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Abstract: This work focuses on the utilization of the generalized exponential rational function method
(GERFM) to analyze wave propagation of the extended (3 + 1)-dimensional Sakovich equation. The
demonstrated effectiveness and robustness of the employed method underscore its relevance to a
wider spectrum of nonlinear partial differential equations (NPDEs) in physical phenomena. An
examination of the physical characteristics of the generated solutions has been conducted through
two- and three-dimensional graphical representations.
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1. Introduction

Recently, the exploration of explicit and precise solutions for traveling waves in NPDEs
has attracted significant attention from researchers. This interest stems from the potential
applications of these solutions in various scientific and technological domains, especially
in applied mathematics, hydrodynamics, quantum mechanics, solid-state physics, electron
thermal energy, stochastic dynamical systems, nonlinear optics, and other related fields.
Hence, the discovery of analytical solutions for these equations is crucial in comprehending
their dynamics and elucidating the underlying mechanisms governing their existing states.
Diverse researchers have successfully employed, developed, and refined a range of innova-
tive approaches to obtain exact solutions for NPDEs, such as the modified and extended
rational expansion method [1], the G′/(bG′ + G + a)-expansion technique [2], similarity
transformations [3], the Hirota bilinear method [4], the homogenouous balance method [5],
the tanh technique [6], Chupin Liu’s theorem [7], the first integral technique [8], auto-
Backlund transformations [9], the sine-Gordon equation method [10], the modified G′/G
-expansion method [11], the Riccati equation mapping method [12], the new Kudryashov
technique [13], conservation laws [14,15], the Jacobian elliptic function expansion tech-
nique [16], Riccati–Bernoulli’s sub-ODE technique [17], the sec hp function method [18],
Painlevé integrability [19], and so on.

The aim is to this paper is to explore analytical solutions for the newly extended
(3 + 1)-dimensional Sakovich equation. The growing interest in researching nonlinear
integrable equations is attributed to their ability to model crucial phenomena across various
scientific disciplines, such as atmospheric sciences, oceanography, and related fields. In the
context at hand, a notable exemplar of pertinent research is the following study. Sakovich
presented a novel three-dimensional equation as follows [20]:

ϕxz + ϕyy + 2ϕϕxy + 6ϕ2ϕxx + 2(ϕ2
xx) = 0. (1)
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More recently, Wazwaz extended Equation (1) into a modified Sakovich equation in the
following manner [21].

ϕxt + ϕxx + ϕxz + ϕyy + ϕxy + ϕyz + 2ϕϕxy + 6ϕ2ϕxx + 2(ϕ2
xx) = 0. (2)

Numerous researchers have investigated Equation (2). For example, Singh and Ray [22]
derived an auto-Bäcklund transformation and conducted Painlevé analysis on Equation (2)
to generate soliton solutions. The same equation has been investigated using the Painlevé
test, and multiple soliton solutions have been derived [23,24]. Recently, Wazwaz trans-
formed Equation (2) into the newly formulated (3 + 1)-dimensional Sakovich equation as
follows [25]:

ϕxt + ϕxx + ϕyy + ϕzz + ϕxy + ϕxz + ϕyz + 2ϕϕxy + 6ϕ2ϕxx + 2(ϕxx)
2 + ϕϕxx = 0. (3)

Here, the function ϕ represents the relationship with the 3D spatial variables and the
temporal variable. This newly formulated equation demonstrates a broader range of prac-
tical applications from a physical standpoint when compared to the two aforementioned
equations. Due to its ability to capture increased dispersion and nonlinear effects, it proves
suitable for various utilizations. A multi-soliton analysis of Equation (3) was conducted,
and its integrability was assessed using the Painlevé test [25]. Ali et al. [26] utilized the
G′/(bG′ + G + a)-expansion and exp(-ψ(ξ)) procedure to identify analytical solutions for
the equation. Cortez et al. identified Lie symmetries of Equation (3) [27].

The primary goal of this work is to analyze the propagation of waves in the newly for-
mulated (3 + 1)-dimensional Sakovich equation. The structure of this paper is delineated in
the following manner: Section 2 provides an introduction to the GERFM. In Section 3, soli-
tary wave solutions of the investigated equation are presented. Section 4 provides graphical
depictions of diverse analytical solutions. Finally, the Conclusions section encapsulates the
main discoveries of this paper.

2. The Methodology of GERFM

A description of the GERFM approach will be given in this section.
The general form of the NPDE is given as follows [28]:

F(ϕ, ϕx, ϕy, ϕz, ϕt, ϕxx, ϕxt, ...) = 0, (4)

where F is a polynomial of ϕ(x, y, z, t) and its partial derivatives. By utilizing a wave
transformation in the subsequent manner

ϕ(x, y, z, t) = ϕ(ξ), ξ = αx + βy + γz − ωt, (5)

we derive a nonlinear ordinary differential equation (ODE):

Q
(

ϕ, ϕ
′
, ϕ

′′
, ϕ

′′′
, . . .

)
= 0. (6)

We consider the analytical solution of Equation (4):

ϕ(ξ) = ρ0 +
N

∑
n=1

ρnψn(ξ) +
N

∑
n=1

bnψ−n(ξ), (7)

ψ(ξ) =
τ1eς1ξ + τ2eς2ξ

τ3eς3ξ + τ4eς4ξ
, (8)

where τk, ςk(1 ≤ k ≤ 4) exhibit the real (or complex) numbers that are later obtained, and
ρ0, ρn, bn, (1 ≤ n ≤ N). The solution of Equation (7) will hold for Equation (6). The pres-
ence of N is ascertainable within the framework of the balancing principle. Substituting
(7) into Equation (6) and collecting similar terms, we derive the polynomial equation
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A(B1, B2, B3, B4) = 0 in terms of Bi = eςiξ for i = 1, ..., 4. By setting the coefficients of A
to zero, a system of algebraic expressions in τk, ςk(1 ≤ k ≤ 4) and α, β, γ, ω, ρ0, ρn, bn(1 ≤
n ≤ 4) is reached. The solutions to Equation (4) are then determined by evaluating the
derived expressions.

Remark 1. By setting τ1 = τ3 = τ4 = 1, τ2 = ς1 = ς2 = ς3 = 0, ς4 = 1, and βn(n = 1, ..., N)
in Equation (7) and Equation (8), the ERF approach is thus obtained [29].

φ(ξ) =
1

1 + eε
, (9)

ϕ(ξ) = ρ0 +
m

∑
n=1

ρn

(1 + eξ)n . (10)

3. Applications

In this section, the procedures will be applied to the model provided in this section.
By substituting the expression given in Equation (5) into Equation (3), the resulting equation
is obtained:

ϕ′′(−ωα + α2 + β2 + γ2 + αβ + αγ + βγ)
+ϕϕ′′(α2 + 2αβ) + 6α2ϕ2ϕ′′ + 2α2(ϕ′′)2 = 0.

(11)

Here, the balancing number is N = 2. Therefore, the solution will take the following form:

ϕ(ξ) = ρ0 + ρ1ψ(ξ) + ρ2ψ2(ξ) +
b1

ψ(ξ)
+

b2

ψ2(ξ)
, (12)

where ψ(ξ) is exhibited by Equation (8). By substituting Equation (12) into Equation (11)
and gathering all the same terms, these equations are transformed into polynomials of
A(B1, B2, B3, B4) = 0, α, β, γ and ω.

Family 1: Setting

τ1 = i, τ2 = i, τ3 = 1, τ4 = −1,
ς1 = i, ς2 = −i, ς3 = i, ς4 = −i,

(13)

in Equation (8), one acquires

ψ(ξ) =
cos(ξ)
sin(ξ)

, (14)

From the substitution of Equation (14) into Equations (7) and (12), we find an equation
system. Subsequently, we find the solutions of this system utilizing Maple and obtain the
ensuing outcomes:

Case 1.1:
ρ0 = − 17α+2β

12α , ρ1 = 0, ρ2 = −2, b1 = 0,

b2 = 0, ω = 20β2+20αβ+24βγ+87α2+24αγ+24γ2

24α .
(15)

Substituting the values from Equations (14) and (15) into Equation (12) yields the explicit
solution for the investigated equation as follows:

ϕ1,1(ξ) = −17α + 2β

12α
− 2 cos2(ξ)

sin2(ξ)
, (16)

where ξ = αx + βy + γz − 20β2+20αβ+24βγ+87α2+24αγ+24γ2

24α t.
Case 1.2:

ρ0 = − 17α+2β
12α , ρ1 = 0, ρ2 = 0, b1 = 0,

b2 = −2, ω = 20β2+20αβ+24βγ+87α2+24αγ+24γ2

24α .
(17)
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Substituting the values from Equations (14) and (17) into Equation (12) yields the explicit
solution for the investigated equation as follows:

ϕ1,2(ξ) = −17α + 2β

12α
− 2 sin2(ξ)

cos2(ξ)
, (18)

where ξ = αx + βy + γz − 20β2+20αβ+24βγ+87α2+24αγ+24γ2

24α t.
Case 1.3:

ρ0 = − 17α+2β
12α , ρ1 = 0, ρ2 = −2, b1 = 0,

b2 = −2, ω = 20β2+20αβ+24βγ+1047α2+24αγ+24γ2

24α .
(19)

Inserting Equations (14) and (19) into Equation (12), we find the exact solution of Equation (3)
as follows:

ϕ1,3(ξ) = −17α + 2β

12α
− 2 cos2(ξ)

sin2(ξ)
− 2 sin2(ξ)

cos2(ξ)
, (20)

Family 2: Fixing

τ1 = 1, τ2 = 1, τ3 = 1, τ4 = −1,
ς1 = 1, ς2 = −1, ς3 = 1, ς4 = −1,

(21)

in Equation (8), one acquires

ψ(ξ) =
cosh(ξ)
sinh(ξ)

. (22)

From the substitution of Equation (22) into Equations (7) and (12), we find an equation
system. Subsequently, we find the solutions of this system utilizing Maple and obtain the
ensuing outcomes:

Case 2.1:
ρ0 = 15α−2β

12α , ρ1 = 0, ρ2 = −2, b1 = 0,

b2 = −2, ω = 24γ2+1047α2+20αβ+20β2+24αγ+24βγ
24α .

(23)

From the substitution of Equations (22) and (23) into Equation (12), we find the anaytical
solution of the scrutinized equation as follows:

ϕ2,1(ξ) =
15α − 2β

12α
− 2 cosh2(ξ)

sinh2(ξ)
− 2 sinh2(ξ)

cosh2(ξ)
, (24)

where ξ = αx + βy + γz − 24γ2+1047α2+20αβ+20β2+24αγ+24βγ
24α t.

Case 2.2:
ρ0 = 15α−2β

12α , ρ1 = 0, ρ2 = 0, b1 = 0,

b2 = −2, ω = 20β2+20αβ+24βγ+87α2+24αγ+24γ2

24α .
(25)

Substituting Equations (22) and (25) into Equation (12), we find the analytical solution of
Equation (3) as follows:

ϕ2,2(ξ) =
15α − 2β

12α
− 2 sinh2(ξ)

cosh2(ξ)
, (26)

where ξ = αx + βy + γz − 20β2+20αβ+24βγ+87α2+24αγ+24γ2

24α t.
Case 2.3:

ρ0 = 15α−2β
12α , ρ1 = 0, ρ2 = −2, b1 = 0,

b2 = 0, ω = 20β2+20αβ+24βγ+87α2+24αγ+24γ2

24α .
(27)
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From the substitution of Equations (22) and (27) into Equation (12), one finds the analytical
solution of the scrutinized equation as follows:

ϕ2,3(ξ) =
15α − 2β

12α
− 2 cosh2(ξ)

sinh2(ξ)
, (28)

where ξ = αx + βy + γz − 20β2+20αβ+24βγ+87α2+24αγ+24γ2

24α t.
Family 3: Setting

τ1 = 2, τ2 = 3, τ3 = 1, τ4 = 1,
ς1 = 1, ς2 = 0, ς3 = 1, ς4 = 0,

(29)

in Equation (8), one acquires

ψ(ξ) =
3 + 2eξ

1 + eξ
. (30)

From the substitution of Equation (30) into Equations (7) and (12), we find an equation
system. Subsequently, we find the solutions of this system utilizing Maple and obtain the
ensuing results:

Case 3.1:
ρ0 = − 147α+2β

12α , ρ1 = 10, ρ2 = −2, b1 = 0,

b2 = 0, ω = 27α2+20β2+24γ2+24αγ+24βγ+20αβ
24α .

(31)

From the substitution of Equations (30) and (31) into Equation (12), one finds the analytical
solution of the scrutinized equation as follows:

ϕ3,1(ξ) =
9α − 2β − 3α cosh(ξ)− 2β cosh(ξ)

12α(1 + cosh(ξ))
, (32)

where ξ = αx + βy + γz − 27α2+20β2+24γ2+24αγ+24βγ+20αβ
24α t.

Case 3.2:
ρ0 = − 147α+2β

12α , ρ1 = 0, ρ2 = 0, b1 = 60,

b2 = −72, ω = 27α2+20β2+24γ2+24αγ+24βγ+20αβ
24α .

(33)

From the substitution of Equations (30) and (33) into Equation (12), one finds the analytical
solution of the scrutinized equation as follows:

ϕ3,2(ξ) =
sinh(ξ)(10β + 15α)− cosh(ξ)(39α + 26β) + 108α − 24β

12α(12 + 13 cosh(ξ)− 5 sinh(ξ))
, (34)

where ξ = αx + βy + γz − 27α2+20β2+24γ2+24αγ+24βγ+20αβ
24α t.

Family 4: Setting

τ1 = i, τ2 = −i, τ3 = 1, τ4 = 1,
ς1 = i, ς2 = −i, ς3 = i, ς4 = −i,

(35)

in Equation (8), one acquires

ψ(ξ) = − sin(ξ)
cos(ξ)

, (36)

From the substitution of Equation (36) into Equations (7) and (12), one finds an equation
system. Subsequently, we find the solutions of this system utilizing Maple and obtain the
ensuing outcomes:

Case 4.1: Substituting Equations (17) and (36) into Equation (12), one finds the solitary
wave solution of Equation (3), the same as Equation (16).

Case 4.2: Substituting Equations (15) and (36) into Equation (12), one finds the solitary
wave solution of Equation (3), the same as Equation (18).
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Case 4.3: Substituting Equations (19) and (36) into Equation (12), one finds the solitary
wave solution of Equation (3), the same as Equation (20).

Family 5: Setting

τ1 = 3, τ2 = 2, τ3 = 1, τ4 = 1,
ς1 = 1, ς2 = 0, ς3 = 1, ς4 = 0,

(37)

in Equation (8), one acquires

ψ(ξ) = − 1
eξ + 1

. (38)

From the substitution of Equation (38) into Equations (7) and (12), one finds an equation
system. Subsequently, we find the solutions of this system utilizing Maple and obtain the
ensuing results:

Case 5.1:
ρ0 = − 3α+2β

12α , ρ1 = −2, ρ2 = −2, b1 = 0,

b2 = 0, ω = 24βγ+20αβ+27α2+24αγ+20β2+24γ2

24α

(39)

Substituting Equations (38) and (39) into Equation (12), one finds the analytical solution of
the scrutinized equation:

ϕ5,1(ξ) =
9α − 2β − cosh(ξ)(3α + 2β)

12α(1 + cosh(ξ))
, (40)

where ξ = αx + βy + γz − 24βγ+20αβ+27α2+24αγ+20β2+24γ2

24α t.
Family 6: Setting

τ1 = 2 − i, τ2 = 2 + i, τ3 = 1, τ4 = 1,
ς1 = i, ς2 = −i, ς3 = i, ς4 = −i,

(41)

in Equation (8), one acquires

ψ(ξ) =
sin(ξ) + 2 cos(ξ)

cos(ξ)
(42)

From the substitution of Equation (42) into Equations (7) and (12), one finds an equation
system. Subsequently, we find the solutions of this system utilizing Maple and obtain the
ensuing results:

Case 6.1:
ρ0 = − 113α+2β

12α , ρ1 = 8, ρ2 = −2, b1 = 0,

b2 = 0, ω = 24βγ+20αβ+87α2+24αγ+20β2+24γ2

24α

(43)

Substituting Equations (42) and (43) into Equation (12), one finds the analytical solution of
the scrutinized equation:

ϕ6,1(ξ) =
−24α − cos2(ξ)(7α − 2β)

12α cos2(ξ)
, (44)

where ξ = αx + βy + γz − 87α2+20β2+24γ2+20αβ+24βγ+24αγ
24α t.

Case 6.2:
ρ0 = − 113α+2β

12α , ρ1 = 0, ρ2 = 0, b1 = 40,

b2 = −50, ω = 24βγ+20αβ+87α2+24αγ+20β2+24γ2

24α

(45)
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Substituting Equations (42) and (45) into Equation (12), one finds the analytical solution of
the scrutinized equation:

ϕ6,2(ξ) =
− 113α+2β

12α + 40 cos(ε)
sin(ε)+2 cos(ε)

−50
(

cos(ε)
sin(ε)+2 cos(ε)

)2 , (46)

where ξ = αx + βy + γz − 87α2+20β2+24γ2+20αβ+24βγ+24αγ
24α t.

Family 7: Setting

τ1 = 2, τ2 = 1, τ3 = 1, τ4 = 1,
ς1 = 1, ς2 = 0, ς3 = 1, ς4 = 0,

(47)

in Equation (8), one acquires

ψ(ξ) =
2eξ + 1
1 + eξ

(48)

From the substitution of Equation (48) into Equations (7) and (12), one finds an equation
system. Subsequently, we find the solutions of this system utilizing Maple and obtain the
ensuing results as follows:

Case 7.1:
ρ0 = − 51α+2β

12α , ρ1 = 0, ρ2 = 0, b1 = 12,

b2 = −8, ω = 27α2+20β2+24γ2+24αγ+24βγ+20αβ
24α

(49)

When we substitute Equations (48) and (49) into Equation (12), we find the analytical
solution of the scrutinized equation as follows:

ϕ7,1(ξ) = − sinh(ξ)(9α + 6β)(15α + 10β) + 8β − 36α

12α(3 sinh(ξ) + 4 + 5 cosh(ξ))
(50)

Case 7.2:
ρ0 = − 51α+2β

12α , ρ1 = 6, ρ2 = −2, b1 = 0,

b2 = −8, ω = 27α2+20β2+24γ2+24αγ+24βγ+20αβ
24α

(51)

From the substitution of Equations (48) and (51) into Equation (12), one finds the analytical
solution of the scrutinized equation, Equation (40).

4. Graphical Representations

In this section, we will provide visual depictions illustrating the results acquired in
the previous section (Figures 1 and 2).

(a) (b)

Figure 1. Cont.
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(c)

Figure 1. (a) A 3D graph depicting Equation (26). (b) A contour plot depicting Equation (26). (c) A
density plot depicting Equation (26).

(a) (b)

(c)

Figure 2. (a) A 3D graph depicting Equation (32). (b) A contour plot depicting Equation (32). (c) A
density plot depicting Equation (32).

5. Conclusions

The current paper conducted additional investigation on new analytical solutions
to the extended (3 + 1)-dimensional Sakovich equation. In this article, seven different
types of solutions originated via the GERFM. The applied solutions differ from the results
obtained through previously employed methods [25–27]. The physical characteristics of
the generated solutions have been examined through graphical representations. Arbitrary
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parameters are included in the solutions, and different solutions can be built by setting
the parameters to different values. The graphical representations are given by setting
α = β = γ = 1 and y = z = 0. The solutions obtained are inventive and novel, not
previously documented in existing papers, and hold significant value in characterizing
nonlinear physical structures. The Maple software program was employed for simulating
and analyzing the results. It is critical to note that the accuracy of the solutions was
validated through their substitution into the equation.
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