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Abstract: The work presented in this paper focuses on a type of differential equations called antic-
ipated backward doubly stochastic differential equations (ABDSDEs) whose generators not only
depend on the anticipated terms of the solution (Y., Z.) but also satisfy one kind of non-Lipschitz
assumption. Firstly, we give the existence and uniqueness theorem. Further, two comparison theo-
rems for the solutions of these equations are obtained after finding a new comparison theorem for
backward doubly stochastic differential equations (BDSDEs) with non-Lipschitz coefficients.
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1. Introduction

In 1990, the pioneer research of Pardoux and Peng [1] proposed the theory of nonlinear
backward stochastic differential Equations (BSDEs). Over the past 3 decades, BSDEs have
attracted much attention from academia due to its wide application in lots of different
fields of research, for example, financial mathematics (see El Karoui et al. [2]), stochastic
optimal control, differential games and the theory of partial differential equations. Among
others, a lot of effort has been made to relax the Lipschitz assumptions (see, e.g., [3—6]).

In order to obtain a probabilistic representation for a class of quasilinear stochastic
partial differential equations, Pardoux and Peng [7] first presented a class of backward
doubly stochastic differential Equations (BDSDEs in short) in the following

T T o T
Y, :§+/t f(s,YS,Zs)ds+/t g(s,Ys,ZS)st—/t Z,dWs,t € [0,T], (1)

where the equations include a standard (forward) It6 integral dW;, and a backward It6

integral d %t. They investigated the existence and uniqueness of solutions for BDSDE (1)
under uniform Lipschitz generators. Then Shi et al. [8] gived a comparison theorem for
BDSDEs with uniform Lipschitz condition on the generators. Refs. [9-11] have attempted
to weaken the uniform Lipschitz assumption on the coefficients.

In 2009, Peng and Yang [12] introduced a new class of BSDEs called anticipated BSDEs
(ABSDEs), whose generator involves not only the present values of the solutions but also
the future situation. The authors proved ABSDEs have a unique solutions under uniform
Lipschitz assumptions, obtained a comparison theorem for their solutions under some
specific condition, and investigated the duality between anticipated BSDEs and delayed
stochastic differential equations. Following the research of Peng and Yang [12], Zhang [13]
studied the comparison theorems for one dimensional anticipated BSDEs under one kind of
non-Lipschitz assumption. Zhou et al. [14] investigated the existence and uniqueness of this
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type equations under another non-Lipschitz conditions. Recently, Xu [15] and Zhang [16]
introduced the following type of so-called anticipated BDSDES (ABDSDEs):

T
Yt :éT + /t f(sl YSI ZSI YS+(5(S)’ ZS+C(S))dS

' G [ @
+\/t g(s, Ys, Zs, YS+5(S)’ZS+C(S))d B s — \/t ZSdWS, te [0, T],
Yt :(:t/ Zt - 17t/ te [T/ T+ K]r

where £., 7. are given stochastic processes, and §(-), 5(+), {(+) and {(-) are four given nonneg-
ative deterministic continuous functions and for 7y(-) = 6(),4(+),{(+), {(-) satisfying that:
(A1) there has a constant K > 0 such that, foreach t € [0, T], t +y(t) < T+ K;
(A2) there has a constant M > 0 such that, for each t € [0, T] and for any nonnegative
integrable h(-),

T T+K
/t h(s+v(s))ds < M/t h(s)ds.

Xu [15] and Zhang [16] explored the existence and uniqueness of the solution for above
equation, gave some comparison theorems, and investigated the duality between them
and stochastic doubly differential equations with delay. Aidara [17,18] studied anticipated
BDSDEs with one kind of non-Lipschitz coefficients, in which generator g does not depend
on the anticipated term of y, z. They obtained the existence and uniqueness result and a
comparison theorem in the one dimensional case. Recently, Wang and Yu [19] dealt with
anticipated generalized backward doubly stochastic differential Equations (AGBDSDEs).
Based on [15,16], we are concerned with anticipated BDSDEs under non-Lipschitz assump-
tion. We will prove that under proper assumptions, the solution of the above ABDSDE
with non-Lipschitz coefficients exists uniquely, and two comparison theorems are given for
the one dimensional ABDSDEs with non-Lipschitz coefficients. These results are the cor-
nerstones of ABDSDEs witn non-Lipschitz coefficients applied to some stochastic optimal
control problems with delay effect.

This paper is divided into five sections as follows. In Section 2, some notations,
assumptions and definition are given. We focus on the existence and uniqueness of the
solutions of anticipated BDSDEs with non-Lipschitz coefficients in Section 3. In Section 4,
we give two comparison theorems. Finally in Section 5, the conclusion and future work are
presented.

2. Preliminaries

Let (Q), F, P) be a complete probability space. T > 0,K > 0 are two fixed constants.
Let {W;;0 <t < T} and {B;;0 <t < T} be two mutually independent standard Brownian
motions with values, respectively, in R? and R!. For any x,y € R" and z € R"*", we use
(x,y) to denote the inner product of x and y, and | v | to represent for the vector norm of y
and | z [:= /Tr(zz*) means the matrix norm of z, where z* is the transpose of z. Set N to
denote the class of P-null sets of F. For all t € [0, T + K], we define

A TW., B
Ft=Fop VFiriko

where for each process {4>t},.7-'2t = o{¢r — ps;s < r < t} VN. Notice that {fg};,t €
[0, T+ K]} is increasing and {FP;, t € [0, T + K]} is decreasing, therefor { 7, t € [0, T+ K]}
do not constitute a filtration. The following notations will be used throughout the paper:
foreacht >0,ne Nandb >a >0,

(i) L2>(F;R") = {5 :n € R"|nisa F-measurable random variable with E|5|> < co};
(i) M>3(a,b;R") = {¢: Q x [a,b] — R" | ¢ is a F-progressively measurable processes

b
such that || ¢ ”3\42: E(fa |¢t\2dt) < oo};
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(iii) S?([a,b];R") £ {¢ : Q x [a,b] — R" | ¢ is a continuous and F;- progressively

measurable processes such that || ¢ ||§2: E( sup |<Pt|2> < o0.
b

We make the following assumptions about (&, f, g):

(H1) £(.,0,0,0,0) € M?(0, T;R¥), ¢(.,0,0,0,0) € M?(0, T; RF*").

(H2) Foreach t € [0,T], y,7 € RF, z,z € R¥>4,9(.),0(-) € M*(t, T+ K;R¥), 8(-),8(-) €
M2(t, T+ KR, v, ¢ € [t, T + K], we let

£ (ty,2,6(r),8(") = f(t,5,2,6(r),8(r))?

Cly — g1 + Iz = 2> + E7[|6(r) — 8(r) 2 + 19" = (") |1*)),
o(r
)]

where C > 0,0 < a3 <1, 0 <aj +apM <1 are three given constants.
(H3) Foreach t € [0,T], y,7 € RK, 2,z € Rk, 9(.),0(-) € M?(t, T+ K;R¥), 8(-),8(-) €
M2(t, T+ KR, v, v € [t, T + K], we let

f(t,y,2,0(r),8(")) = f(t,7,2,0(r), 8("))|?
<pi(tly = 71) +p2(r, BT (0(r) — 6(n) ) + C(llz — 2> + E7[[[8(") — 3(")|1?]),
gt y,2,6(r), 9(r")) — g(t,5,2,8(r), 9(r"))|I*
< pi(t |y —g12) + p2(r, E7H{|0(r) = 8(r)7]) + a1 |z — 2| + BR[| 8(") = 9()|1?],

Ig(t,y,2,0(r), 8(r')) — 8(£, 7,2,
—0(r

), 8017
Clly — g +E7[j6(r) ) )

+ |z = 2|2 + BR[| 8() = 9],

where C > 0,0 < a1 <1, 0 < a1 +apM < 1 are three given constants and for
i=1,2,0;:[0,T+K] xRT — R" satisfies:

e For fixed t € [0,T + K], p;(t,.) is a concave and non-decreasing function such
that p;(t,0) = 0.
. T+K
e Forfixedu, [, " p;i(t,u)dt < +oo.

Forany L > 0,5, > S1 > 0, the following ODE

{u’ = —L(p1(s,u) + Mpa(s, u)),
u(Sy) =0

has a unique solution u(s) = 0,s € [Sy, S3].
(H4) (&.,1.) € S?([T, T+ KJ;RF) x M?(T, T + K; Rk*4).

Remark 1. 1.  It's easy to check that p1(t,u) = pa(t,u) = Cu for C > 0 is an example of the
function pq and py, and in this case the assumption (H3) degenerates to the assumption (H2).

2. Iffori =1,2, p;(t,u) has a linear growth that is p;(t,u) < a;(t) + b;(t)u where a;(t) >
0,b;(t) > 0, with fTH( (H)dt < oo and fT+K f)dt < oo, it’s easy to check that
pi(t, u) satisfies assumption (H3). Similar assumptions were used in [3-6,9,11,14].

3. Similar non-Lipschitz assumption was also used in [14] when g # 0 in the following form:

f(t,y,2,0(r),8(")) = f(t,7,2,0(r),9()) |
<ol |y —1%) +p(r E71[0(r) — 6(r) ) + C(llz - 2I* + E7*[|[9 (") — 3(")|1%]).
Definition 1. A pair of processes (Y.,Z.) : Q x [0,T + K] — RF x R**4 is g solution of

ABDSDE (2) with non-Lipschitz coefficients, if (Y.,Z.) € S?([0,T + K], R¥) x M?(0,T +
K, RK*4) and satisfies (2) and assumptions (H1), (H3) and (H4).
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3. Existence and Uniqueness Theorem

We can obtain directly the following existence and uniqueness result for ABDSDEs
with uniform Lipschitz condition through combing the results given by Xu [15] and
Zhang [16].

Lemma 1. Let (H1), (H2) and (H4) hold. Then there exists a unique solution (Y., Z.) € S?([0, T +
K], RK) x M2(0, T + K, R**?) of ADDSDE (2).

According to Lemma 1, we can construct the Picard-type iteration sequence of Equation (2)
as follows:

Y? =0,

T
-1 -1
Y=g [ f VI ZE Y 2 s o
T o T
-1 -1
+ /t gl et zn ez dB - /t ZMdW,, t € [0, T),

Ytn :{:t,Z? =n,t € [T,T+K]

In fact, for any Y"~1 € S%([0, T + K], R¥), according to Lemma 1, the ABDSDE (3)
admits a unique solution (Y, Z") € S2([0, T 4 K], R¥) x M?(0, T + K, R¥*?). We want to
find the unique solution of ABDSDEs (2) through proving that the sequence (Y", Z"),,>¢
converges in S2([0, T + K], R¥) x M2(0, T + K,RF*4). In order to achieve this goal, we
need the following two lemmas.

Lemma 2. Assume (A1), (A2), (H1), (H3) and (H4). Then, forany 0 <t < T,n,m > 1, we get

C(M+1)T 1—a1 —a- M T
E|yrtm _yn 2 < pT-a1—m;M 1 2 1 / E Ynerfl - Ynfl 2
D e e R A [§ AT 1 Pds

T
#M [ (s, BT ds).
Proof. In view of Itd’s formula, we have

T T
E[Ym Y72 +IE1/t |Z0+m — 77|2ds = Z]E/t (yrm _yn,
Flo, YEEm=h, ZEem YU ZI ) = (s YT ZE Y 2 g s))) s
T
n+m—1 n+m n+m—1 n+m n—1 n n—1 n 2
+E/t s, YIrs L, Zukm, Yot zin ) (s, Yo, Z2 YL 7 |2,

By the assumptions (H3), (A1), (A2), Young’s inequality 2ab < %az + 0b?, and Jensen'’s
inequality, for all 6 > 0, we get

T
BN - VPP +E [ z0t - 77 Pds
t
1 T n+m n2 T n+m—1 n—1\2
ggE/t Yy ds+(6+1)/t o1(s, E[|Y! — Y1) ds
T
F(0+ 1)M/ oo (s, E[| Y1 — yn=112))ds
t

T
+(0C(M +1) + +oc2M)]E/ |Zm+m — 7z 2ds.
t
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1—ay—apM

Choosing 8 = COMT1)

> 0, it follows from Gronwall’s inequality that

CM+OT /] — g —ap M T
Elyntm _ Yn2 <eT-m-mM 1 2 1 / F Ynerfl_Ynfl 2
D e e R A [§ AT 1 Ps

T
+M [ pals Bl =y ).
O

Lemma 3. Assume that (A1), (A2), (H1), (H3) and (H4) hold. Then, there exists Ty € [0, T) and a
constant Ly > 0 such that for any t € [Ty, T],n > 1,E|Y}'|* < L.

Proof. By applying It6’s formula, we get

T T
EIY/P+E [ |22 = EIP +2B [ (¥, f(s, Y07, 20, Y0 ) 20 0 )i

T
+IE/ lg(s, etz ok 7 | Pds.
t

s+3(s)” Ts+L(s)
From (H3), (A1), (A2) and Young's inequality 2ab < éaz + 612, for each 6 > 0, we have

20Y2, fs, Y8 ZE Y5 2 s)

< S P Bl Y ZE Y 2 )P

<SP 20(01 (5, 1Y) + pals + 8(s), B Y2 P))

22 FE (120, ) I1) +261£(5,0,0,0,0),

lgs, 2tz ynd 20 I < (U 0)(oals, Y2 2) 4 pals + 5(s), B YL )

+5(s)" s +L(s) s+0(s)
(1 O 22 + 1+ )BT 12 ) + (1 5 ) 65,0,0,00|
Therefore,
EYPP+ (1—20C(1+ M) — (14 6)(a; + aaM))E /t'T 122 ds
<EJEP + R / P 30+ 1) [ (on (5 EIYR) + Mpals B[
4 (304+1) M/ (s, E|&|2)ds + (26CM + (1 + 8)as) ME/ 76 |12ds

+]E/ (26£(s,0,0,0,0)|*> + <1+ 9> llg(s,0,0,0,0)|)ds
t

_ 171)61 70(2M
We choose 6 = SCATM) o, TigM > 0, then
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T
E|Y[‘\2§E|§\2+2C(1+M)+“1+“2ME/ |st|2ds

1—0(1—0(2M

3+2C(1+M)—2(D€1—|—[X2M) /T 12 12
JENYY Mps (s, E|YY d
T M rm rom IS EET A Moz (s BT ds
3+2C(1+ M) —2(a +apM) /T+K )
E d
2C(1+ M) + aq + aoM M pa(s EGs[")ds
1—a1 —aoM 2C(1+M +1 / 2
2 2)E d
M T Ry ey v o (v e v Is|%ds
1—a —apM b 2C(1+M)+1 2
i / 2C(1+ M) +uc1+o¢2M|f(S’0’0’0’0)| + 1—a; —ayM 18(s,0,0,0,0)[|%)ds
Now, in view of Gronwall’s inequality, we derive
2 T 112 12
E[Y/2<o+L [ (pr(s BV ) + Moa(s ENY 7 [2)ds )
where
L My My 5 342C(1+ M) —2(ay +apM) T+K >
o =e T (BIEP + 14 S e e M/ 02 (s, E|&[2)ds
1—061—062M 2C(1+M)+1 T+K 2
JF(ZZC(HM)+o¢1+o¢2MCM+ 2C(1+M)+a1+a2M“2) / lrs|17ds
11— aM 2, 20(1 M) +1 :
+E / 2CA+ M) Ty +apn OO0+ 5 r 18(5,0,0,0,0)F)ds
and 2C(1+M)+ag +ag M
L— 342C1+ M) —2(nq +“2M)6TaéMZT “o.
2C(1+ M) + a1 +apM
Let
51 Ry 2 3+2C(1+ M) —2(a; +aM) T+K 2
1 — N —zsz 2C(1+M)+1 T+K 2
+(22C(1+M)+o¢1+azM 2C(1+M) + +a2M“2) / lns|ds
10— M 2 26+ M) +1 z
+E / 2CA+M) Lo 12 2 1£(5:0,0,0,0)]% + p— llg(s,0,0,0,0)||?)ds),
By virtue of (H3),

T
/O (Pl(5, Ll) =+ MPZ(S, Ll)ds < 00,

so we can find T; such that

T 51
/ (pl(s Ll) + Mpz(s L])ds < = 7
Indeed, if fOT(pl(s, Ly) 4+ Mpa(s, Ly)ds < %, then we choose Ty = 0. If

T (51
/0 (p1(s,L1) + Mpa(s, Ly)ds > fo,

since t +— [, tT(pl (s,L1) + Mpa(s, Ly )ds is continuous, there exists T € [0, T] such that

T 5(1)
/T (pl(s/ Ll) + Mpz(s, Ll)ds =
1
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Consequently, for any ¢ € [Ty, T}, from Equation (4) and p;(t, .) is increasing, we get
E|Y} [ <6 <25 = Ly,
BPP <5 4L [ (s BIYAP) + Moo (s EIYE))ds
<&+ L/tT(pl(s, L) 4+ Mpy (s, Ly)ds < 2u} = Ly,
BPP <5t 4L [ (s BIY2P) + Mo (s EIY2))ds
<+ L/tT(pl(s, L) 4+ Mpy(s, Ly)ds < 2ud = Ly.
By induction, foralln > 1,t € [Ty, T},
EY/|* < Ly.

O

With the help of Lemmas 1 and 2, we can establish the existence and uniqueness
theorem in the following.

Theorem 1. Under (A1), (A2), (H1), (H3) and (H4). Then, ADDSDE (2) has a unique solution
(Y., Z.) € 82([0, T + K], RF) x M2(0, T 4 K, R¥>*4),

Proof. Existence. Foranyn > 1,and t € [0, T], we set

T T
oolt) = L [ (pr(s,L1) +Mpa(s, L)ds, @usa (8) = L [ (pr(s,9a(s)) + Mpa(s, 9 (s)) .

Obviously, for all t € [Ty, T|, we have

2o(®) = L [ (16 La) + Mpas, L)is < Ly,
o1()) =L [ (p1(5,90(6) + Mpa(s, o))

<1 [ (orlssLa) + Mpas, La))ds = goft) < Ly
22()= L [ (01(5,1(5)) + Mpals, 91 (5)))ds

<L [ (o165, 00(5)) + Mpa(s, 90(5)))ds = 1(1) < L.

Through induction, we get ¢, (t) satisfies
0< @ua(t) S pu(t) < < @r(t) < olt) < Ly
forany n > 1,t € [Ty, T]. Further, for any n > 1,t,t' € [Ty, T|, we have

9(0) = ut)] =L [ (016, 0-1(5)) + Ma(s, ga-1(5)))s

tvt

<L " (p1(s,L1) + Mpa(s, Ly))ds.

Since t — ftT (p1(s, L1) + Mpa(s, Ly ))ds is a continuous mapping, we can obtain

sup |@u(t) — on(t)] =0 as |t—+t|—0.
n
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Consequently, {¢,(t)},>1 is an equicontinuous family of function on [Tj, T| and
decreasing. Thus, by the Ascoli-Arzela theorem, {¢,(t)},>1 converges to a limit ¢(t), as
n — 0, satisfying

T
D=L [ (pr(s,9(5)) + Mpa(s, p(s)))ds.

From (H3), it follows that ¢(t) = 0,t € [Ty, T).
According to Lemmas 2 and 3, the definition of {¢,(t)},>1, and the fact that

C(M+1)T (1 — X1 — 0(2M

I-aq—an M 1<L
e e *)-’

forany t € [Ty, T],n,m > 1, we get
CMINT ] gy — gy M T
By - Y < e (LA ) (o (s BN P]) + Mia(s B YR P])ds

< L/~T(P1 (s,L1) + Mpa(s, L1))ds = @o(t) < Ly,

C(M+1)T 1—a a M T
E|Yt1’2+m Y12‘2 < pT-a—1M ( C(]\1/1+12) +1) /t (Pl(S/EHYsLH_m _Ysl,l‘Z])
+ Moo (s, B[ Y™ — Y ]))ds

< L./tT(Pl(S, 90(s)) + Mpa(s, 9o(s)))ds = @1 (t) < L1.

Through induction, we can give that

]E|Ytl,n+m _ Ytl,n 2

< @u-1(t) < Ly. )

Notice that ¢, () — 0 for any ¢ € [Ty, T], as n — oo, thus we can know that {Y'"} is a
Cauchy sequence in M2(Ty, T + K; R). Consequently, it is simple to check that {Z!"} is
also a Cauchy sequence in M2(Ty, T + K; R¥*4), Let Y! = lim Y, Z! = lim Z'", we

n— 400 n—r+400
obtain

T
Y = C+/t fs, Y2 ZS,Y+5(5) Z51+5( ))ds

T 1 71 1 1 o
+/t (s, Y4, 22, Y2 500 Zhs ) B s ©

T
—/ ZMW,  te[T,T]
t

Y!=¢&, Zl=m, te[T,T+K].

Applying Itd’s formula, and using the assumptions (A1), (A2), (H3) and (H4), Young's
inequality, Lemma 3 and Burkholder-Davis-Gundy’s inequality, we can derive the limit
(YL, zY) € S2([Ty, T + K|; R¥) x M2(Ty, T + K; RF*4),

Therefore, we have proved the existence of the solution to ABDSDE (2) on [Ty, T|. If
T1 = 0, then the existence is obtained.

If T # 0, we will consider the following equation

T
Y =h o+ [ f YR 2R ) 22 s
T
2 72 2
+ [ 8ls Y2222 5, 22 ) B -

T
_/ Z2dw,,  te o, Ty,

Y2=Y}, 72=17}, te[T, T+K].
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Let us introduce the approximate sequence which is similar to (3) for Equation (7).
Through the similar process as in Lemmas 2 and 3, for each t € [0, T;],n,m > 1, we can
prove that

B -

vt (1—a —apM T 214 m— _
<la —ay M E n+m—1 _ y2n—12
et (LM ) [ (s Y Y2r-1e)
+ Mpa(s E[Y271 _ Y2112 s
T
B < 0L [ (s B2 P) + Mpa(s BV P,

where

p2(s, EYJ[?)ds

B h LY 34+2C(1+ M) —2(ay +aoM) , - [THK
B=e M (EYLP41 /
p=e et ENG P T m AT F g+ M

1—a1 —aprM Mt 2C(1+M +1 E/
2C1+ M) + a1 +apM 2C(1+ M) +a +zx2M

RVRNY ), 204 M) 41 z
+ / 2C 1+M +0€1+0€ M|f(s,0’0,0,0)‘ + 1_041—062M Hg(S,0,0,0,0)H )dS),

+(2 |ZL|2ds

and
3+2C(A+M) —2(wm + tsz)ewT

L= et > 0.
2C(1+ M) + a1 + ayM

Let

2C(1+M)+a1+a2MT 342C(1+ M) —2(aq +arM T+K
Ly =203 =2¢ "0 (E|Y} P +1+ ZC((1+M))+vc1(4joc2]\/i )M/ (s, E|Y2*)ds
1
2 M 2)E Z;|°d
+( 2C(1+ M) + a1 + apM +2C(1+M)+a1+a2M | s
1—a; —apM 2 2C(1+M)+1 5
AR A] 7 ,0,0,0 d .
" / 2C + M)+ ay +aghd & OO OO+ T 18(5,0.0.0.0)[F)ds)

There exists T, € [0, T1[ with
ElY/"* < Lp,n > 1,t € [To, Th],
2
where T, = 0 or T, €]0, T1[ with fTT; (p1(s,L1) + Mpa(s,Ly)ds = AMU As proved above,

ABDSDE (7) admits a solution on [T, T + K]. If T, = 0, the existence proof is complete.
Otherwise, we can find a sequence {Tp, 0, L, p > 1} defined as

OSTP<TP,1<"‘<T1<T0:T,

2C(14+M)+aq +apM

5f:eWT(EIY¥:1IZ+1+ pa(s, B! ?)ds

3+2C(14+ M) —2(a1 + axM) /T+I<
2C(1+ M) + a1 +asM T,

p—1
1—a1 —arM 2C(1 + M) +1 /'T+K p—12
CM ar)E Z ds
te 2C(1+ M) + a1 + oM +2C(1—|—M)-i-ocl—i-oczM 2) 1 Za
0,0,0,0 -_— ,0,0,0,0 ds),
i / ST M) + iy +apm &0 00+ 57— rliels )[12)ds)
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2C(LEM) taq fepM B 2C(1 4 M) — 2 M) THK
b 2 S )

p—12
2C(1+ M) + a1 + axM 28/ B[YS[F)ds

Ty
1—a1—apM 2C(1+ M) +1 /T+K p—1,2
2 CM w)E V4 ds
+ 2C(14+ M) + ay + apM +2C(1+M)+D€1+ZX2M 2) Tp_1 Za
+E / 2C(1+ M) +uq +a2M|f(S 0,0,0,0)"+ 1—a; —aoM l(s,0,0,0,0)[1%)ds),

and

Ty1 (55’
|7 15, L) + Mpa(s, Ly)ds > 2
T, L

through repeating the above procedure. Therefore, we can derive a solution to ABDSDE (2)
on [Tp, T + K] through iteration method. In the following, we will check there exists a finite
number p > 1 with T, = 0. Denote

2C(14+M)+aq +apM T 1— —
A=2¢ T8 0M T(l +E & — oM
2C(1 + M) + a1+ thM

Ig(s,0,0,0,0)|?)ds).

1£(5,0,0,0,0)
2C(1+ M) +1
LA+ M)+1

1- N, — IXQM
Then, in view of (H1),
2C(1+M)+1x1+a2MT 1 3+2c(1 + M) _ 2(0&1 + OCQM) +K 1
Ly=2¢ Tt (EYE2 / ElYP )4
p=20 Tt (R P4 2C(1+ M) + a1 + aaM T p2(s, B[V |)ds
1—ay — M 2C(14+ M) +1 /T+I< b1
CM E Z d A
+2 2C(1+ M) +ay + oM 2C(1+M)+oc1+oc2M(X2) 125 Pds) +

p—1

>A>0, forall p>1.

Forany p > 1,since sup E|Y/|? < oo, L, is finite. So, we have
T,<t<T+K

0<Lé<1 for any p > 1. ®)
P
Since fori = 1,2, p;(t,.) is a concave function, p;(t,0) = 0 while ¢ € [0, T], we get
pi(t,Ax) > Ap;i(t,x), forall any A € [0,1] and any xe&RT.

By the inequality (8), we have

pi(t, A) = pi(t,pr> > Lépi(t,Lp), for each p > 1.
r P

Therefore, for each p > 1, we can derive that

T p i 1
/ (p1(s, A) + Mpa (s, A))ds = Z/ (p1(s, A) + Mpa(s, A))ds
i=1
P A LA
zzf/ H(pa(s, L) + Mpa(s, Li))ds > )= =2
= i=1 -
By definition, %6 %, foranyi > 1. So, forany p > 1,
T PA
> .
(@16 4) + Mpats, A)yas = B ©)
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Notice that A > 0, the right side of inequality (9) tends to +co while p — +occ.
Consequently, as fOT (p1(s, A) + Mpa(s, A))ds is finite, so we can obtain a sufficient large p
such that

T T
/T ,, (p1(s, A) + Mpa(s, A))ds > /0 (p1(s, A) + Mpa(s, A))ds.

Therefore, there is a finite p with T, = 0, and we assert the existence of solution on
[0, T +K].

Uniqueness. Set (Y., Z.), (Y, Z") € S?([0, T + K]; RF) x M?(0, T + K; R¥*?) be the two
solutions of ABDSDE (2). Let 8 > 0. Applying the It6’s formula yields

T T T
Em—ﬂﬁﬂ+m/|n—m%WHﬂ/HL—&WW%:E/<%—%
t t t
f(S/ Ys, Zs, Ys+5(s)f Zs+§(s)) - f(sr Ys,r Z;/ Ys,/Jr(S(s)r Z;+§(s))>eﬁsds

T
FE [ 180 Ys, Zo Yoy Zurgiey) = 805 Y 20 Y] 50 2L ) PP

By the assumptions (A1), (A2), (H3), Young’s inequality 2ab < %a2 + Bb?, and Jensen’s
inequality, we have

1 T
E[Y; — Y/ [P + (1 - BC(M +1) —a1 —axM)E /t 1Zs — Z¢|[PePds

<(5+1) [ (5 BIYs — YI21) + Mpa(s, B[[¥s — Vi) )eP s,

Choosing g > 1E(M+l)

T =M = 0, we get

1 T
ElY; — Y{>+ (1— BC(MJr 1) —ag — (XZM)]E/E 1Zs — Z{|\*ds
(10)

< G407 [ a5, 1Y ~ YIP1)+ Mpa(s, Bl — VI

Therefore
1 T
E|Y; - Y/|? < (ﬁ + 1>eﬁT/t (01(s, E[|Ys — YI|*]) + Mpa(s, E[|Ys — Y|?]))ds.

From the comparison Theorem for ODE, we can obtain
E|Y; — Y/|* < v(t), foranyte [0,T],

where () is the maximum left shift solution of the following equation:

u = —(!13 +1)ePT (o1 (t, u) + Mpa(t,u));
u(T) =0.

According to the assumption (H3), we have y(t) = 0,t € [0, T]. So E|Y; — Y/|> = 0,
t € [0, T], this means Y; = Y/, a.s. for all t € [0, T]. It immediately derives from (10) that
Zy=17Z, as., foreacht € [0,T]. O

4. Comparison Theorems

In this part, we mainly focus on one dimensional ABDSDEs, that is, k = 1. Firstly, we
propose one comparison theorem for BDSDEs under non-Lipschitz coefficients, which acts
as a starting point for the following investigation. For i = 1,2, assume that & € L?(Fr; R)
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and fi(t,y,z) : [0,T] x Q x R x R? — R satisfies (H1) and (H3). Then, the following
BDSDE:

Yi = §+/fsyg, ds+/ its,Y!,7)d'B s - /ZdWS,te[O,T], (11)

has a unique solution (Y/,Z") € S2([0, T;R) x M?(0, T;R?) for i = 1,2, according to
Theorem 3.4 in [10]. We can assert the following comparison theorem.

Lemma 4. Let (Y!,Z1) and (Y?,Z?) be solutions of BDSDEs (11), respectively. Assume that
o G > Gas; @) f(LY],Zy) > 206V YY) or £ YP, Z7) > f2(1 VP, Y), s, for all
€[0,T); 3) gt Y}, zl) = &2(t, YL, Y}) or g1 (t,Y?,Z?) = ¢*(t, Y2, Y?),as., forallt €
[O, T]. Then Y} > Y?,as., foranyt € [0,T].
Proof. Let
Vw=Y?-Y!, Zi=2} -7}, {=2-¢".
fr= 20 - £ Y Z), &= g2 YE ZE) — g1 (1 Y], Z4).

In view of It6-Meyer’s formula and &' > &2, a.s., we have

. T A T T )
]E|Yt+|2+E/t 1y,00) |2 s :2E/t Ys+fsds+IE?/t 1,20 145 ds.

By the assumption (H3), Young’s inequality 2ab < %az + 0b%, and Jensen’s inequality,
for each 6 > 0, we get

.T A A T A
ZE/ Yo+ fuds ng/ Y (F2(s, Y2, 72) —fz(t,Ysl,Zsl))ds
t

-
él_ME [ s L [Ty o) 12602, 22) - 202 7)) P
< IE‘,/ 75 2ds + 124 / o1(s, E[|V"2])ds 1_"‘1E/T1 0|24 s
T—ay Ji 2C 2 P20} ’
and

T T
E [ 15,0p/86Ps =E [ 11500181 (5, Y2, 22) - g1, Y2, 20) P
T N T R
g/t pl(S,E[|Yj|2])ds+a1]E/t .20y |26 Pds.

Then, thanks to the above inequalities, we obtain

EIY; 2 < E/ [V s + (T )/tTpl(s,IEHYsﬂz])ds
From the Gronwall’s inequality, we have
B P < e (L 1) [ (s BT P
Using the same proof method about the uniqueness in Theorem 1, we can obtain
E|Y;"|2=0, foralltc|[0,T].

Hence
Y! > Y? as., foranyt < [0,T).
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O

For i = 1,2, we first study a comparison theorem of anticipated BDSDEs of the
following generalized version:

= CIT+/ 8 Y8 26 Y iy Za i) 08
+ Yi,zZiyl 7 )dB.- " Ziaw te(0T]
/ (s, s+5() 5+ (s) ’ /t T o
=a, Zi=unl, te[l,T+K].

(12)

~ Let us assume that 5i(~),51:(-)', gi(-),Zi(-) satisfies (A1) and (A2), & € S?([T, T + K|;R),
n' e M*(T,T+K;R?),and (f', §') satisfies (H1) and (H3). Then, by Theorem 1, anticipated
BDSDE (12) has a unique solution (Y?,Z!) € S%([0, T + KJ;R) x M?(0, T + K;R¥) for
i=1,2

Theorem 2. Suppose (Y1, Z) and (Y?,Z2) are solutions of ABDSDEs (12), respectively As-
sume that (1) &} > Q‘tz,as forall t € [T, T+K]; 2 f(t, Y}, Z}/Ytl+(,1() (¢ )) >

204yl 2 1t v2 72 vyl 204 V2 V2 V2
f (t' Yt’Zt'Yt+52(t) t-‘rCz ) or f (t Y Z Yt+51() t+§1(t)) > f (t Yt’Yt’Yt_H;Z()

2 1 71 1 1 _ 1 1
Zt+§2(t)) as., forallt € [0 T}; 3) g'(t, Yt/thYt+51() Zt+Z (t)) 2 (t, Yt,Yt,Y I

2 2 72 vl 1 2 v2 y2 2
Zt+Z2(t)) or g'(t, Yf’zf’Yt+gl() Zt+Zl(t)) = &2t Yt,Yt,Yt 2 )'Zt+Zz(t))'a'S" forallt €
[0, T]. Then Y} > Y?,a.s., foranyt € [0, T +K].
Proof. Fori =1,2, set

i _ i G i
F (t/ylz) _f (t ]// 7 t+(51( )’Zt—i-Cl(t)) (t/]//z) - g (t ]// / t+5 ( )/Zi‘-‘rzl(t)),
then (Y,i, Zl) is the unique solution of the following BDSDE,
. ) T . .
Y;:ngJr/ Fi(s, Y1, Z1) ds+/ (s, Y, Z)d'B s — / ZidW,, t € [0,T].
t
According to Lemma 4, we can get
Y! >Y?,as., forallt €[0,T),
which implies
Y! > Y?,as., forallt € [0,T+K].

O

Example 1. Let f1(t,7,2,0(r),8(F)) = |7 + 2| + EZ[|0(r)|] + Et[cos 8(F)], £2(t, 7,2, §~( ),
9(7) = 7+ |2| + EX[sin0(r)] — 1, g'(t, 7,2, 0(r ) o( ) =38 2(t,5,%,0(r),8(7)) = 5+ 5 +
EZ[6(r)8(7)]. Then by Theorem 3, we can derive Y} > Y? , a.s., for any t € [0, T + K] when the

assumption (1) is satisfied.

Secondly, for i = 1,2, we will study a comparison theorem of anticipated BDSDEs of
the following type:

. . T
Yi=ght [ F oYL ZLYE 0 2 )ds
+/ s YLZY 70 . B —/Tzfdw t€0,T]
s+3(s) Ts+ls)) T S T T
Yi=d, Zi=yi te[TTH+K]

(13)
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~ Assume that (5(-),§i(-),5i(;),zi(-)) satisfies (A1) and (A2), & € S%([T, T + K|;R),
ni e M2(T, T+ KR and (f,g') satisfies (H1) and (H3). Then, by Theorem 1, anticipated
BDSDE (13) has a unique solution (Y?,Z!) € S2([0, T + KJ;R) x M?(0, T + K;R¥) for
i =1,2. In order to obtain the following comparison theorem, we further assume p; (¢, u)
with linear growth, thatis, fori = 1,2, p;(t,u) < a;(t) + b;(t)u where a;(t) > 0,b;(t) > 0,
with

T+K T+K
[ adt<oo and [T (bt < .
0 0

Theorem 3. Suppose (Y!,Z1) and (Y?,Z?) are solutions of ABDSDEs (13), respectively. As-
sume that (1) & > ¢&2,as., forall t € [T,T+K]; (2) fl(t’Yfl’zfl’ytl+5(t)’ztl+§1(t)) >
fz(t,Y},Y},Yt1+5(t),Zf+€2(t)),a.s., forall t € [0,T]; (3) for any (t,y,z) € [0,T] x R x
R,y € LZ(]-"S;R"Z) ands € [t, T+ K},fz(t,y,z, -,7v) is increasing, i.e., fz(t,y,z,yz, v) >

ALy, z,y1,7),if y2 > vy withyg,y, € R; (4) gH(t, Y},Z},Yt1+31(t),Zt1+Z1(t)) = g*(t, Y}, 7},
2 2 15 y2
Yt+52(t)’zt+22(t))’a's" forallt € [0,T]. ThenY; > Yf,as., foranyt € [0, T+ K].

Proof. Fori =1,2, set

),

Ft0,2) = f 02 Y 2 G 02 = gtz Y 02

then (Y7, Z!) be the unique solution of the following BDSDE,
. . T . o T | L e T
Y! :ng+/ Pl(s,y;,z;)ds+/ Gl(s,Y;,Z;)st—/ Zidw,, t e [0,T],
t t t
Yi=¢, Zi=yi, te[T,T+K].
Let ?Z(t, Y,z) = fz(t, v,z Yt1+ 51y th i t))’ then the following BDSDE admits a unique
solution (Y3, Z3),
3 2 T2 3 3 T 3 3\1% T s
{Yt :§T+/t 7 (s,YS,ZS)ds—i—/t G (s,YS,ZS)dBS—/t Z3dW.,, t e [0,T],
Y} =¢, Z} =y}, te[T,T+K].

According to the assumptions (1), (2), (4) and Lemma 4, we can get Ytl > Yf,a.s.,
for each t € [0, T], which implies Ytl > Yf’,a.s., forany t € [0, T + K]. The following
BDSDE,

T T — T
Yi— @24 /t P Y ZEY 500 2o )ds + /t G2(s, ¥4, 7Hd B, — /t Z4 W, t € [0, T],
Yt =¢, Zt=ni, te[T,T+K]
admits a unique solution (Y#, Z#). From Lemma 4 and assumptions (3), we can get Y} >

Yf,a.s., forall t € [0, T], which implies Yt3 > Yt‘l,a.s., forany t € [0,T+K]. Forj > 5, let

. T S T o T .
-1 <
=+ [ PeYLZY 2 agds+ [ R YLZDdB.— [ Zaw,te (o1,
Y=g, 7Z =y te[T,T+K].
According to Lemma 4 and by induction, we can get Yt4 > Yt5 > e > Yt] >
Yt],a.s., forallt € [0, T+ K], hence, forall j > 3

Y! > Y], as., forallt € [0, T +K]. (14)
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Foranyj > 4, > 0, apply Ito’s formula to ef| Ytj |?, in view of (H3), Young’s inequality,
Jensen’s inequality and for i = 1,2, p;(t, u) has a linear growth, we have

' 2
E|Y/|?ePt + (1 —ay — w +2C

T . T .
B [ \Ziiebsds <Gy + (14 5)1@/ by (s)ePE[|Y! [2]ds

IE/ (s)eP [ Y! " [2]ds,

where
T T+K
¢ :E[eﬁ%%m (1 Z) [ ar(syebods + (a + 22 e / 22 e ds
0 0
E/ §)ePE[|E22ds + (1 + = M/ (s, E[|Y22])ePods
2M T+K

T
o az(s)eﬁsds—i—BE / 1£2(5,0,0,0,0) Pe*ds + (1 + ) / 1%(s,0,0,0,0)|2ePds.
0 0

“f:flc Then, there exists C; > 0, which is independent of j,

Now let us choose g =
such that for j > 4,

. T . T .
E[Y/P) < Co+GE [ bi(s)[¥/Pds + CE [ ba(s)|¥/ P,
t t
which leads to

. T T .
supE[|Y/?] < C2+C2E/O bz(s)|Yt3|2dt—|—C2/t (b1(s) + ba(s)) sup E[| Y/ [2]ds

jZ4 jZ4

Then Gronwall’s inequality yields

. T
sup E[|Y/|] < CpeC2 I 15 +02(s)ds1 | g / ba(s)| Y22,
j>4 70
which implies
. T
sup sup B[/ < CoeC2 0 (101 4 [T py(9)E[ sup [YPPIde] < 0. (15)
0T j>4 0 0<t<T
Forj>4,p > 1, Set
o i+ i+ ‘
1{: Y] P Y] Z] Z] p Z]
Al J+P Zj+p yitp—1
£t £t Y2 'Yt+5() Zt+c:2
i+ +
G(t,Y] ”,z{ PY-G (t,Y{,z{),

1
)= PO ZLY] 00 T )

e
Then for j > 4, (Y] , Vil ) satisfies
v T . T . o T .
Y{:/ Pgds+/ ngBs—/ Zldw,, t € [0, T),
t t t

Y/ =0, ZJ=0, te[T,T+K].
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Applying Itd’s formula to eP| Ytj |> where B > 0, and from the assumption (H3), Young’s

inequality, Jensen’s inequality, we can obtain
N T . T o e
BIY]Pe + 8 [ 2P ds <5 [ (or (s, EITIR) + Mpa(s, BTS2 efds

C T . T "
Hg (xl)]E/t |21 2B ds + /t 01(s, E[|Y2])ePds.
15(;;1 . Then there exists C3 > 0, which is independent of j, p,

Now let us choose =
such that

A1 T AT T AT AT
EHYHZHE[ |Z£|2ds<c3/t (01 (s, E[[V]?]) + Mpa(s, B[V 2)))ds.  (16)

Denote h(t) = limsup,_, ]E[|17t]|2] Then in view of (15) we have 0 < h(t) < oo. Then,
apply Fatou’s Lemma to the right-hand side of (16), we obtain

B0 < Cs [ (pr(s,h(5)) + Mpa (s, () s

Using the same proof method about the uniqueness in Theorem 1, we can obtain
h(t) = 0, that is lim SUP;_, 00 E[|Y!|?] = 0, for all t € [0, T]. Moreover, from (16) it follows
that

012 T 0712 oj—12
sup E[|Y;|7] < Cs/O (p(E[|Y5]7]) + p(E[|Ys "[7]))ds

0<t<T

Applying Fatou’s Lemma again leads to

sup E[|Yt]|2] — 0 asj — oo.
0<I<T

By taking j — oo in (16), we use Fatou’s Lemma again to obtain
T .
IE/ 12]12dt — 0 as j — oo.
0

Hence, we have shown that (Y¥, Z¥) isa Cauchy sequence in S?(0, T; R) x M?(0, T; RY),
thus it is also a Cauchy sequence in 52(0, T+ K R) x MZ(O, T+ K; ]Rd). As a consequence,
we can find (Y., Z.) € $*(0, T + K;R) x M?(0, T + K;R?) such that Y; = &, Z; = 5? for
T<t<T+Kand

. T .
sup E[]Y] - v;[?] +IEJ[/ 7] — Z,2df] = 0 as j — co.
0<t<T 0

Therefore, it’s easy to verify that, as j — oo,
T S
2 -1 2 2 2 2
E /t 1f2(s, Y., ZL, Y;M(s), 22, o) = £ Y6 Zo, Yars(s) 22 o)) 7ds = 0,
T j 7] \2 2 2 2 2 2
]E/t |g (S/ YS/ZS/ YS+$2(S)/ZS+ZZ(S)) - g (S/ YS/ ZS/ YS+52(S),ZS+EZ(S))| dS — 0/

T . T
E[|/ zg-dws—/ Zs - dWq[?] = 0.
t t
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So, we conclude that (Y., Z.) solves the following ABDSDE:

. .
Y = ‘:%" + /t f2(s, Ys, Zs, YS+5(5)’Z;+§2(5))dS

' 2 yaF. - [ zd
+/t SV 2o 2 ) Bs—/t ZdW,,  te[oT],

Y, =&, Zy=y? te|T,T+K].

Therefore, we can infer that Y; = Y?,a.s., forall t € [0, T + K] from the uniqueness
part of Theorem 1. Let j — oo in (14) yields Y! > Y?,a.s., forallt € [0, T+ K]. O

Example 2. Let Ut 7,2,0(r),0(F )) [7] + |2 + EFH[|8(r)]] —|—IE]'—'f[arctan19(17 ), 27,2,
0(r),8(7)) = 7|2 +E7 [6(1)] ~ 3,8 (1,5,,6(0), 5(1) = 8°(1,7,%,6(r), (7)) = arccoty +
|Z| + Bt [0(r )+19( )]. Then by Theore 3, we can derive Y} > Y? ,a.s., forany t € [0, T + K]
when the assumption (1) is satisfied.

5. Conclusions

The purpose of this paper is to introduce and study a type of anticipated BDSDEs
with non-Lipschitze coefficients. We first show that the adapted solution of this kind of
ABDSDE:s is existent and unique. Furthermore, we give two comparison theorems one
dimensional situation. In our future publications, we will concentrate on investigating this
interesting problem and pay much attention to the application of this kind of equation,
especially in control such as [20-25].
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