

−0.40 | 0.2000 | 0.20000 | 0.19999998642 | 0.20000000000 | 0.20000000000 |

−0.36 | 0.23585 | 0.24042 | 0.23584678820 | 0.23584889034 | 0.23584889036 |

−0.30 | 0.30769 | 0.31883 | 0.30768550203 | 0.30769184706 | 0.30769184712 |

−0.26 | 0.37175 | 0.38372 | 0.37173857114 | 0.37174665711 | 0.37174665718 |

−0.20 | 0.50000 | 0.50000 | 0.49999990866 | 0.50000000000 | 0.50000000000 |

−0.16 | 0.60976 | 0.73720 | 0.60977966699 | 0.60975745619 | 0.60975745603 |

−0.10 | 0.80000 | 0.73720 | 0.80009647464 | 0.80000519086 | 0.80000519027 |

−0.06 | 0.91743 | 0.84193 | 0.91756721089 | 0.91743821176 | 0.91743821096 |

0.00 | 1.0000 | 1.00000 | 0.99999979851 | 1.00000000000 | 1.00000000000 |

$i$ | 0 | 1 | 2 |

${x}_{i}$ | 2 | 1 | 0 |

${f}_{i}$ | 1 | 0 | 0 |

Nodes | 0 Order Inverse Differences | 1 Order Inverse Differences | 2 Order Inverse Differences |
---|---|---|---|

2 | 1 | ||

1 | 0 | 1 | |

0 | 0 | 2 | −1 |

Nodes | 0 Order Inverse Differences | 1 Order Inverse Differences | 2 Order Inverse Differences | 3 Order Inverse Differences |
---|---|---|---|---|

2 | 1 | |||

2 | 1 | $\lambda $ | ||

1 | 0 | 1 | $\frac{1}{\lambda -1}$ | |

0 | 0 | 2 | $\frac{2}{\lambda -2}$ | $3-\frac{2}{\lambda}-\lambda $ |

$({\mathit{x}}_{\mathit{i}},{\mathit{y}}_{\mathit{j}})$ | ${\mathit{x}}_{0}=0$ | ${\mathit{x}}_{1}=0.5$ | ${\mathit{x}}_{2}=1$ |
---|---|---|---|

${y}_{0}=0$ | 2 | 2.3 | 2.5 |

${y}_{1}=0.5$ | 1.8 | 2 | 2.1 |

${y}_{1}=1$ | 1.5 | 1.55 | 1.5 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zou, L.; Song, L.; Wang, X.; Chen, Y.; Zhang, C.; Tang, C.
Bivariate Thiele-Like Rational Interpolation Continued Fractions with Parameters Based on Virtual Points. *Mathematics* **2020**, *8*, 71.
https://doi.org/10.3390/math8010071

**AMA Style**

Zou L, Song L, Wang X, Chen Y, Zhang C, Tang C.
Bivariate Thiele-Like Rational Interpolation Continued Fractions with Parameters Based on Virtual Points. *Mathematics*. 2020; 8(1):71.
https://doi.org/10.3390/math8010071

**Chicago/Turabian Style**

Zou, Le, Liangtu Song, Xiaofeng Wang, Yanping Chen, Chen Zhang, and Chao Tang.
2020. "Bivariate Thiele-Like Rational Interpolation Continued Fractions with Parameters Based on Virtual Points" *Mathematics* 8, no. 1: 71.
https://doi.org/10.3390/math8010071