Next Article in Journal
Utilize Fuzzy Delphi and Analytic Network Process to Construct Consumer Product Design Evaluation Indicators
Next Article in Special Issue
Stability Results of Mixed Type Quadratic-Additive Functional Equation in β-Banach Modules by Using Fixed-Point Technique
Previous Article in Journal
Performance Analysis of Picking Path Strategies in Chevron Layout Warehouse
Previous Article in Special Issue
Boundary Value Problem for ψ-Caputo Fractional Differential Equations in Banach Spaces via Densifiability Techniques
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Anticipated Backward Doubly Stochastic Differential Equations with Non-Lipschitz Coefficients

School of Mathematics, Liaoning University, Shenyang 110036, China
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(3), 396; https://doi.org/10.3390/math10030396
Submission received: 8 December 2021 / Revised: 20 January 2022 / Accepted: 25 January 2022 / Published: 27 January 2022
(This article belongs to the Special Issue Nonlinear Equations: Theory, Methods, and Applications II)

Abstract

:
The work presented in this paper focuses on a type of differential equations called anticipated backward doubly stochastic differential equations (ABDSDEs) whose generators not only depend on the anticipated terms of the solution ( Y · , Z · ) but also satisfy one kind of non-Lipschitz assumption. Firstly, we give the existence and uniqueness theorem. Further, two comparison theorems for the solutions of these equations are obtained after finding a new comparison theorem for backward doubly stochastic differential equations (BDSDEs) with non-Lipschitz coefficients.

1. Introduction

In 1990, the pioneer research of Pardoux and Peng [1] proposed the theory of nonlinear backward stochastic differential Equations (BSDEs). Over the past 3 decades, BSDEs have attracted much attention from academia due to its wide application in lots of different fields of research, for example, financial mathematics (see El Karoui et al. [2]), stochastic optimal control, differential games and the theory of partial differential equations. Among others, a lot of effort has been made to relax the Lipschitz assumptions (see, e.g., [3,4,5,6]).
In order to obtain a probabilistic representation for a class of quasilinear stochastic partial differential equations, Pardoux and Peng [7] first presented a class of backward doubly stochastic differential Equations (BDSDEs in short) in the following
Y t = ξ + t T f ( s , Y s , Z s ) d s + t T g ( s , Y s , Z s ) d B s t T Z s d W s , t [ 0 , T ] ,
where the equations include a standard (forward) It o ^ integral d W t , and a backward It o ^ integral d B t . They investigated the existence and uniqueness of solutions for BDSDE (1) under uniform Lipschitz generators. Then Shi et al. [8] gived a comparison theorem for BDSDEs with uniform Lipschitz condition on the generators. Refs. [9,10,11] have attempted to weaken the uniform Lipschitz assumption on the coefficients.
In 2009, Peng and Yang [12] introduced a new class of BSDEs called anticipated BSDEs (ABSDEs), whose generator involves not only the present values of the solutions but also the future situation. The authors proved ABSDEs have a unique solutions under uniform Lipschitz assumptions, obtained a comparison theorem for their solutions under some specific condition, and investigated the duality between anticipated BSDEs and delayed stochastic differential equations. Following the research of Peng and Yang [12], Zhang [13] studied the comparison theorems for one dimensional anticipated BSDEs under one kind of non-Lipschitz assumption. Zhou et al. [14] investigated the existence and uniqueness of this type equations under another non-Lipschitz conditions. Recently, Xu [15] and Zhang [16] introduced the following type of so-called anticipated BDSDES (ABDSDEs):
Y t = ξ T + t T f ( s , Y s , Z s , Y s + δ ( s ) , Z s + ζ ( s ) ) d s + t T g ( s , Y s , Z s , Y s + δ ¯ ( s ) , Z s + ζ ¯ ( s ) ) d B s t T Z s d W s , t [ 0 , T ] , Y t = ξ t , Z t = η t , t [ T , T + K ] ,
where ξ · , η · are given stochastic processes, and δ ( · ) , δ ¯ ( · ) , ζ ( · ) and ζ ¯ ( · ) are four given nonnegative deterministic continuous functions and for γ ( · ) = δ ( · ) , δ ¯ ( · ) , ζ ( · ) , ζ ¯ ( · ) satisfying that:
(A1) there has a constant K 0 such that, for each t [ 0 , T ] , t + γ ( t ) T + K ;
(A2) there has a constant M 0 such that, for each t [ 0 , T ] and for any nonnegative integrable h ( · ) ,
t T h ( s + γ ( s ) ) d s M t T + K h ( s ) d s .
Xu [15] and Zhang [16] explored the existence and uniqueness of the solution for above equation, gave some comparison theorems, and investigated the duality between them and stochastic doubly differential equations with delay. Aidara [17,18] studied anticipated BDSDEs with one kind of non-Lipschitz coefficients, in which generator g does not depend on the anticipated term of y , z . They obtained the existence and uniqueness result and a comparison theorem in the one dimensional case. Recently, Wang and Yu [19] dealt with anticipated generalized backward doubly stochastic differential Equations (AGBDSDEs). Based on [15,16], we are concerned with anticipated BDSDEs under non-Lipschitz assumption. We will prove that under proper assumptions, the solution of the above ABDSDE with non-Lipschitz coefficients exists uniquely, and two comparison theorems are given for the one dimensional ABDSDEs with non-Lipschitz coefficients. These results are the cornerstones of ABDSDEs witn non-Lipschitz coefficients applied to some stochastic optimal control problems with delay effect.
This paper is divided into five sections as follows. In Section 2, some notations, assumptions and definition are given. We focus on the existence and uniqueness of the solutions of anticipated BDSDEs with non-Lipschitz coefficients in Section 3. In Section 4, we give two comparison theorems. Finally in Section 5, the conclusion and future work are presented.

2. Preliminaries

Let ( Ω , F , P ) be a complete probability space. T > 0 , K 0 are two fixed constants. Let { W t ; 0 t T } and { B t ; 0 t T } be two mutually independent standard Brownian motions with values, respectively, in R d and R l . For any x , y R n and z R n × m , we use x , y to denote the inner product of x and y, and y to represent for the vector norm of y and z : = T r ( z z * ) means the matrix norm of z, where z * is the transpose of z. Set N to denote the class of P-null sets of F . For all t [ 0 , T + K ] , we define
F t F 0 , t W F t , T + K B ,
where for each process { ϕ t } , F s , t η = σ { ϕ r ϕ s ; s r t } N . Notice that { F 0 , t W , t [ 0 , T + K ] } is increasing and { F t , T B , t [ 0 , T + K ] } is decreasing, therefor { F t , t [ 0 , T + K ] } do not constitute a filtration. The following notations will be used throughout the paper: for each t 0 , n N and b > a 0 ,
(i)
L 2 ( F t ; R n ) { η : η R n η is a F t -measurable random variable with E | η | 2 < } ;
(ii)
M 2 ( a , b ; R n ) { ϕ : Ω × [ a , b ] R n ϕ is a F t -progressively measurable processes such that ϕ M 2 2 = E ( a b | ϕ t | 2 d t ) < } ;
(iii)
S 2 ( [ a , b ] ; R n ) { ϕ : Ω × [ a , b ] R n ϕ is a continuous and F t - progressively measurable processes such that ϕ S 2 2 = E sup a t b | ϕ t | 2 < .
Let f ( t , · , · , · , · , · ) : Ω × R k × R k × d × M 2 ( t , T + K ; R k ) × M 2 ( t , T + K ; R k × d ) L 2 ( F t ; R k ) , g ( t , · , · , · , · , · ) : Ω × R k × R k × d × M 2 ( t , T + K ; R k ) × M 2 ( t , T + K ; R k × d ) L 2 ( F t ; R k × l ) . We make the following assumptions about ( ξ , f , g ) :
(H1)
f ( . , 0 , 0 , 0 , 0 ) M 2 ( 0 , T ; R k ) , g ( . , 0 , 0 , 0 , 0 ) M 2 ( 0 , T ; R k × l ) .
(H2)
For each t [ 0 , T ] , y , y ¯ R k , z , z ¯ R k × d , θ ( · ) , θ ¯ ( · ) M 2 ( t , T + K ; R k ) , ϑ ( · ) , ϑ ¯ ( · ) M 2 ( t , T + K ; R k × d ) , r , r [ t , T + K ] , we let
| f ( t , y , z , θ ( r ) , ϑ ( r ) ) f ( t , y ¯ , z ¯ , θ ¯ ( r ) , ϑ ¯ ( r ) ) | 2 C ( | y y ¯ | 2 + z z ¯ 2 + E F t [ | θ ( r ) θ ¯ ( r ) | 2 + ϑ ( r ) ϑ ¯ ( r ) 2 ] ) , g ( t , y , z , θ ( r ) , ϑ ( r ) ) g ( t , y ¯ , z ¯ , θ ¯ ( r ) , ϑ ¯ ( r ) ) 2 C ( | y y ¯ | 2 + E F t [ | θ ( r ) θ ¯ ( r ) | 2 ] ) + α 1 z z ¯ 2 + α 2 E F t [ ϑ ( r ) ϑ ¯ ( r ) 2 ] ,
where C > 0 , 0 < α 1 < 1 , 0 < α 1 + α 2 M < 1 are three given constants.
(H3)
For each t [ 0 , T ] , y , y ¯ R k , z , z ¯ R k × d , θ ( · ) , θ ¯ ( · ) M 2 ( t , T + K ; R k ) , ϑ ( · ) , ϑ ¯ ( · ) M 2 ( t , T + K ; R k × d ) , r , r [ t , T + K ] , we let
| f ( t , y , z , θ ( r ) , ϑ ( r ) ) f ( t , y ¯ , z ¯ , θ ¯ ( r ) , ϑ ¯ ( r ) ) | 2 ρ 1 ( t , | y y ¯ | 2 ) + ρ 2 ( r , E F t [ | θ ( r ) θ ¯ ( r ) | 2 ] ) + C ( z z ¯ 2 + E F t [ ϑ ( r ) ϑ ¯ ( r ) 2 ] ) , g ( t , y , z , θ ( r ) , ϑ ( r ) ) g ( t , y ¯ , z ¯ , θ ¯ ( r ) , ϑ ¯ ( r ) ) 2 ρ 1 ( t , | y y ¯ | 2 ) + ρ 2 ( r , E F t [ | θ ( r ) θ ¯ ( r ) | 2 ] ) + α 1 z z ¯ 2 + α 2 E F t [ ϑ ( r ) ϑ ¯ ( r ) 2 ] ,
where C > 0 , 0 < α 1 < 1 , 0 < α 1 + α 2 M < 1 are three given constants and for i = 1 , 2 , ρ i : [ 0 , T + K ] × R + R + satisfies:
  • For fixed t [ 0 , T + K ] , ρ i ( t , . ) is a concave and non-decreasing function such that ρ i ( t , 0 ) = 0 .
  • For fixed u, 0 T + K ρ i ( t , u ) d t < + .
  • For any L > 0 , S 2 > S 1 0 , the following ODE
    u = L ( ρ 1 ( s , u ) + M ρ 2 ( s , u ) ) , u ( S 2 ) = 0
    has a unique solution u ( s ) 0 , s [ S 1 , S 2 ] .
(H4)
( ξ · , η · ) S 2 ( [ T , T + K ] ; R k ) × M 2 ( T , T + K ; R k × d ) .
Remark 1.
1
It’s easy to check that ρ 1 ( t , u ) = ρ 2 ( t , u ) = C u for C > 0 is an example of the function ρ 1 and ρ 2 , and in this case the assumption (H3) degenerates to the assumption (H2).
2
If for i = 1 , 2 , ρ i ( t , u ) has a linear growth that is ρ i ( t , u ) a i ( t ) + b i ( t ) u where a i ( t ) 0 , b i ( t ) 0 , with 0 T + K a i ( t ) d t < a n d 0 T + K b i ( t ) d t < , it’s easy to check that ρ i ( t , u ) satisfies assumption (H3). Similar assumptions were used in [3,4,5,6,9,11,14].
3
Similar non-Lipschitz assumption was also used in [14] when g 0 in the following form:
| f ( t , y , z , θ ( r ) , ϑ ( r ) ) f ( t , y ¯ , z ¯ , θ ¯ ( r ) , ϑ ¯ ( r ) ) | 2 ρ ( t , | y y ¯ | 2 ) + ρ ( r , E F t [ | θ ( r ) θ ¯ ( r ) | 2 ] ) + C ( z z ¯ 2 + E F t [ ϑ ( r ) ϑ ¯ ( r ) 2 ] ) .
Definition 1.
A pair of processes ( Y · , Z · ) : Ω × [ 0 , T + K ] R k × R k × d is a solution of ABDSDE (2) with non-Lipschitz coefficients, if ( Y · , Z · ) S 2 ( [ 0 , T + K ] , R k ) × M 2 ( 0 , T + K , R k × d ) and satisfies (2) and assumptions (H1), (H3) and (H4).

3. Existence and Uniqueness Theorem

We can obtain directly the following existence and uniqueness result for ABDSDEs with uniform Lipschitz condition through combing the results given by Xu [15] and Zhang [16].
Lemma 1.
Let (H1), (H2) and (H4) hold. Then there exists a unique solution ( Y · , Z · ) S 2 ( [ 0 , T + K ] , R k ) × M 2 ( 0 , T + K , R k × d ) of ADDSDE (2).
According to Lemma 1, we can construct the Picard-type iteration sequence of Equation (2) as follows:
Y t 0 = 0 , Y t n = ξ T + t T f ( s , Y s n 1 , Z s n , Y s + δ ( s ) n 1 , Z s + ζ ( s ) n ) d s + t T g ( s , Y s n 1 , Z s n , Y s + δ ¯ ( s ) n 1 , Z s + ζ ¯ ( s ) n ) d B s t T Z s n d W s , t [ 0 , T ] , Y t n = ξ t , Z t n = η t , t [ T , T + K ] .
In fact, for any Y · n 1 S 2 ( [ 0 , T + K ] , R k ) , according to Lemma 1, the ABDSDE (3) admits a unique solution ( Y · n , Z · n ) S 2 ( [ 0 , T + K ] , R k ) × M 2 ( 0 , T + K , R k × d ) . We want to find the unique solution of ABDSDEs (2) through proving that the sequence ( Y · n , Z · n ) n 0 converges in S 2 ( [ 0 , T + K ] , R k ) × M 2 ( 0 , T + K , R k × d ) . In order to achieve this goal, we need the following two lemmas.
Lemma 2.
Assume (A1), (A2), (H1), (H3) and (H4). Then, for any 0 t T , n , m 1 , we get
E | Y t n + m Y t n | 2 e C ( M + 1 ) T 1 α 1 α 2 M 1 α 1 α 2 M C ( M + 1 ) + 1 ( t T ρ 1 ( s , E [ | Y s n + m 1 Y s n 1 | 2 ] ) d s + M t T ρ 2 ( s , E [ | Y s n + m 1 Y s n 1 | 2 ] ) d s ) .
Proof. 
In view of It o ^ ’s formula, we have
E | Y t n + m Y t n | 2 + E t T Z s n + m Z s n 2 d s = 2 E t T Y s n + m Y s n , f ( s , Y s n + m 1 , Z s n + m , Y s + δ ( s ) n + m 1 , Z s + ζ ( s ) n + m ) f ( s , Y s n 1 , Z s n , Y s + δ ( s ) n 1 , Z s + ζ ( s ) n ) d s + E t T g ( s , Y s n + m 1 , Z s n + m , Y s + δ ¯ ( s ) n + m 1 , Z s + ζ ¯ ( s ) n + m ) g ( s , Y s n 1 , Z s n , Y s + δ ¯ ( s ) n 1 , Z s + ζ ¯ ( s ) n ) 2 d s .
By the assumptions (H3), (A1), (A2), Young’s inequality 2 a b 1 θ a 2 + θ b 2 , and Jensen’s inequality, for all θ > 0 , we get
E | Y t n + m Y t n | 2 + E t T Z t n + m Z t n 2 d s 1 θ E t T | Y t n + m Y s n | 2 d s + ( θ + 1 ) t T ρ 1 ( s , E [ | Y s n + m 1 Y s n 1 | 2 ] ) d s + ( θ + 1 ) M t T ρ 2 ( s , E [ | Y s n + m 1 Y s n 1 | 2 ] ) d s + ( θ C ( M + 1 ) + α 1 + α 2 M ) E t T Z s n + m Z s n 2 d s .
Choosing θ = 1 α 1 α 2 M C ( M + 1 ) > 0 , it follows from Gronwall’s inequality that
E | Y t n + m Y t n | 2 e C ( M + 1 ) T 1 α 1 α 2 M 1 α 1 α 2 M C ( M + 1 ) + 1 ( t T ρ 1 ( s , E [ | Y s n + m 1 Y s n 1 | 2 ] ) d s + M t T ρ 2 ( s , E [ | Y s n + m 1 Y s n 1 | 2 ] ) d s ) .
Lemma 3.
Assume that (A1), (A2), (H1), (H3) and (H4) hold. Then, there exists T 1 [ 0 , T ] and a constant L 1 0 such that for any t [ T 1 , T ] , n 1 , E | Y t n | 2 L 1 .
Proof. 
By applying It o ^ ’s formula, we get
E | Y t n | 2 + E t T Z s n 2 d s = E | ξ | 2 + 2 E t T Y s n , f ( s , Y s n 1 , Z s n , Y s + δ ( s ) n 1 , Z s + ζ ( s ) n ) d s + E t T g ( s , Y s n 1 , Z s n , Y s + δ ¯ ( s ) n 1 , Z s + ζ ¯ ( s ) n ) 2 d s .
From (H3), (A1), (A2) and Young’s inequality 2 a b 1 θ a 2 + θ b 2 , for each θ > 0 , we have
2 Y s n , f ( s , Y s n 1 , Z s n , Y s + δ ( s ) n 1 , Z s + ζ ( s ) n ) 1 θ | Y s n | 2 + θ | f ( s , Y s n 1 , Z s n , Y s + δ ( s ) n 1 , Z s + ζ ( s ) n ) | 2 1 θ | Y s n | 2 + 2 θ ( ρ 1 ( s , | Y s n 1 | 2 ) + ρ 2 ( s + δ ( s ) , E F s [ | Y s + δ ( s ) n 1 | 2 ] ) ) + 2 θ C ( Z s n 2 + E F s [ Z s + ζ ( s ) n ] ) + 2 θ | f ( s , 0 , 0 , 0 , 0 ) | 2 , g ( s , Y s n 1 , Z s n , Y s + δ ¯ ( s ) n 1 , Z s + ζ ¯ ( s ) n ) 2 ( 1 + θ ) ( ρ 1 ( s , | Y s n 1 | 2 ) + ρ 2 ( s + δ ¯ ( s ) , E F s [ | Y s + δ ¯ ( s ) n 1 | 2 ] ) ) + ( 1 + θ ) α 1 Z s n 2 + ( 1 + θ ) α 2 E F s [ Z s + ζ ¯ ( s ) n 2 ] ) + 1 + 1 θ g ( s , 0 , 0 , 0 , 0 ) 2 .
Therefore,
E | Y t n | 2 + ( 1 2 θ C ( 1 + M ) ( 1 + θ ) ( α 1 + α 2 M ) ) E t T Z s n 2 d s E | ξ | 2 + 1 θ E t T | Y s n | 2 d s + ( 3 θ + 1 ) t T ( ρ 1 ( s , E | Y s n 1 | 2 ) + M ρ 2 ( s , E | Y s n 1 | 2 ) ) d s + ( 3 θ + 1 ) M T T + K ρ 2 ( s , E | ξ s | 2 ) d s + ( 2 θ C M + ( 1 + θ ) α 2 ) M E T T + K η s 2 d s + E t T ( 2 θ | f ( s , 0 , 0 , 0 , 0 ) | 2 + 1 + 1 θ g ( s , 0 , 0 , 0 , 0 ) 2 ) d s .
We choose θ = 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M > 0 , then
E | Y t n | 2 E | ξ | 2 + 2 C ( 1 + M ) + α 1 + α 2 M 1 α 1 α 2 M E t T | Y s n | 2 d s + 3 + 2 C ( 1 + M ) 2 ( α 1 + α 2 M ) 2 C ( 1 + M ) + α 1 + α 2 M t T ( ρ 1 ( s , E | Y s n 1 | 2 ) + M ρ 2 ( s , E | Y s n 1 | 2 ) ) d s + 3 + 2 C ( 1 + M ) 2 ( α 1 + α 2 M ) 2 C ( 1 + M ) + α 1 + α 2 M M T T + K ρ 2 ( s , E | ξ s | 2 ) d s + ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M C M + 2 C ( 1 + M ) + 1 2 C ( 1 + M ) + α 1 + α 2 M α 2 ) E T T + K η s 2 d s + E t T ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M | f ( s , 0 , 0 , 0 , 0 ) | 2 + 2 C ( 1 + M ) + 1 1 α 1 α 2 M g ( s , 0 , 0 , 0 , 0 ) 2 ) d s .
Now, in view of Gronwall’s inequality, we derive
E | Y t n | 2 δ t + L t T ( ρ 1 ( s , E | Y s n 1 | 2 ) + M ρ 2 ( s , E | Y s n 1 | 2 ) ) d s ,
where
δ t 1 = e 2 C ( 1 + M ) + α 1 + α 2 M 1 α 1 α 2 M T ( E | ξ | 2 + 1 + 3 + 2 C ( 1 + M ) 2 ( α 1 + α 2 M ) 2 C ( 1 + M ) + α 1 + α 2 M M T T + K ρ 2 ( s , E | ξ s | 2 ) d s + ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M C M + 2 C ( 1 + M ) + 1 2 C ( 1 + M ) + α 1 + α 2 M α 2 ) E T T + K η s 2 d s + E t T ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M | f ( s , 0 , 0 , 0 , 0 ) | 2 + 2 C ( 1 + M ) + 1 1 α 1 α 2 M g ( s , 0 , 0 , 0 , 0 ) 2 ) d s ) ,
and
L = 3 + 2 C ( 1 + M ) 2 ( α 1 + α 2 M ) 2 C ( 1 + M ) + α 1 + α 2 M e 2 C ( 1 + M ) + α 1 + α 2 M 1 α 1 α 2 M T > 0 .
Let
L 1 = 2 δ 0 1 = e 2 C ( 1 + M ) + α 1 + α 2 M 1 α 1 α 2 M T ( E | ξ | 2 + 1 + 3 + 2 C ( 1 + M ) 2 ( α 1 + α 2 M ) 2 C ( 1 + M ) + α 1 + α 2 M M T T + K ρ 2 ( s , E | ξ s | 2 ) d s + ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M C M + 2 C ( 1 + M ) + 1 2 C ( 1 + M ) + α 1 + α 2 M α 2 ) E T T + K η s 2 d s + E 0 T ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M | f ( s , 0 , 0 , 0 , 0 ) | 2 + 2 C ( 1 + M ) + 1 1 α 1 α 2 M g ( s , 0 , 0 , 0 , 0 ) 2 ) d s ) ,
By virtue of (H3),
0 T ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) d s < ,
so we can find T 1 such that
T 1 T ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) d s δ 0 1 L .
Indeed, if 0 T ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) d s δ 0 1 M , then we choose T 1 = 0 . If
0 T ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) d s > δ 0 1 L ,
since t t T ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) d s is continuous, there exists T 1 [ 0 , T ] such that
T 1 T ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) d s = δ 0 1 L .
Consequently, for any t [ T 1 , T ] , from Equation (4) and ρ i ( t , . ) is increasing, we get
E | Y t 1 | 2 δ t 1 2 δ 0 1 = L 1 , E | Y t 2 | 2 δ t 1 + L t T ( ρ 1 ( s , E | Y s 1 | 2 ) + M ρ 2 ( s , E | Y s 1 | 2 ) ) d s δ 0 1 + L t T ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) d s 2 μ 0 1 = L 1 , E | Y t 3 | 2 δ t 1 + L t T ( ρ 1 ( s , E | Y s 2 | 2 ) + M ρ 2 ( s , E | Y s 2 | 2 ) ) d s δ 0 1 + L t T ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) d s 2 μ 0 1 = L 1 .
By induction, for all n 1 , t [ T 1 , T ] ,
E | Y t n | 2 L 1 .
With the help of Lemmas 1 and 2, we can establish the existence and uniqueness theorem in the following.
Theorem 1.
Under (A1), (A2), (H1), (H3) and (H4). Then, ADDSDE (2) has a unique solution ( Y · , Z · ) S 2 ( [ 0 , T + K ] , R k ) × M 2 ( 0 , T + K , R k × d ) .
Proof. 
Existence. For any n 1 , and t [ 0 , T ] , we set
φ 0 ( t ) = L t T ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) ) d s , φ n + 1 ( t ) = L t T ( ρ 1 ( s , φ n ( s ) ) + M ρ 2 ( s , φ n ( s ) ) ) d s .
Obviously, for all t [ T 1 , T ] , we have
φ 0 ( t ) = L t T ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) ) d s L 1 , φ 1 ( t ) = L t T ( ρ 1 ( s , φ 0 ( s ) ) + M ρ 2 ( s , φ 0 ( s ) ) ) d s L t T ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) ) d s = φ 0 ( t ) L 1 , φ 2 ( t ) = L t T ( ρ 1 ( s , φ 1 ( s ) ) + M ρ 2 ( s , φ 1 ( s ) ) ) d s L t T ( ρ 1 ( s , φ 0 ( s ) ) + M ρ 2 ( s , φ 0 ( s ) ) ) d s = φ 1 ( t ) L 1 .
Through induction, we get φ n ( t ) satisfies
0 φ n + 1 ( t ) φ n ( t ) φ 1 ( t ) φ 0 ( t ) L 1
for any n 1 , t [ T 1 , T ] . Further, for any n 1 , t , t [ T 1 , T ] , we have
| φ n ( t ) φ n ( t ) | = L t t t t ( ρ 1 ( s , φ n 1 ( s ) ) + M ρ 2 ( s , φ n 1 ( s ) ) ) d s L t t t t ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) ) d s .
Since t t T ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) ) d s is a continuous mapping, we can obtain
sup n | φ n ( t ) φ n ( t ) | 0 a s | t t | 0 .
Consequently, { φ n ( t ) } n 1 is an equicontinuous family of function on [ T 1 , T ] and decreasing. Thus, by the Ascoli–Arzela theorem, { φ n ( t ) } n 1 converges to a limit φ ( t ) , as n 0 , satisfying
φ ( t ) = L t T ( ρ 1 ( s , φ ( s ) ) + M ρ 2 ( s , φ ( s ) ) ) d s .
From (H3), it follows that φ ( t ) = 0 , t [ T 1 , T ] .
According to Lemmas 2 and 3, the definition of { φ n ( t ) } n 1 , and the fact that
e C ( M + 1 ) T 1 α 1 α 2 M 1 α 1 α 2 M C ( M + 1 ) + 1 L ,
for any t [ T 1 , T ] , n , m 1 , we get
E | Y t 1 , 1 + m Y t 1 , 1 | 2 e C ( M + 1 ) T 1 α 1 α 2 M 1 α 1 α 2 M C ( M + 1 ) + 1 t T ( ρ 1 ( s , E [ | Y s 1 , m | 2 ] ) + M ρ 2 ( s , E [ | Y s 1 , m | 2 ] ) ) d s L t T ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) ) d s = φ 0 ( t ) L 1 , E | Y t 1 , 2 + m Y t 1 , 2 | 2 e C ( M + 1 ) T 1 α 1 α 2 M 1 α 1 α 2 M C ( M + 1 ) + 1 t T ( ρ 1 ( s , E [ | Y s 1 , 1 + m Y s 1 , 1 | 2 ] ) + M ρ 2 ( s , E [ | Y s 1 , 1 + m Y s 1 , 1 | 2 ] ) ) d s L t T ( ρ 1 ( s , φ 0 ( s ) ) + M ρ 2 ( s , φ 0 ( s ) ) ) d s = φ 1 ( t ) L 1 .
Through induction, we can give that
E | Y t 1 , n + m Y t 1 , n | 2 φ n 1 ( t ) L 1 .
Notice that φ n ( t ) 0 for any t [ T 1 , T ] , as n , thus we can know that { Y · 1 , n } is a Cauchy sequence in M 2 ( T 1 , T + K ; R k ) . Consequently, it is simple to check that { Z · 1 , n } is also a Cauchy sequence in M 2 ( T 1 , T + K ; R k × d ) . Let Y · 1 = lim n + Y · 1 , n , Z · 1 = lim n + Z · 1 , n , we obtain
Y t 1 = ξ + t T f ( s , Y s 1 , Z s , Y s + δ ( s ) 1 , Z s + ζ ( s ) 1 ) d s + t T g ( s , Y s 1 , Z s 1 , Y s + δ ¯ ( s ) 1 , Z s + ζ ¯ ( s ) 1 ) d B s t T Z s 1 d W s , t [ T 1 , T ] , Y t 1 = ξ t , Z t 1 = η t , t [ T , T + K ] .
Applying It o ^ ’s formula, and using the assumptions (A1), (A2), (H3) and (H4), Young’s inequality, Lemma 3 and Burkholder–Davis–Gundy’s inequality, we can derive the limit ( Y · 1 , Z · 1 ) S 2 ( [ T 1 , T + K ] ; R k ) × M 2 ( T 1 , T + K ; R k × d ) .
Therefore, we have proved the existence of the solution to ABDSDE (2) on [ T 1 , T ] . If T 1 = 0 , then the existence is obtained.
If T 1 0 , we will consider the following equation
Y t 2 = Y T 1 1 + t T f ( s , Y s 2 , Z s 2 , Y s + δ ( s ) 2 , Z s + ζ ( s ) 2 ) d s + t T g ( s , Y s 2 , Z s 2 , Y s + δ ¯ ( s ) 2 , Z s + ζ ¯ ( s ) 2 ) d B s t T Z s 2 d W s , t [ 0 , T 1 ] , Y t 2 = Y t 1 , Z t 2 = Z t 1 , t [ T 1 , T + K ] .
Let us introduce the approximate sequence which is similar to (3) for Equation (7). Through the similar process as in Lemmas 2 and 3, for each t [ 0 , T 1 ] , n , m 1 , we can prove that
E | Y t 2 , n + m Y t 2 , n | 2 e C ( M + 1 ) T 1 α 1 α 2 M 1 α 1 α 2 M C ( M + 1 ) + 1 t T 1 ( ρ 1 ( s , E [ | Y s 2 , n + m 1 Y s 2 , n 1 | 2 ] ) + M ρ 2 ( s , E [ | Y s 2 , n + m 1 Y s 2 , n 1 | 2 ] ) ) d s .
E | Y t 2 , n | 2 δ t 2 + L t T ( ρ 1 ( s , E | Y s 2 , n 1 | 2 ) + M ρ 2 ( s , E | Y s 2 , n 1 | 2 ) ) d s ,
where
δ t 2 = e 2 C ( 1 + M ) + α 1 + α 2 M 1 α 1 α 2 M T ( E | Y T 1 1 | 2 + 1 + 3 + 2 C ( 1 + M ) 2 ( α 1 + α 2 M ) 2 C ( 1 + M ) + α 1 + α 2 M M T 1 T + K ρ 2 ( s , E | Y s 1 | 2 ) d s + ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M C M + 2 C ( 1 + M ) + 1 2 C ( 1 + M ) + α 1 + α 2 M α 2 ) E T 1 T + K | Z s 1 | 2 d s + E t T ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M | f ( s , 0 , 0 , 0 , 0 ) | 2 + 2 C ( 1 + M ) + 1 1 α 1 α 2 M g ( s , 0 , 0 , 0 , 0 ) 2 ) d s ) ,
and
L = 3 + 2 C ( 1 + M ) 2 ( α 1 + α 2 M ) 2 C ( 1 + M ) + α 1 + α 2 M e 2 C ( 1 + M ) + α 1 + α 2 M 1 α 1 α 2 M T > 0 .
Let
L 2 = 2 δ 0 2 = 2 e 2 C ( 1 + M ) + α 1 + α 2 M 1 α 1 α 2 M T ( E | Y T 1 1 | 2 + 1 + 3 + 2 C ( 1 + M ) 2 ( α 1 + α 2 M ) 2 C ( 1 + M ) + α 1 + α 2 M M T 1 T + K ρ 2 ( s , E | Y s 1 | 2 ) d s + ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M C M + 2 C ( 1 + M ) + 1 2 C ( 1 + M ) + α 1 + α 2 M α 2 ) E T 1 T + K | Z s 1 | 2 d s + E 0 T ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M | f ( s , 0 , 0 , 0 , 0 ) | 2 + 2 C ( 1 + M ) + 1 1 α 1 α 2 M g ( s , 0 , 0 , 0 , 0 ) 2 ) d s ) .
There exists T 2 [ 0 , T 1 [ with
E | Y t 2 , n | 2 L 2 , n 1 , t [ T 2 , T 1 ] ,
where T 2 = 0 or T 2 ] 0 , T 1 [ with T 2 T 1 ( ρ 1 ( s , L 1 ) + M ρ 2 ( s , L 1 ) d s = δ 0 2 M . As proved above, ABDSDE (7) admits a solution on [ T 2 , T + K ] . If T 2 = 0 , the existence proof is complete. Otherwise, we can find a sequence { T p , δ t p , L p , p 1 } defined as
0 T p < T p 1 < < T 1 < T 0 = T ,
δ t p = e 2 C ( 1 + M ) + α 1 + α 2 M 1 α 1 α 2 M T ( E | Y T p 1 p 1 | 2 + 1 + 3 + 2 C ( 1 + M ) 2 ( α 1 + α 2 M ) 2 C ( 1 + M ) + α 1 + α 2 M M T p 1 T + K ρ 2 ( s , E | Y s p 1 | 2 ) d s + ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M C M + 2 C ( 1 + M ) + 1 2 C ( 1 + M ) + α 1 + α 2 M α 2 ) E T p 1 T + K | Z s p 1 | 2 d s + E t T ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M | f ( s , 0 , 0 , 0 , 0 ) | 2 + 2 C ( 1 + M ) + 1 1 α 1 α 2 M g ( s , 0 , 0 , 0 , 0 ) 2 ) d s ) ,
L p = 2 δ 0 p = 2 e 2 C ( 1 + M ) + α 1 + α 2 M 1 α 1 α 2 M T ( E | Y T p 1 p 1 | 2 + 1 + 3 + 2 C ( 1 + M ) 2 ( α 1 + α 2 M ) 2 C ( 1 + M ) + α 1 + α 2 M M T p 1 T + K ρ 2 ( s , E | Y s p 1 | 2 ) d s + ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M C M + 2 C ( 1 + M ) + 1 2 C ( 1 + M ) + α 1 + α 2 M α 2 ) E T p 1 T + K | Z s p 1 | 2 d s + E 0 T ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M | f ( s , 0 , 0 , 0 , 0 ) | 2 + 2 C ( 1 + M ) + 1 1 α 1 α 2 M g ( s , 0 , 0 , 0 , 0 ) 2 ) d s ) ,
and
T p T p 1 ( ρ 1 ( s , L p ) + M ρ 2 ( s , L p ) d s δ 0 p L
through repeating the above procedure. Therefore, we can derive a solution to ABDSDE (2) on [ T p , T + K ] through iteration method. In the following, we will check there exists a finite number p 1 with T p = 0 . Denote
A = 2 e 2 C ( 1 + M ) + α 1 + α 2 M 1 α 1 α 2 M T ( 1 + E 0 T ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M | f ( s , 0 , 0 , 0 , 0 ) | 2 + 2 C ( 1 + M ) + 1 1 α 1 α 2 M g ( s , 0 , 0 , 0 , 0 ) 2 ) d s ) .
Then, in view of (H1),
L p = 2 e 2 C ( 1 + M ) + α 1 + α 2 M 1 α 1 α 2 M T ( E | Y T p 1 p 1 | 2 + 3 + 2 C ( 1 + M ) 2 ( α 1 + α 2 M ) 2 C ( 1 + M ) + α 1 + α 2 M M T p 1 T + K ρ 2 ( s , E | Y s p 1 | 2 ) d s + ( 2 1 α 1 α 2 M 2 C ( 1 + M ) + α 1 + α 2 M C M + 2 C ( 1 + M ) + 1 2 C ( 1 + M ) + α 1 + α 2 M α 2 ) E T p 1 T + K | Z s p 1 | 2 d s ) + A A > 0 , for all p 1 .
For any p 1 , since sup T p t T + K E | Y t p | 2 < , L p is finite. So, we have
0 < A L p 1 , for any p 1 .
Since for i = 1 , 2 , ρ i ( t , . ) is a concave function, ρ i ( t , 0 ) = 0 while t [ 0 , T ] , we get
ρ i ( t , λ x ) λ ρ i ( t , x ) , for all any λ [ 0 , 1 ] and any x R + .
By the inequality (8), we have
ρ i ( t , A ) = ρ i t , A L p L p A L p ρ i ( t , L p ) , for each p 1 .
Therefore, for each p 1 , we can derive that
T p T ( ρ 1 ( s , A ) + M ρ 2 ( s , A ) ) d s = i = 1 p T i T i 1 ( ρ 1 ( s , A ) + M ρ 2 ( s , A ) ) d s i = 1 p A L i T i T i 1 ( ρ 1 ( s , L i ) + M ρ 2 ( s , L i ) ) d s i = 1 p A L i δ 0 i L .
By definition, δ 0 i L i = 1 2 , for any i 1 . So, for any p 1 ,
T p T ( ρ 1 ( s , A ) + M ρ 2 ( s , A ) ) d s p A 2 L .
Notice that A > 0 , the right side of inequality (9) tends to + while p + . Consequently, as 0 T ( ρ 1 ( s , A ) + M ρ 2 ( s , A ) ) d s is finite, so we can obtain a sufficient large p such that
T p T ( ρ 1 ( s , A ) + M ρ 2 ( s , A ) ) d s 0 T ( ρ 1 ( s , A ) + M ρ 2 ( s , A ) ) d s .
Therefore, there is a finite p with T p = 0 , and we assert the existence of solution on [ 0 , T + K ] .
Uniqueness. Set ( Y · , Z · ) , ( Y · , Z · ) S 2 ( [ 0 , T + K ] ; R k ) × M 2 ( 0 , T + K ; R k × d ) be the two solutions of ABDSDE (2). Let β > 0 . Applying the It o ^ ’s formula yields
E | Y t Y t | 2 e β t + β E t T | Y s Y s | 2 e β s d s + E t T Z s Z s 2 e β s d s = 2 E t T Y s Y s , f ( s , Y s , Z s , Y s + δ ( s ) , Z s + ζ ( s ) ) f ( s , Y s , Z s , Y s + δ ( s ) , Z s + ζ ( s ) ) e β s d s + E t T g ( s , Y s , Z s , Y s + δ ¯ ( s ) , Z s + ζ ¯ ( s ) ) g ( s , Y s , Z s , Y s + δ ¯ ( s ) , Z s + ζ ¯ ( s ) ) 2 e β s d s .
By the assumptions (A1), (A2), (H3), Young’s inequality 2 a b 1 β a 2 + β b 2 , and Jensen’s inequality, we have
E | Y t Y t | 2 e β t + ( 1 1 β C ( M + 1 ) α 1 α 2 M ) E t T Z s Z s 2 e β s d s ( 1 β + 1 ) t T ( ρ 1 ( s , E [ | Y s Y s | 2 ] ) + M ρ 2 ( s , E [ | Y s Y s | 2 ] ) ) e β s d s .
Choosing β > C ( M + 1 ) 1 α 1 α 2 M > 0 , we get
E | Y t Y t | 2 + ( 1 1 β C ( M + 1 ) α 1 α 2 M ) E t T Z s Z s 2 d s ( 1 β + 1 ) e β T t T ( ρ 1 ( s , E [ | Y s Y s | 2 ] ) + M ρ 2 ( s , E [ | Y s Y s | 2 ] ) ) d s .
Therefore
E | Y t Y t | 2 1 β + 1 e β T t T ( ρ 1 ( s , E [ | Y s Y s | 2 ] ) + M ρ 2 ( s , E [ | Y s Y s | 2 ] ) ) d s .
From the comparison Theorem for ODE, we can obtain
E | Y t Y t | 2 γ ( t ) , for any t [ 0 , T ] ,
where γ ( t ) is the maximum left shift solution of the following equation:
u = ( 1 β + 1 ) e β T ( ρ 1 ( t , u ) + M ρ 2 ( t , u ) ) ; u ( T ) = 0 .
According to the assumption (H3), we have γ ( t ) = 0 , t [ 0 , T ] . So E | Y t Y t | 2 = 0 , t [ 0 , T ] , this means Y t = Y t , a.s. for all t [ 0 , T ] . It immediately derives from (10) that Z t = Z t , a.s., for each t [ 0 , T ] . □

4. Comparison Theorems

In this part, we mainly focus on one dimensional ABDSDEs, that is, k = 1 . Firstly, we propose one comparison theorem for BDSDEs under non-Lipschitz coefficients, which acts as a starting point for the following investigation. For i = 1 , 2 , assume that ξ i L 2 ( F T ; R ) and f i ( t , y , z ) : [ 0 , T ] × Ω × R × R d R satisfies (H1) and (H3). Then, the following BDSDE:
Y t i = ξ i + t T f i ( s , Y s i , Z s i ) d s + t T g i ( s , Y s i , Z s i ) d B s t T Z s i d W s , t [ 0 , T ] ,
has a unique solution ( Y · i , Z · i ) S 2 ( [ 0 , T ] ; R ) × M 2 ( 0 , T ; R d ) for i = 1 , 2 , according to Theorem 3.4 in [10]. We can assert the following comparison theorem.
Lemma 4.
Let ( Y · 1 , Z · 1 ) and ( Y · 2 , Z · 2 ) be solutions of BDSDEs (11), respectively. Assume that (1) ξ t 1 ξ t 2 , a . s . ; (2) f 1 ( t , Y t 1 , Z t 1 ) f 2 ( t , Y t 1 , Y t 1 ) o r f 1 ( t , Y t 2 , Z t 2 ) f 2 ( t , Y t 2 , Y t 2 ) , a . s . , f o r a l l   t [ 0 , T ] ; (3) g 1 ( t , Y t 1 , Z t 1 ) = g 2 ( t , Y t 1 , Y t 1 ) o r g 1 ( t , Y t 2 , Z t 2 ) = g 2 ( t , Y t 2 , Y t 2 ) , a . s . , f o r a l l t [ 0 , T ] . Then Y t 1 Y t 2 , a . s . , f o r a n y t [ 0 , T ] .
Proof. 
Let
Y ^ t = Y t 2 Y t 1 , Z ^ t = Z t 2 Z t 1 , ξ ^ = ξ 2 ξ 1 . f ^ t = f 2 ( t , Y t 2 , Z t 2 ) f 1 ( t , Y t 1 , Z t 1 ) , g ^ t = g 2 ( t , Y t 2 , Z t 2 ) g 1 ( t , Y t 1 , Z t 1 ) .
In view of It o ^ -Meyer’s formula and ξ 1 ξ 2 , a.s., we have
E | Y ^ t + | 2 + E t T 1 { Y ^ s 0 } | Z ^ s | 2 d s = 2 E t T Y ^ s + f ^ s d s + E t T 1 { Y ^ s 0 } | g ^ s | 2 d s .
By the assumption (H3), Young’s inequality 2 a b 1 θ a 2 + θ b 2 , and Jensen’s inequality, for each θ > 0 , we get
2 E t T Y ^ s + f ^ s d s 2 E t T Y ^ s + ( f 2 ( s , Y s 2 , Z s 2 ) f 2 ( t , Y s 1 , Z s 1 ) ) d s 2 C 1 α 1 E t T | Y ^ s + | 2 d s + 1 α 1 2 C t T 1 { Y ^ s 0 } | f 2 ( s , Y s 2 , Z s 2 ) f 2 ( t , Y s 1 , Z s 1 ) | 2 d s 2 C 1 α 1 E t T | Y ^ s + | 2 d s + 1 α 1 2 C t T ρ 1 ( s , E [ | Y ^ s + | 2 ] ) d s + 1 α 1 2 E t T 1 { Y ^ s 0 } | Z ^ s | 2 d s ,
and
E t T 1 { Y ^ s 0 } | g ^ s | 2 d s = E t T 1 { Y ^ s 0 } | g 1 ( s , Y s 2 , Z s 2 ) g 1 ( t , Y s 1 , Z s 1 ) | 2 d s t T ρ 1 ( s , E [ | Y ^ s + | 2 ] ) d s + α 1 E t T 1 { Y ^ s 0 } | Z ^ s | 2 d s .
Then, thanks to the above inequalities, we obtain
E | Y ^ t + | 2 2 C 1 α 1 E t T | Y ^ s + | 2 d s + ( 1 α 1 2 C + 1 ) t T ρ 1 ( s , E [ | Y ^ s + | 2 ] ) d s .
From the Gronwall’s inequality, we have
E | Y ^ t + | 2 e 2 C 1 α 1 ( 1 α 1 2 C + 1 ) t T ρ 1 ( s , E [ | Y ^ s + | 2 ] ) d s .
Using the same proof method about the uniqueness in Theorem 1, we can obtain
E | Y ^ t + | 2 = 0 , f o r a l l t [ 0 , T ] .
Hence
Y t 1 Y t 2 , a . s . , f o r a n y t [ 0 , T ] .
For i = 1 , 2 , we first study a comparison theorem of anticipated BDSDEs of the following generalized version:
Y t i = ξ T i + t T f i ( s , Y s i , Z s i , Y s + δ i ( s ) i , Z s + ζ i ( s ) i ) d s + t T g i ( s , Y s i , Z s i , Y s + δ ¯ i ( s ) i , Z s + ζ ¯ i ( s ) i ) d B s t T Z s i d W s , t [ 0 , T ] , Y t i = ξ t i , Z t i = η t i , t [ T , T + K ] .
Let us assume that δ i ( · ) , δ ¯ i ( · ) , ζ i ( · ) , ζ ¯ i ( · ) satisfies (A1) and (A2), ξ · i S 2 ( [ T , T + K ] ; R ) , η · i M 2 ( T , T + K ; R d ) , and ( f i , g i ) satisfies (H1) and (H3). Then, by Theorem 1, anticipated BDSDE (12) has a unique solution ( Y · i , Z · i ) S 2 ( [ 0 , T + K ] ; R ) × M 2 ( 0 , T + K ; R d ) for i = 1 , 2 .
Theorem 2.
Suppose ( Y · 1 , Z · 1 ) and ( Y · 2 , Z · 2 ) are solutions of ABDSDEs (12), respectively. Assume that (1) ξ t 1 ξ t 2 , a . s . , f o r a l l t [ T , T + K ] ; (2) f 1 ( t , Y t 1 , Z t 1 , Y t + δ 1 ( t ) 1 , Z t + ζ 1 ( t ) 1 ) f 2 ( t , Y t 1 , Z t 1 , Y t + δ 2 ( t ) 2 , Z t + ζ 2 ( t ) 2 ) o r f 1 ( t , Y t 2 , Z t 2 , Y t + δ 1 ( t ) 1 , Z t + ζ 1 ( t ) 1 ) f 2 ( t , Y t 2 , Y t 2 , Y t + δ 2 ( t ) 2 , Z t + ζ 2 ( t ) 2 ) , a . s . , f o r a l l t [ 0 , T ] ; (3) g 1 ( t , Y t 1 , Z t 1 , Y t + δ ¯ 1 ( t ) 1 , Z t + ζ ¯ 1 ( t ) 1 ) = g 2 ( t , Y t 1 , Y t 1 , Y t + δ ¯ 2 ( t ) 2 , Z t + ζ ¯ 2 ( t ) 2 ) o r g 1 ( t , Y t 2 , Z t 2 , Y t + δ ¯ 1 ( t ) 1 , Z t + ζ ¯ 1 ( t ) 1 ) = g 2 ( t , Y t 2 , Y t 2 , Y t + δ ¯ 2 ( t ) 2 , Z t + ζ ¯ 2 ( t ) 2 ) , a . s . , f o r a l l t [ 0 , T ] . Then Y t 1 Y t 2 , a . s . , f o r a n y t [ 0 , T + K ] .
Proof. 
For i = 1 , 2 , set
F i ( t , y , z ) = f i ( t , y , z , Y t + δ i ( t ) i , Z t + ζ i ( t ) i ) , G i ( t , y , z ) = g i ( t , y , z , Y t + δ ¯ i ( t ) i , Z t + ζ ¯ i ( t ) i ) ,
then ( Y · i , Z · i ) is the unique solution of the following BDSDE,
Y t i = ξ T i + t T F i ( s , Y s i , Z s i ) d s + t T G i ( s , Y s i , Z s i ) d B s t T Z s i d W s , t [ 0 , T ] .
According to Lemma 4, we can get
Y t 1 Y t 2 , a . s . , f o r a l l t [ 0 , T ] ,
which implies
Y t 1 Y t 2 , a . s . , f o r a l l t [ 0 , T + K ] .
Example 1.
Let f 1 ( t , y ˜ , z ˜ , θ ˜ ( r ) , ϑ ˜ ( r ¯ ) ) = | y ˜ | + | z ˜ | + E F t [ | θ ˜ ( r ) | ] + E F t [ cos ϑ ˜ ( r ¯ ) ] , f 2 ( t , y ˜ , z ˜ , θ ˜ ( r ) , ϑ ˜ ( r ¯ ) ) = y ˜ + | z ˜ | + E F t [ sin θ ˜ ( r ) ] 1 , g 1 ( t , y ˜ , z ˜ , θ ˜ ( r ) , ϑ ˜ ( r ¯ ) ) = g 2 ( t , y ˜ , z ˜ , θ ˜ ( r ) , ϑ ˜ ( r ¯ ) ) = y ˜ + | z ˜ | 2 + E F t [ θ ˜ ( r ) ϑ ˜ ( r ¯ ) ] . Then by Theorem 3, we can derive Y t 1 Y t 2 , a.s., for any t [ 0 , T + K ] when the assumption (1) is satisfied.
Secondly, for i = 1 , 2 , we will study a comparison theorem of anticipated BDSDEs of the following type:
Y t i = ξ T i + t T f i ( s , Y s i , Z s i , Y s + δ ( s ) i , Z s + ζ i ( s ) i ) d s + t T g i ( s , Y s i , Z s i , Y s + δ ¯ i ( s ) i , Z s + ζ ¯ i ( s ) i ) d B s t T Z s i d W s , t [ 0 , T ] , Y t i = ξ t i , Z t i = η t i , t [ T , T + K ] .
Assume that ( δ ( · ) , ζ i ( · ) , δ ¯ i ( · ) , ζ ¯ i ( · ) ) satisfies (A1) and (A2), ξ · i S 2 ( [ T , T + K ] ; R ) , η · i M 2 ( T , T + K ; R d ) and ( f i , g i ) satisfies (H1) and (H3). Then, by Theorem 1, anticipated BDSDE (13) has a unique solution ( Y · i , Z · i ) S 2 ( [ 0 , T + K ] ; R ) × M 2 ( 0 , T + K ; R d ) for i = 1 , 2 . In order to obtain the following comparison theorem, we further assume ρ i ( t , u ) with linear growth, that is, for i = 1 , 2 , ρ i ( t , u ) a i ( t ) + b i ( t ) u where a i ( t ) 0 , b i ( t ) 0 , with
0 T + K a i ( t ) d t < a n d 0 T + K b i ( t ) d t < .
Theorem 3.
Suppose ( Y · 1 , Z · 1 ) and ( Y · 2 , Z · 2 ) are solutions of ABDSDEs (13), respectively. Assume that (1) ξ t 1 ξ t 2 , a . s . , f o r a l l t [ T , T + K ] ; (2) f 1 ( t , Y t 1 , Z t 1 , Y t + δ ( t ) 1 , Z t + ζ 1 ( t ) 1 ) f 2 ( t , Y t 1 , Y t 1 , Y t + δ ( t ) 1 , Z t + ζ 2 ( t ) 2 ) , a . s . , f o r a l l t [ 0 , T ] ; (3) for any ( t , y , z ) [ 0 , T ] × R × R d , γ L 2 ( F s ; R d ) and s [ t , T + K ] , f 2 ( t , y , z , · , γ ) is increasing, i.e., f 2 ( t , y , z , y 2 , γ ) f 2 ( t , y , z , y 1 , γ ) , if y 2 y 1 with y 1 , y 2 R ; (4) g 1 ( t , Y t 1 , Z t 1 , Y t + δ ¯ 1 ( t ) 1 , Z t + ζ ¯ 1 ( t ) 1 ) = g 2 ( t , Y t 1 , Z t 1 , Y t + δ ¯ 2 ( t ) 2 , Z t + ζ ¯ 2 ( t ) 2 ) , a . s . , f o r a l l t [ 0 , T ] . Then Y t 1 Y t 2 , a . s . , f o r a n y t [ 0 , T + K ] .
Proof. 
For i = 1 , 2 , set
F i ( t , y , z ) = f i ( t , y , z , Y t + δ ( t ) i , Z t + ζ i ( t ) i ) , G i ( t , y , z ) = g i ( t , y , z , Y t + δ ¯ i ( t ) i , Z t + ζ ¯ i ( t ) i ) ,
then ( Y · i , Z · i ) be the unique solution of the following BDSDE,
Y t i = ξ T i + t T F i ( s , Y s i , Z s i ) d s + t T G i ( s , Y s i , Z s i ) d B s t T Z s i d W s , t [ 0 , T ] , Y t i = ξ t i , Z t i = η t i , t [ T , T + K ] .
Let f ¯ 2 ( t , y , z ) = f 2 ( t , y , z , Y t + δ ( t ) 1 , Z t + ζ i ( t ) 2 ) , then the following BDSDE admits a unique solution ( Y 3 , Z 3 ) ,
Y t 3 = ξ T 2 + t T f ¯ 2 ( s , Y s 3 , Z s 3 ) d s + t T G 2 ( s , Y s 3 , Z s 3 ) d B s t T Z s 3 d W s , t [ 0 , T ] , Y t 3 = ξ t 2 , Z t 3 = η t 2 , t [ T , T + K ] .
According to the assumptions (1), (2), (4) and Lemma 4, we can get Y t 1 Y t 3 , a . s . , for each t [ 0 , T ] , which implies Y t 1 Y t 3 , a . s . , for any t [ 0 , T + K ] . The following BDSDE,
Y t 4 = ξ T 2 + t T f 2 ( s , Y s 4 , Z s 4 , Y t + δ ( t ) 3 , Z t + ζ 2 ( t ) 2 ) d s + t T G 2 ( s , Y s 4 , Z s 4 ) d B s t T Z s 4 d W s , t [ 0 , T ] , Y t 4 = ξ t 2 , Z t 4 = η t 2 , t [ T , T + K ]
admits a unique solution ( Y · 4 , Z · 4 ) . From Lemma 4 and assumptions (3), we can get Y t 3 Y t 4 , a . s . , for all t [ 0 , T ] , which implies Y t 3 Y t 4 , a . s . , for any t [ 0 , T + K ] . For j 5 , let
Y t j = ξ T 2 + t T f 2 ( s , Y s j , Z s j , Y t + δ ( t ) j 1 , Z t + ζ 2 ( t ) 2 ) d s + t T G 2 ( s , Y s j , Z s j ) d B s t T Z s j d W s , t [ 0 , T ] , Y t j = ξ t 2 , Z t j = η t 2 , t [ T , T + K ] .
According to Lemma 4 and by induction, we can get Y t 4 Y t 5 Y t j 1 Y t j , a . s . , for all t [ 0 , T + K ] , hence, for all j 3
Y t 1 Y t j , a . s . , for all t [ 0 , T + K ] .
For any j 4 , β > 0 , apply It o ^ ’s formula to e β t | Y t j | 2 , in view of (H3), Young’s inequality, Jensen’s inequality and for i = 1 , 2 , ρ i ( t , u ) has a linear growth, we have
E | Y t j | 2 e β t + ( 1 α 1 α 1 + 2 C β ) E t T | Z s j | 2 e β s d s C 1 + ( 1 + 3 β ) E t T b 1 ( s ) e β s E [ | Y s j | 2 ] d s + 2 M β E t T b 2 ( s ) e β s E [ | Y s j 1 | 2 ] d s ,
where
C 1 = E [ e β T | ξ T 2 | 2 ] + ( 1 + 3 β ) 0 T a 1 ( s ) e β s d s + ( α 2 + α 2 + 2 C β ) M E 0 T + K | Z s 2 | 2 e β s d s + 2 M β E T T + K b 2 ( s ) e β s E [ | ξ s 2 | 2 ] d s + ( 1 + 1 β ) M 0 T + K ρ 2 ( s , E [ | Y s 2 | 2 ] ) e β s d s + 2 M β 0 T + K a 2 ( s ) e β s d s + 2 β E 0 T | f 2 ( s , 0 , 0 , 0 , 0 ) | 2 e β s d s + ( 1 + β ) 0 T | g 2 ( s , 0 , 0 , 0 , 0 ) | 2 e β s d s .
Now let us choose β = α 1 + 2 C 1 α 1 . Then, there exists C 2 > 0 , which is independent of j, such that for j 4 ,
E [ | Y t j | 2 ] C 2 + C 2 E t T b 1 ( s ) | Y s j | 2 d s + C 2 E t T b 2 ( s ) | Y s j 1 | 2 d s ,
which leads to
sup j 4 E [ | Y t j | 2 ] C 2 + C 2 E 0 T b 2 ( s ) | Y t 3 | 2 d t + C 2 t T ( b 1 ( s ) + b 2 ( s ) ) sup j 4 E [ | Y s j | 2 ] d s ,
Then Gronwall’s inequality yields
sup j 4 E [ | Y t j | 2 ] C 2 e C 2 t T ( b 1 ( s ) + b 2 ( s ) ) d s [ 1 + E 0 T b 2 ( s ) | Y t 3 | 2 d t ] ,
which implies
sup 0 t T sup j 4 E [ | Y t j | 2 ] C 2 e C 2 0 T ( b 1 ( s ) + b 2 ( s ) ) d s [ 1 + 0 T b 2 ( s ) E [ sup 0 t T | Y t 3 | 2 ] d t ] < .
For j 4 , p 1 , Set
Y ^ t j = Y t j + p Y t j , Z ^ t j = Z t j + p Z t j , F ^ t j = f 2 ( t , Y t j + p , Z t j + p , Y t + δ ( t ) j + p 1 , Z t + ζ 2 ( t ) 2 ) f 2 ( t , Y t j , Z t j , Y t + δ ( t ) j 1 , Z t + ζ 2 ( t ) 2 ) , G ^ t j = G 2 ( t , Y t j + p , Z t j + p ) G 2 ( t , Y t j , Z t j ) ,
Then for j 4 , ( Y ^ · j , Z ^ · j ) satisfies
Y ^ t j = t T F ^ s j d s + t T G ^ s j d B s t T Z s j d W s , t [ 0 , T ] , Y ^ t j = 0 , Z ^ t j = 0 , t [ T , T + K ] .
Applying It o ^ ’s formula to e β t | Y ^ t j | 2 where β > 0 , and from the assumption (H3), Young’s inequality, Jensen’s inequality, we can obtain
E | Y ^ t j | 2 e β t + E t T | Z ^ s j | 2 e β s d s 1 β t T ( ρ 1 ( s , E [ | Y ^ s j | 2 ] ) + M ρ 2 ( s , E [ | Y ^ s j 1 | 2 ] ) ) e β s d s + ( C β + α 1 ) E t T | Z ^ s j | 2 e β s d s + t T ρ 1 ( s , E [ | Y ^ s j | 2 ] ) e β s d s .
Now let us choose β = 2 C 1 α 1 . Then there exists C 3 > 0 , which is independent of j , p , such that
E [ | Y ^ t j | 2 ] + E t T | Z ^ s j | 2 d s C 3 t T ( ρ 1 ( s , E [ | Y ^ s j | 2 ] ) + M ρ 2 ( s , E [ | Y ^ s j 1 | 2 ] ) ) d s .
Denote h ( t ) = lim sup k E [ | Y ^ t j | 2 ] . Then in view of (15) we have 0 h ( t ) < . Then, apply Fatou’s Lemma to the right-hand side of (16), we obtain
h ( t ) C 3 t T ( ρ 1 ( s , h ( s ) ) + M ρ 2 ( s , h ( s ) ) ) d s .
Using the same proof method about the uniqueness in Theorem 1, we can obtain h ( t ) = 0 , that is lim sup j E [ | Y ^ t j | 2 ] = 0 , for all t [ 0 , T ] . Moreover, from (16) it follows that
sup 0 t T E [ | Y ^ t j | 2 ] C 3 0 T ( ρ ( E [ | Y ^ s j | 2 ] ) + ρ ( E [ | Y ^ s j 1 | 2 ] ) ) d s
Applying Fatou’s Lemma again leads to
sup 0 t T E [ | Y ^ t j | 2 ] 0 as j .
By taking j in (16), we use Fatou’s Lemma again to obtain
E 0 T | Z ^ t j | 2 d t 0 as j .
Hence, we have shown that ( Y · k , Z · k ) is a Cauchy sequence in S 2 ( 0 , T ; R ) × M 2 ( 0 , T ; R d ) , thus it is also a Cauchy sequence in S 2 ( 0 , T + K ; R ) × M 2 ( 0 , T + K ; R d ) . As a consequence, we can find ( Y · , Z · ) S 2 ( 0 , T + K ; R ) × M 2 ( 0 , T + K ; R d ) such that Y t = ξ t 2 , Z t = η t 2 for T t T + K and
sup 0 t T E [ | Y t j Y t | 2 ] + E [ 0 T | Z t j Z t | 2 d t ] 0 as j .
Therefore, it’s easy to verify that, as j ,
E t T | f 2 ( s , Y s j , Z s j , Y s + δ ( s ) j 1 , Z s + ζ 2 ( s ) 2 ) f 2 ( s , Y s , Z s , Y s + δ ( s ) , Z s + ζ 2 ( s ) 2 ) | 2 d s 0 ,
E t T | g 2 ( s , Y s j , Z s j , Y s + δ ¯ 2 ( s ) 2 , Z s + ζ ¯ 2 ( s ) 2 ) g 2 ( s , Y s , Z s , Y s + δ ¯ 2 ( s ) 2 , Z s + ξ ¯ 2 ( s ) 2 ) | 2 d s 0 ,
E [ | t T Z s j · d W s t T Z s · d W s | 2 ] 0 .
So, we conclude that ( Y · , Z · ) solves the following ABDSDE:
Y t = ξ T 2 + t T f 2 ( s , Y s , Z s , Y s + δ ( s ) , Z s + ζ 2 ( s ) i ) d s + t T g 2 ( s , Y s , Z s , Y s + δ ¯ 2 ( s ) 2 , Z s + ζ ¯ 2 ( s ) 2 ) d B s t T Z s d W s , t [ 0 , T ] , Y t = ξ t 2 , Z t = η t 2 , t [ T , T + K ] .
Therefore, we can infer that Y t = Y t 2 , a . s . , for all t [ 0 , T + K ] from the uniqueness part of Theorem 1. Let j in (14) yields Y t 1 Y t 2 , a . s . , for all t [ 0 , T + K ] . □
Example 2.
Let f 1 ( t , y ˜ , z ˜ , θ ˜ ( r ) , ϑ ˜ ( r ¯ ) ) = | y ˜ | + | z ˜ | + E F t [ | θ ˜ ( r ) | ] + E F t [ arctan ϑ ˜ ( r ¯ ) ] , f 2 ( t , y ˜ , z ˜ , θ ˜ ( r ) , ϑ ˜ ( r ¯ ) ) = y ˜ | z ˜ | + E F t [ θ ˜ ( r ) ] π 2 , g 1 ( t , y ˜ , z ˜ , θ ˜ ( r ) , ϑ ˜ ( r ¯ ) ) = g 2 ( t , y ˜ , z ˜ , θ ˜ ( r ) , ϑ ˜ ( r ¯ ) ) = arccot y ˜ + | z ˜ | + E F t [ θ ˜ ( r ) + ϑ ˜ ( r ¯ ) ] . Then by Theorem 3, we can derive Y t 1 Y t 2 , a.s., for any t [ 0 , T + K ] when the assumption (1) is satisfied.

5. Conclusions

The purpose of this paper is to introduce and study a type of anticipated BDSDEs with non-Lipschitze coefficients. We first show that the adapted solution of this kind of ABDSDEs is existent and unique. Furthermore, we give two comparison theorems one dimensional situation. In our future publications, we will concentrate on investigating this interesting problem and pay much attention to the application of this kind of equation, especially in control such as [20,21,22,23,24,25].

Author Contributions

Writing-original draft preparation, writing-review and editing, T.W. and S.C.; Conceptualization, T.W. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Project of Educational Commission of Liaoning Province of China (LJC202006), and Liaoning Provincial Natural Science Foundation (2021-MS-153).

Acknowledgments

The authors express their sincerest thanks to the anonymous reviewers and the editor for their valuable comments, which further improve the conclusion and proof process of the article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Pardoux, E.; Peng, S. Adaptated solutions of backward stochastic differential equations. Syst. Control Lett. 1990, 14, 535–581. [Google Scholar] [CrossRef]
  2. El Karoui, N.; Peng, S.; Quenez, M.C. Backward stochastic differential equations in finance. Math. Financ. 1997, 7, 1–71. [Google Scholar] [CrossRef]
  3. Wang, Y.; Wang, X. Adapted solutions of backward SDE with non-Lipschitz coefficients. Chin. J. Probab. Statist. 2003, 19, 245–251. (In Chinese) [Google Scholar]
  4. Wang, Y.; Huang, Z. Backward stochastic differential equations with non-Lipschitz coefficients. Stat. Probab. Lett. 2009, 79, 1438–1443. [Google Scholar] [CrossRef]
  5. Fang, S.; Jiang, L. Finite and infinite time interval BSDES with non-lipschitz coefficientsa. Stat. Probab. Lett. 2010, 80, 962–968. [Google Scholar]
  6. Hua, W.; Jiang, L.; Shi, X. Infinite time intrval RBSDEs with non-lipschitz coefficients. J. Korean Stat. Soc. 2013, 42, 247–256. [Google Scholar] [CrossRef]
  7. Pardoux, E.; Peng, S. Backward doubly stochastic differential equations and systemes of quasilinear SPDEs. Probab. Theory Relat. 1994, 98, 209–227. [Google Scholar] [CrossRef]
  8. Shi, Y.; Gu, Y.; Liu, K. Comparison theorems of backward doubly stochastic differential equations and applications. Stoch. Anal. Appl. 2005, 23, 97–110. [Google Scholar] [CrossRef]
  9. Zhu, B.; Han, B. Backward doubly stochastic differential equations with non-Lipschitz coefficients. Acta Math. Sci. 2008, 28A, 977–984. (In Chinese) [Google Scholar]
  10. N’zi, M.; Owo, J. Backward doubly stochastic differential equations with non-Lipschitz coefficients. Random Oper./Stoch. Eqs. 2008, 16, 307–324. [Google Scholar] [CrossRef]
  11. Zhu, B.; Han, B. The solutions of backward doubly stochastic differential equations with non-Lipschitz coefficients. J. Appl. Math. Inform. 2011, 29, 1143–1155. [Google Scholar]
  12. Yang, Z.; Peng, S. Anticipated backward stochastic differential equations. Ann. Probab. 2009, 37, 877–902. [Google Scholar]
  13. Zhang, F. Comparison theorems for anticiapted BSDEs with non-Lipschitz coefficients. J. Math. Anal. Appl. 2014, 416, 768–782. [Google Scholar] [CrossRef]
  14. Zhou, H.; Han, Y.; Feng, Z.; Yuan, R. Anticipated backward stochastic differential equations with non-Lipschitz coefficients. J. Math. Chem. 2021, 59, 516–528. [Google Scholar] [CrossRef]
  15. Xu, X. Anticipated backward doubly stochastic differential equations. Appl. Math. Comput. 2013, 220, 53–62. [Google Scholar] [CrossRef] [Green Version]
  16. Zhang, F. Anticipated backward doubly stochastic differential equations. Sci. Sin. Math. 2013, 43, 1223–1236. (In Chinese) [Google Scholar] [CrossRef]
  17. Aidara, S. Anticipated backward doubly stochastic differential equations with non-Liphschitz coefficients. Appl. Math. Nonlinear Sci. 2019, 4, 9–20. [Google Scholar] [CrossRef] [Green Version]
  18. Aidara, S. Comparison theorems for anticipated backward doubly stochastic differential equations with non-Lipschitz coefficients. Random Oper./Stoch. Eqs. 2020, 28, 19–26. [Google Scholar] [CrossRef] [Green Version]
  19. Wang, T.; Yu, J. Anticipated generalized backward doubly stochastic differential equations. Symmetry 2022, 14, 114. [Google Scholar] [CrossRef]
  20. Kumar, S. Mild solution and fractional optimal control of semilinear system with fixed delay. J. Optim. Theory Appl. 2015, 174, 108–121. [Google Scholar] [CrossRef]
  21. Shukla, A.; Sukavanam, N.; Pandey, D.N. Controllability of semilinear stochastic control system with finite delay. IMA J. Math. Control Inf. 2016, 35, 427–449. [Google Scholar] [CrossRef]
  22. Vijayakumar, V. Approximate controllability for a class of second-order stochastic evolution inclusions of clarke’s subdifferential type. Results Math. 2018, 73, 42. [Google Scholar] [CrossRef]
  23. Dineshkumar, C.; Udhayakumar, R.; Vijayakumar, V.; Nisar, K.S. Results on approximate controllability of neutral integro-differential stochastic system with state-dependent delay. Numer. Methods Partial. Differ. Equ. 2020. [Google Scholar] [CrossRef]
  24. Vijayakumar, V.; Udhayakumar, R.; Panda, S.K.; Nisar, K.S. Results on approximate controllability of Sobolev type fractional stochastic evolution hemivariational inequalities. umer. Methods Partial. Differ. Equ. 2020. [Google Scholar] [CrossRef]
  25. Dineshkumar, C.; Nisar, K.S.; Udhayakumar, R.; Vijayakumar, V. A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions. Asian J. Control 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Wang, T.; Cui, S. Anticipated Backward Doubly Stochastic Differential Equations with Non-Lipschitz Coefficients. Mathematics 2022, 10, 396. https://doi.org/10.3390/math10030396

AMA Style

Wang T, Cui S. Anticipated Backward Doubly Stochastic Differential Equations with Non-Lipschitz Coefficients. Mathematics. 2022; 10(3):396. https://doi.org/10.3390/math10030396

Chicago/Turabian Style

Wang, Tie, and Siyu Cui. 2022. "Anticipated Backward Doubly Stochastic Differential Equations with Non-Lipschitz Coefficients" Mathematics 10, no. 3: 396. https://doi.org/10.3390/math10030396

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop