Next Issue
Volume 4, June
Previous Issue
Volume 3, December
 
 

J. Dev. Biol., Volume 4, Issue 1 (March 2016) – 12 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
1579 KiB  
Review
An Overview of Hox Genes in Lophotrochozoa: Evolution and Functionality
by Marco Barucca, Adriana Canapa and Maria Assunta Biscotti
J. Dev. Biol. 2016, 4(1), 12; https://doi.org/10.3390/jdb4010012 - 19 Mar 2016
Cited by 18 | Viewed by 8538
Abstract
Hox genes are regulators of animal embryonic development. Changes in the number and sequence of Hox genes as well as in their expression patterns have been related to the evolution of the body plan. Lophotrochozoa is a clade of Protostomia characterized by several [...] Read more.
Hox genes are regulators of animal embryonic development. Changes in the number and sequence of Hox genes as well as in their expression patterns have been related to the evolution of the body plan. Lophotrochozoa is a clade of Protostomia characterized by several phyla which show a wide morphological diversity. Despite that the works summarized in this review emphasize the fragmentary nature of the data available regarding the presence and expression of Hox genes, they also offer interesting insight into the evolution of the Hox cluster and the role played by Hox genes in several phyla. However, the number of genes involved in the cluster of the lophotrochozoan ancestor is still a question of debate. The data presented here suggest that at least nine genes were present while two other genes, Lox4 and Post-2, may either have been present in the ancestor or may have arisen as a result of duplication in the Brachiopoda-Mollusca-Annelida lineage. Spatial and temporal collinearity is a feature of Hox gene expression which was probably present in the ancestor of deuterostomes and protostomes. However, in Lophotrochozoa, it has been detected in only a few species belonging to Annelida and Mollusca. Full article
(This article belongs to the Special Issue Hox Genes and Development)
Show Figures

Figure 1

3549 KiB  
Article
Histologic Assessment of Drug-Eluting Grafts Related to Implantation Site
by Jean-Christophe Tille, Sarra De Valence, Delia Mandracchia, Benjamin Nottelet, Francesco Innocente, Robert Gurny, Michael Möller and Beat H. Walpoth
J. Dev. Biol. 2016, 4(1), 11; https://doi.org/10.3390/jdb4010011 - 20 Feb 2016
Cited by 8 | Viewed by 6119
Abstract
Drug-eluting vascular prostheses represent a new direction in vascular surgery to reduce early thrombosis and late intimal hyperplasia for small calibre grafts. Subcutaneous implantation in rats is a rapid and cost-effective screening model to assess the drug-elution effect and could, to some extent, [...] Read more.
Drug-eluting vascular prostheses represent a new direction in vascular surgery to reduce early thrombosis and late intimal hyperplasia for small calibre grafts. Subcutaneous implantation in rats is a rapid and cost-effective screening model to assess the drug-elution effect and could, to some extent, be useful to forecast results for vascular prostheses. We compared biological and histological responses to scaffolds in different implantation sites. Polycaprolactone (PCL), paclitaxel-loaded PCL (PCL-PTX) and dexamethasone-loaded PCL (PCL-DXM) electrospun scaffolds were implanted subcutaneously and in an infrarenal abdominal aortic model in rats for up to 12 weeks. At the conclusion of the study, a histological analysis was performed. Cellular graft invasion revealed differences in the progression of cellular infiltration between PCL-PTX and PCL/PCL-DXM groups in both models. Cell infiltration increased over time in the aortic model compared to the subcutaneous model for all groups. Cell counting revealed major differences in fibroblast, macrophage and giant cell graft colonisation in all groups and models over time. Macrophages and giant cells increased in the PCL aortic model; whereas in the subcutaneous model these cell types increased only after three weeks or even decreased in the drug-eluting PCL groups. Other major findings were observed only in the aortic replacement such as extracellular matrix deposition and neo-angiogenesis. The subcutaneous implant model can be used for screening, especially when drug-eluting effects are studied. However, major histological differences were observed in cell type reaction and depth of cell penetration compared to the aortic model. Our results demonstrate that the implantation site is a critical determinant of the biological response. Full article
(This article belongs to the Special Issue Wound Healing and Tissue Regeneration)
Show Figures

Graphical abstract

1552 KiB  
Review
HoxA Genes and the Fin-to-Limb Transition in Vertebrates
by João Leite-Castro, Vanessa Beviano, Pedro Nuno Rodrigues and Renata Freitas
J. Dev. Biol. 2016, 4(1), 10; https://doi.org/10.3390/jdb4010010 - 17 Feb 2016
Cited by 16 | Viewed by 7996
Abstract
HoxA genes encode for important DNA-binding transcription factors that act during limb development, regulating primarily gene expression and, consequently, morphogenesis and skeletal differentiation. Within these genes, HoxA11 and HoxA13 were proposed to have played an essential role in the enigmatic evolutionary transition from [...] Read more.
HoxA genes encode for important DNA-binding transcription factors that act during limb development, regulating primarily gene expression and, consequently, morphogenesis and skeletal differentiation. Within these genes, HoxA11 and HoxA13 were proposed to have played an essential role in the enigmatic evolutionary transition from fish fins to tetrapod limbs. Indeed, comparative gene expression analyses led to the suggestion that changes in their regulation might have been essential for the diversification of vertebrates’ appendages. In this review, we highlight three potential modifications in the regulation and function of these genes that may have boosted appendage evolution: (1) the expansion of polyalanine repeats in the HoxA11 and HoxA13 proteins; (2) the origin of +a novel long-non-coding RNA with a possible inhibitory function on HoxA11; and (3) the acquisition of cis-regulatory elements modulating 5’ HoxA transcription. We discuss the relevance of these mechanisms for appendage diversification reviewing the current state of the art and performing additional comparative analyses to characterize, in a phylogenetic framework, HoxA11 and HoxA13 expression, alanine composition within the encoded proteins, long-non-coding RNAs and cis-regulatory elements. Full article
(This article belongs to the Special Issue Hox Genes and Development)
Show Figures

Graphical abstract

3324 KiB  
Review
The Roles of Aquaporins in Plant Stress Responses
by Zunaira Afzal, T. C. Howton, Yali Sun and M. Shahid Mukhtar
J. Dev. Biol. 2016, 4(1), 9; https://doi.org/10.3390/jdb4010009 - 04 Feb 2016
Cited by 235 | Viewed by 17283
Abstract
Aquaporins are membrane channel proteins ubiquitously present in all kingdoms of life. Although aquaporins were originally discovered as water channels, their roles in the transport of small neutral solutes, gasses, and metal ions are now well established. Plants contain the largest number and [...] Read more.
Aquaporins are membrane channel proteins ubiquitously present in all kingdoms of life. Although aquaporins were originally discovered as water channels, their roles in the transport of small neutral solutes, gasses, and metal ions are now well established. Plants contain the largest number and greatest diversity of aquaporin homologs with diverse subcellular localization patterns, gating properties, and solute specificity. The roles of aquaporins in physiological functions throughout plant growth and development are well known. As an integral regulator of plant–water relations, they are presumed to play an important role in plant defense responses against biotic and abiotic stressors. This review highlights involvement of various aquaporin homologs in plant stress responses against a variety of environmental stresses that disturb plant cell osmotic balance and nutrient homeostasis. Full article
Show Figures

Figure 1

1705 KiB  
Article
Solving Classification Problems for Large Sets of Protein Sequences with the Example of Hox and ParaHox Proteins
by Stefanie D. Hueber and Tancred Frickey
J. Dev. Biol. 2016, 4(1), 8; https://doi.org/10.3390/jdb4010008 - 04 Feb 2016
Cited by 2 | Viewed by 5116
Abstract
Phylogenetic methods are key to providing models for how a given protein family evolved. However, these methods run into difficulties when sequence divergence is either too low or too high. Here, we provide a case study of Hox and ParaHox proteins so that [...] Read more.
Phylogenetic methods are key to providing models for how a given protein family evolved. However, these methods run into difficulties when sequence divergence is either too low or too high. Here, we provide a case study of Hox and ParaHox proteins so that additional insights can be gained using a new computational approach to help solve old classification problems. For two (Gsx and Cdx) out of three ParaHox proteins the assignments differ between the currently most established view and four alternative scenarios. We use a non-phylogenetic, pairwise-sequence-similarity-based method to assess which of the previous predictions, if any, are best supported by the sequence-similarity relationships between Hox and ParaHox proteins. The overall sequence-similarities show Gsx to be most similar to Hox2–3, and Cdx to be most similar to Hox4–8. The results indicate that a purely pairwise-sequence-similarity-based approach can provide additional information not only when phylogenetic inference methods have insufficient information to provide reliable classifications (as was shown previously for central Hox proteins), but also when the sequence variation is so high that the resulting phylogenetic reconstructions are likely plagued by long-branch-attraction artifacts. Full article
(This article belongs to the Special Issue Hox Genes and Development)
Show Figures

Graphical abstract

17288 KiB  
Article
Restricted Pax3 Deletion within the Neural Tube Results in Congenital Hydrocephalus
by Hong-Ming Zhou and Simon J. Conway
J. Dev. Biol. 2016, 4(1), 7; https://doi.org/10.3390/jdb4010007 - 01 Feb 2016
Cited by 4 | Viewed by 7272
Abstract
Congenital hydrocephalus is a common birth-defect whose developmental origins are poorly understood. Pax3-null mutants show defects in myogenesis, neural tube closure, neural crest morphogenesis, and heart development that, consequently, results in embryonic lethality. Here we demonstrate that conditional deletion of the mouse [...] Read more.
Congenital hydrocephalus is a common birth-defect whose developmental origins are poorly understood. Pax3-null mutants show defects in myogenesis, neural tube closure, neural crest morphogenesis, and heart development that, consequently, results in embryonic lethality. Here we demonstrate that conditional deletion of the mouse Pax3 transcription factor results in fully-penetrant congenital obstructive hydrocephalus. To identify the role of Pax3 during cranial development, we deleted Pax3 within the neuroepithelium (via Pax7−Cre), in the neural crest (via P0-Cre), and in both the neuroepithelium and the neural crest (via Wnt1-Cre). Only conditional mutants generated using Pax7−Cre or Wnt1-Cre developed early onset congenital hydrocephalus due to stenosis of the third ventricle, suggesting that loss of neuroepithelial Pax3 is sufficient to disturb third ventricle morphogenesis. Dilation of lateral ventricles occurs as early as E14.5, and lineage-mapping revealed that the neuroepithelial cells in the conditional mutants are present, but fail to undergo normal differentiation at the stenotic site. Concomitant with a narrowing of the mutant third ventricle, we detected ectopic apoptosis, reduced proliferation, and abnormal β-catenin localization. Furthermore, consistent with the overlapping expression pattern of Pax3 and Pax7 in early cranial neuroepithelium, we demonstrated a combinatorial role, as compound Pax3/Pax7 heterozygotes display partially-penetrant congenital hydrocephalus. These murine data provide an experimental paradigm underpinning clinical observations of the presence of PAX3 mutations in some hydrocephalic patients. Full article
(This article belongs to the Special Issue Cell Fate Decisions in Development and Disease)
Show Figures

Figure 1

1854 KiB  
Article
Alterations in Synthesis and Repair of DNA during the Development of Loach Misgurnus fossilis
by Leonid V. Gening, Andrei V. Lakhin, Irina V. Makarova, Valentina V. Nenasheva, Ludmila E. Andreeva and Vyacheslav Z. Tarantul
J. Dev. Biol. 2016, 4(1), 6; https://doi.org/10.3390/jdb4010006 - 27 Jan 2016
Cited by 2 | Viewed by 4256
Abstract
Using a modified radiolabeled primer extension method (we named this modification misGvA—“misincorporation of G versus A”) we have investigated the DNA synthesis and repair at early and late stages of development of loach Misgurnus fossilis. The misincorporation activity of DNA polymerase iota (Pol [...] Read more.
Using a modified radiolabeled primer extension method (we named this modification misGvA—“misincorporation of G versus A”) we have investigated the DNA synthesis and repair at early and late stages of development of loach Misgurnus fossilis. The misincorporation activity of DNA polymerase iota (Pol ι) in wild-type loach could not be detected by this method at any stage of loach development. In transgenic loach overexpressing human Pol ι we have shown that the bypassing of DNA synthesis arrest after incorporation of mismatched nucleotide by Pol ι (the T-stop) was not associated with this enzyme. Non-transgenic loach larvae are virtually lacking the capacity for error correction of DNA duplex containing a mismatched nucleotide. Such repair activity develops only in the adult fish. It appears that the initial stages of development are characterized by more intensive DNA synthesis, while in terminal stages the repair activities become more prominent. The misGvA approach clearly indicates substantial changes in the DNA synthesis intensity, although the role of particular replicative and repair DNA polymerases in this process requires further study. Full article
Show Figures

Figure 1

656 KiB  
Editorial
Acknowledgement to Reviewers of Journal of Developmental Biology in 2015
by Journal of Developmental Biology Editorial Office
J. Dev. Biol. 2016, 4(1), 5; https://doi.org/10.3390/jdb4010005 - 25 Jan 2016
Viewed by 3326
Abstract
The editors of Journal of Developmental Biology would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2015. [...] Full article
749 KiB  
Review
Cell Fate Decisions During Breast Cancer Development
by Kayla Gross, Ania Wronski, Adam Skibinski, Sarah Phillips and Charlotte Kuperwasser
J. Dev. Biol. 2016, 4(1), 4; https://doi.org/10.3390/jdb4010004 - 22 Jan 2016
Cited by 20 | Viewed by 10108
Abstract
During the formation of breast cancer, many genes become altered as cells evolve progressively from normal to a pre-malignant to a malignant state of growth. How mutations in genes lead to specific subtypes of human breast cancer is only partially understood. Here we [...] Read more.
During the formation of breast cancer, many genes become altered as cells evolve progressively from normal to a pre-malignant to a malignant state of growth. How mutations in genes lead to specific subtypes of human breast cancer is only partially understood. Here we review how initial genetic or epigenetic alterations within mammary epithelial cells (MECs) can alter cell fate decisions and put pre-malignant cells on a path towards cancer development with specific phenotypes. Understanding the early stages of breast cancer initiation and progression and how normal developmental processes are hijacked during transformation has significant implications for improving early detection and prevention of breast cancer. In addition, insights gleaned from this understanding may also be important for developing subtype-specific treatment options. Full article
(This article belongs to the Special Issue Cell Fate Decisions in Development and Disease)
Show Figures

Figure 1

1024 KiB  
Review
Notochord Cells in Intervertebral Disc Development and Degeneration
by Matthew R. McCann and Cheryle A. Séguin
J. Dev. Biol. 2016, 4(1), 3; https://doi.org/10.3390/jdb4010003 - 21 Jan 2016
Cited by 81 | Viewed by 17505
Abstract
The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways [...] Read more.
The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches. Full article
(This article belongs to the Special Issue Cell Fate Decisions in Development and Disease)
Show Figures

Figure 1

3241 KiB  
Article
Hermes (Rbpms) is a Critical Component of RNP Complexes that Sequester Germline RNAs during Oogenesis
by Tristan Aguero, Yi Zhou, Malgorzata Kloc, Patrick Chang, Evelyn Houliston and Mary Lou King
J. Dev. Biol. 2016, 4(1), 2; https://doi.org/10.3390/jdb4010002 - 19 Jan 2016
Cited by 18 | Viewed by 6598
Abstract
The germ cell lineage in Xenopus is specified by the inheritance of germ plasm that assembles within the mitochondrial cloud or Balbiani body in stage I oocytes. Specific RNAs, such as nanos1, localize to the germ plasm. nanos1 has the essential germline [...] Read more.
The germ cell lineage in Xenopus is specified by the inheritance of germ plasm that assembles within the mitochondrial cloud or Balbiani body in stage I oocytes. Specific RNAs, such as nanos1, localize to the germ plasm. nanos1 has the essential germline function of blocking somatic gene expression and thus preventing Primordial Germ Cell (PGC) loss and sterility. Hermes/Rbpms protein and nanos RNA co-localize within germinal granules, diagnostic electron dense particles found within the germ plasm. Previous work indicates that nanos accumulates within the germ plasm through a diffusion/entrapment mechanism. Here we show that Hermes/Rbpms interacts with nanos through sequence specific RNA localization signals found in the nanos-3′UTR. Importantly, Hermes/Rbpms specifically binds nanos, but not Vg1 RNA in the nucleus of stage I oocytes. In vitro binding data show that Hermes/Rbpms requires additional factors that are present in stage I oocytes in order to bind nanos1. One such factor may be hnRNP I, identified in a yeast-2-hybrid screen as directly interacting with Hermes/Rbpms. We suggest that Hermes/Rbpms functions as part of a RNP complex in the nucleus that facilitates selection of germline RNAs for germ plasm localization. We propose that Hermes/Rbpms is required for nanos RNA to form within the germinal granules and in this way, participates in the germline specific translational repression and sequestration of nanos RNA. Full article
(This article belongs to the Special Issue Cell Fate Decisions in Development and Disease)
Show Figures

Figure 1

247 KiB  
Review
Beyond the Mammalian Heart: Fish and Amphibians as a Model for Cardiac Repair and Regeneration
by Kyle Jewhurst and Kelly A. McLaughlin
J. Dev. Biol. 2016, 4(1), 1; https://doi.org/10.3390/jdb4010001 - 23 Dec 2015
Cited by 12 | Viewed by 6884
Abstract
The epidemic of heart disease, the leading cause of death worldwide, is made worse by the fact that the adult mammalian heart is especially poor at repair. Damage to the mammal heart—such as that caused by myocardial infarction—leads to scarring, resulting in cardiac [...] Read more.
The epidemic of heart disease, the leading cause of death worldwide, is made worse by the fact that the adult mammalian heart is especially poor at repair. Damage to the mammal heart—such as that caused by myocardial infarction—leads to scarring, resulting in cardiac dysfunction and heart failure. In contrast, the hearts of fish and urodele amphibians are capable of complete regeneration of cardiac tissue from multiple types of damage, with full restoration of functionality. In the last decades, research has revealed a wealth of information on how these animals are able to perform this remarkable feat, and non-mammalian models of heart repair have become a burgeoning new source of data on the morphological, cellular, and molecular processes necessary to heal cardiac damage. In this review we present the major findings from recent research on the underlying mechanisms of fish and amphibian heart regeneration. We also discuss the tools and techniques that have been developed to answer these important questions. Full article
(This article belongs to the Special Issue Wound Healing and Tissue Regeneration)
Previous Issue
Next Issue
Back to TopTop