# Analyzing Soliton Solutions of the Extended (3 + 1)-Dimensional Sakovich Equation

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Methodology of GERFM

**Remark 1.**

## 3. Applications

**Family 1:**Setting

**Case 1.1:**

**Case 1.2:**

**Case 1.3:**

**Family 2:**Fixing

**Case 2.1:**

**Case 2.2:**

**Case 2.3:**

**Family 3:**Setting

**Case 3.1:**

**Case 3.2:**

**Family 4:**Setting

**Case 4.1:**Substituting Equations (17) and (36) into Equation (12), one finds the solitary wave solution of Equation (3), the same as Equation (16).

**Case 4.2:**Substituting Equations (15) and (36) into Equation (12), one finds the solitary wave solution of Equation (3), the same as Equation (18).

**Case 4.3:**Substituting Equations (19) and (36) into Equation (12), one finds the solitary wave solution of Equation (3), the same as Equation (20).

**Family 5:**Setting

**Case 5.1:**

**Family 6:**Setting

**Case 6.1:**

**Case 6.2:**

**Family 7:**Setting

**Case 7.1:**

**Case 7.2:**

## 4. Graphical Representations

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Seadawy, A.R.; Arshad, M.; Lu, D. The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in magnetohydrodynamics flows, Chaos. Solitons Fractals
**2020**, 139, 110141. [Google Scholar] [CrossRef] - Raza, N.; Abdel-Aty, A.H. Traveling wave structures and analysis of bifurcation and chaos theory for Biswas-Milovic Model in conjunction with Kudryshov’s law of refractive index. Optik
**2023**, 287, 171085. [Google Scholar] [CrossRef] - Cheng, L.; Ma, W.X. Similarity Transformations and Nonlocal Reduced Integrable Nonlinear Schrödinger Type Equations. Mathematics
**2023**, 11, 4110. [Google Scholar] [CrossRef] - Ma, W.X.; Batwa, S.; Manukure, S. Dispersion-Managed Lump Waves in a Spatial Symmetric KP Model. East Asian J. Appl. Math.
**2023**, 13, 246–256. [Google Scholar] [CrossRef] - Raza, N.; Deifalla, A.; Rani, B.; Shah, N.A.; Ragab, A.E. Analyzing Soliton Solutions of the (n+1)-dimensional generalized Kadomtsev-Petviashvili equation: Comprehensive study of dark, bright, and periodic dynamics. Results Phys.
**2024**, 56, 107224. [Google Scholar] [CrossRef] - Malfliet, W. Solitary wave solutions of nonlinear wave equations. Am. J. Phys.
**1992**, 60, 650–654. [Google Scholar] [CrossRef] - Rizvi, S.T.R.; Seadawy, A.R.; Alsallami, S.A.M. Grey-Black Optical Solitons, Homoclinic Breather, Combined Solitons via Chupin Liu’s Theorem for Improved Perturbed NLSE with Dual-Power Law Nonlinearity. Mathematics
**2023**, 11, 2122. [Google Scholar] [CrossRef] - Taghizadeh, N.; Mirzazadeh, M.; Tascan, F. The first-integral method applied to the Eckhaus equation. Appl. Math. Lett.
**2012**, 25, 798–802. [Google Scholar] [CrossRef] - Mishaev, R.A. Auto-Bäcklund transformations for the nonlinear Schrödinger equation with variable coefficients. Theor. Math. Phys.
**1995**, 102, 144–152. [Google Scholar] [CrossRef] - Kemaloglu, B.; Yel, G.; Bulut, H. An application of the rational sine-Gordon method to the Hirota equation. Opt. Quantum Electron.
**2023**, 55, 658. [Google Scholar] [CrossRef] - Alam, M.N.; Ilhan, O.A.; Manafian, J.; Asjad, M.I.; Rezazadeh, H.; Baskonus, H.M. New Results of Some of the Conformable Models Arising in Dynamical Systems. Adv. Math. Phys.
**2022**, 2022, 7753879. [Google Scholar] [CrossRef] - Inc, M.; Alqahtani, R.T.; Iqbal, M.S. Stability analysis and consistent solitary wave solutions for the reaction-diffusion regularized nonlinear model. Results Phys.
**2023**, 54, 107053. [Google Scholar] [CrossRef] - Malik, S.; Hashemi, M.S.; Kumar, S.; Rezazadeh, H.; Mahmoud, W.; Osman, M.S. Application of new Kudryashov method to various nonlinear partial differential equations. Opt. Quantum Electron.
**2023**, 55, 8. [Google Scholar] [CrossRef] - Akbulut, A.; Tascan, F.; Ozel, E. Trivial conservation laws and solitary wave solution of the fifth order Lax equation. Partial Differ. Appl. Math.
**2021**, 4, 100101. [Google Scholar] [CrossRef] - Akbulut, A.; Rezazadeh, H.; Hashemi, M.S.; Tascan, F. The (3 + 1)-dimensional Wazwaz-KdV equations: The conservation laws and exact solutions. Int. J. Nonlinear Sci. Numer.
**2023**, 24, 673–693. [Google Scholar] [CrossRef] - Liu, S.K.; Fu, Z.; Liu, S.D.; Zhao, Q. Jacobi elliptic function method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A
**2001**, 289, 69–74. [Google Scholar] [CrossRef] - Yang, X.F.; Deng, Z.C.; Wei, Y. A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Differ. Equ.
**2015**, 117. [Google Scholar] [CrossRef] - Humbu, I.; Muatjetjeja, B.; Motsumi, T.G.; Adem, A. Solitary waves solutions and local conserved vectors for extended quantum Zakharov-Kuznetsov equation. Eur. Phys. J. Plus
**2023**, 138, 873. [Google Scholar] [CrossRef] - Wazwaz, A.M.; Hammad, M.A.; Al-Ghamdi, A.O.; Alshehri, M.H.; El-Tantawy, S.A. New (3 + 1)-Dimensional Kadomtsev-Petviashvili-Sawada-Kotera-Ramani Equation: Multiple-Soliton and Lump Solutions. Mathematics
**2023**, 11, 3395. [Google Scholar] [CrossRef] - Sakovich, S. A new Painlevé-integrable equation possessing KdV-type solitons. arXiv
**2019**, arXiv:1907.01324. [Google Scholar] - Wazwaz, A.M. A new (3 + 1)-dimensional Painlevé-integrable Sakovich equation: Multiple soliton solutions. Int. J. Numer. Methods Heat Fluid Flow
**2021**, 31, 3030–3035. [Google Scholar] [CrossRef] - Singh, S.; Ray, S.S. Painlevé analysis, auto-Bäcklund transformation and new exact solutions of (2+1) and (3 + 1)-dimensional extended Sakovich equation with time dependent variable coefficients in ocean physics. J. Ocean Eng. Sci.
**2023**, 8, 246–262. [Google Scholar] [CrossRef] - Wazwaz, A.M. Two new Painlevé-integrable extended Sakovich equations with (2+1) and (3 + 1) dimensions. Int. J. Numer. Methods Heat Fluid Flow
**2020**, 30, 1379–1387. [Google Scholar] [CrossRef] - Younis, M.; Seadawy, A.R.; Baber, M.Z.; Yasin, M.W.; Rizvi, S.T.; Iqbal, M.S. Abundant solitary wave structures of the higher dimensional Sakovich dynamical model. Math. Methods Appl. Sci.
**2021**. [Google Scholar] [CrossRef] - Ma, Y.L.; Wazwaz, A.M.; Li, B.Q. A new (3 + 1)-dimensional Sakovich equation in nonlinear wave motion: Painlevé integrability, multiple solitons and soliton molecules. Qual. Theory Dyn. Syst.
**2022**, 21, 158. [Google Scholar] [CrossRef] - Ali, K.K.; AlQahtani, S.A.; Mehanna, M.S.; Wazwaz, A.M. Novel soliton solutions for the (3 + 1)-dimensional Sakovich equation using different analytical methods. J. Math
**2023**, 2023, 4864334. [Google Scholar] [CrossRef] - Cortez, M.V.; Raza, N.; Kazmi, S.S.; Chahlaoui, Y.; Basendwah, G.A. A novel investigation of dynamical behavior to describe nonlinear wave motion in (3 + 1)-dimensions. Results Phys.
**2023**, 55, 107131. [Google Scholar] [CrossRef] - Ghanbari, B.; Inc, M.; Yusuf, A.; Bayram, M. Exact optical solitons of Radhakrishnan-Kundu-Lakshmanan equation with Kerr law nonlinearity. Mod. Phys. Lett. B
**2019**, 33, 1950061. [Google Scholar] [CrossRef] - Gunay, B.; Kuo, C.K.; Ma, W.X. An application of the exponential rational function method to exact solutions to the Drinfeld-Sokolov system. Results Phys.
**2021**, 29, 104733. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alqahtani, R.T.; Kaplan, M.
Analyzing Soliton Solutions of the Extended (3 + 1)-Dimensional Sakovich Equation. *Mathematics* **2024**, *12*, 720.
https://doi.org/10.3390/math12050720

**AMA Style**

Alqahtani RT, Kaplan M.
Analyzing Soliton Solutions of the Extended (3 + 1)-Dimensional Sakovich Equation. *Mathematics*. 2024; 12(5):720.
https://doi.org/10.3390/math12050720

**Chicago/Turabian Style**

Alqahtani, Rubayyi T., and Melike Kaplan.
2024. "Analyzing Soliton Solutions of the Extended (3 + 1)-Dimensional Sakovich Equation" *Mathematics* 12, no. 5: 720.
https://doi.org/10.3390/math12050720