Previous Issue
Volume 12, March
 
 

J. Dev. Biol., Volume 12, Issue 2 (June 2024) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
3 pages, 167 KiB  
Editorial
Drosophila—A Model System for Developmental Biology
by Nicholas S. Tolwinski
J. Dev. Biol. 2024, 12(2), 15; https://doi.org/10.3390/jdb12020015 - 21 May 2024
Viewed by 266
Abstract
In this Special Issue, titled “Drosophila—A Model System for Developmental Biology”, we present a series of articles and reviews looking at the diverse ways that researchers are using the humble fruit fly, also known as the vinegar fly, to tackle the [...] Read more.
In this Special Issue, titled “Drosophila—A Model System for Developmental Biology”, we present a series of articles and reviews looking at the diverse ways that researchers are using the humble fruit fly, also known as the vinegar fly, to tackle the many aspects of development and homeostasis [...] Full article
(This article belongs to the Collection Drosophila - A Model System for Developmental Biology)
17 pages, 944 KiB  
Review
Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine
by Raiane Cristina Fratini de Castro, Tiago William Buranello, Kaiana Recchia, Aline Fernanda de Souza, Naira Caroline Godoy Pieri and Fabiana Fernandes Bressan
J. Dev. Biol. 2024, 12(2), 14; https://doi.org/10.3390/jdb12020014 - 7 May 2024
Viewed by 723
Abstract
The generation of mature gametes and competent embryos in vitro from pluripotent stem cells has been successfully achieved in a few species, mainly in mice, with recent advances in humans and scarce preliminary reports in other domestic species. These biotechnologies are very attractive [...] Read more.
The generation of mature gametes and competent embryos in vitro from pluripotent stem cells has been successfully achieved in a few species, mainly in mice, with recent advances in humans and scarce preliminary reports in other domestic species. These biotechnologies are very attractive as they facilitate the understanding of developmental mechanisms and stages that are generally inaccessible during early embryogenesis, thus enabling advanced reproductive technologies and contributing to the generation of animals of high genetic merit in a short period. Studies on the production of in vitro embryos in pigs and cattle are currently used as study models for humans since they present more similar characteristics when compared to rodents in both the initial embryo development and adult life. This review discusses the most relevant biotechnologies used in veterinary medicine, focusing on the generation of germ-cell-like cells in vitro through the acquisition of totipotent status and the production of embryos in vitro from pluripotent stem cells, thus highlighting the main uses of pluripotent stem cells in livestock species and reproductive medicine. Full article
(This article belongs to the Special Issue Cellular Reprogramming and Differentiation)
Show Figures

Figure 1

18 pages, 4801 KiB  
Article
Characterization of Angiogenic, Matrix Remodeling, and Antimicrobial Factors in Preterm and Full-Term Human Umbilical Cords
by Kaiva Zile Zarina and Mara Pilmane
J. Dev. Biol. 2024, 12(2), 13; https://doi.org/10.3390/jdb12020013 - 1 May 2024
Viewed by 581
Abstract
Background: Little is known about morphogenetic changes in the umbilical cord during the maturation process. Extracellular matrix remodeling, angiogenesis, progenitor activity, and immunomodulation are represented by specific markers; therefore, the aim of this study was to determine the expression of matrix metalloproteinase-2 (MMP2), [...] Read more.
Background: Little is known about morphogenetic changes in the umbilical cord during the maturation process. Extracellular matrix remodeling, angiogenesis, progenitor activity, and immunomodulation are represented by specific markers; therefore, the aim of this study was to determine the expression of matrix metalloproteinase-2 (MMP2), tissue inhibitor of metalloproteinases-2 (TIMP2), CD34, vascular endothelial growth factor (VEGF), and human β-defensin 2 (HBD2) in preterm and full-term human umbilical cord tissue. Methods: Samples of umbilical cord tissue were obtained from 17 patients and divided into two groups: very preterm and moderate preterm birth umbilical cords; late preterm birth and full-term birth umbilical cords. Routine histology examination was conducted. Marker-positive cells were detected using the immunohistochemistry method. The number of positive structures was counted semi-quantitatively using microscopy. Statistical analysis was carried out using the SPSS Statistics 29 program. Results: Extraembryonic mesenchyme cells are the most active cell producers, expressing MMP2, TIMP2, VEGF, and HBD2 at notable levels in preterm and full-term umbilical cord tissue. Statistically significant differences in the expression of CD34, MMP2, and TIMP2 between the two patient groups were found. The expression of VEGF was similar in both patient groups, with the highest number of VEGF-positive cells seen in the extraembryonic mesenchyme. The expression of HBD2 was the highest in the extraembryonic mesenchyme and the amniotic epithelium, where mostly moderate numbers of HBD2-positive cells were detected. Conclusions: Extracellular matrix remodeling in preterm and term umbilical cords is strongly regulated, and tissue factors MMP2 and TIMP2 take part in this process. The expression of VEGF is not affected by the umbilical cord’s age; however, individual patient factors can affect the production of VEGF. Numerous CD34-positive cells in the endothelium of the umbilical arteries suggest a significant role of progenitor cells in very preterm and moderate preterm birth umbilical cords. Antimicrobial activity provided by HBD2 is essential and constant in preterm and full-term umbilical cords. Full article
Show Figures

Figure 1

21 pages, 1293 KiB  
Review
Planar Cell Polarity Signaling: Coordinated Crosstalk for Cell Orientation
by Sandeep Kacker, Varuneshwar Parsad, Naveen Singh, Daria Hordiichuk, Stacy Alvarez, Mahnoor Gohar, Anshu Kacker and Sunil Kumar Rai
J. Dev. Biol. 2024, 12(2), 12; https://doi.org/10.3390/jdb12020012 - 29 Apr 2024
Viewed by 778
Abstract
The planar cell polarity (PCP) system is essential for positioning cells in 3D networks to establish the proper morphogenesis, structure, and function of organs during embryonic development. The PCP system uses inter- and intracellular feedback interactions between components of the core PCP, characterized [...] Read more.
The planar cell polarity (PCP) system is essential for positioning cells in 3D networks to establish the proper morphogenesis, structure, and function of organs during embryonic development. The PCP system uses inter- and intracellular feedback interactions between components of the core PCP, characterized by coordinated planar polarization and asymmetric distribution of cell populations inside the cells. PCP signaling connects the anterior–posterior to left–right embryonic plane polarity through the polarization of cilia in the Kupffer’s vesicle/node in vertebrates. Experimental investigations on various genetic ablation-based models demonstrated the functions of PCP in planar polarization and associated genetic disorders. This review paper aims to provide a comprehensive overview of PCP signaling history, core components of the PCP signaling pathway, molecular mechanisms underlying PCP signaling, interactions with other signaling pathways, and the role of PCP in organ and embryonic development. Moreover, we will delve into the negative feedback regulation of PCP to maintain polarity, human genetic disorders associated with PCP defects, as well as challenges associated with PCP. Full article
Show Figures

Figure 1

19 pages, 3296 KiB  
Article
A Residual N-Terminal Peptide Enhances Signaling of Depalmitoylated Hedgehog to the Patched Receptor
by Sophia F. Ehlers, Dominique Manikowski, Georg Steffes, Kristina Ehring, Fabian Gude and Kay Grobe
J. Dev. Biol. 2024, 12(2), 11; https://doi.org/10.3390/jdb12020011 - 9 Apr 2024
Viewed by 853
Abstract
During their biosynthesis, Sonic hedgehog (Shh) morphogens are covalently modified by cholesterol at the C-terminus and palmitate at the N-terminus. Although both lipids initially anchor Shh to the plasma membrane of producing cells, it later translocates to the extracellular compartment to direct developmental [...] Read more.
During their biosynthesis, Sonic hedgehog (Shh) morphogens are covalently modified by cholesterol at the C-terminus and palmitate at the N-terminus. Although both lipids initially anchor Shh to the plasma membrane of producing cells, it later translocates to the extracellular compartment to direct developmental fates in cells expressing the Patched (Ptch) receptor. Possible release mechanisms for dually lipidated Hh/Shh into the extracellular compartment are currently under intense debate. In this paper, we describe the serum-dependent conversion of the dually lipidated cellular precursor into a soluble cholesteroylated variant (ShhC) during its release. Although ShhC is formed in a Dispatched- and Scube2-dependent manner, suggesting the physiological relevance of the protein, the depalmitoylation of ShhC during release is inconsistent with the previously postulated function of N-palmitate in Ptch receptor binding and signaling. Therefore, we analyzed the potency of ShhC to induce Ptch-controlled target cell transcription and differentiation in Hh-sensitive reporter cells and in the Drosophila eye. In both experimental systems, we found that ShhC was highly bioactive despite the absence of the N-palmitate. We also found that the artificial removal of N-terminal peptides longer than eight amino acids inactivated the depalmitoylated soluble proteins in vitro and in the developing Drosophila eye. These results demonstrate that N-depalmitoylated ShhC requires an N-peptide of a defined minimum length for its signaling function to Ptch. Full article
(This article belongs to the Special Issue The 10th Anniversary of JDB: Feature Papers)
Show Figures

Figure 1

10 pages, 1434 KiB  
Article
Effect of Cyclic Adenosine Monophosphate on Connexin 37 Expression in Sheep Cumulus-Oocyte Complexes
by Mengyao Zhao, Gerile Subudeng, Yufen Zhao, Shaoyu Hao and Haijun Li
J. Dev. Biol. 2024, 12(2), 10; https://doi.org/10.3390/jdb12020010 - 27 Mar 2024
Viewed by 895
Abstract
Gap junctional connection (GJC) in the cumulus–oocyte complex (COC) provides necessary support for message communication and nutrient transmission required for mammalian oocyte maturation. Cyclic adenosine monophosphate (cAMP) is not only a prerequisite for regulating oocyte meiosis, but also the key intercellular factor for [...] Read more.
Gap junctional connection (GJC) in the cumulus–oocyte complex (COC) provides necessary support for message communication and nutrient transmission required for mammalian oocyte maturation. Cyclic adenosine monophosphate (cAMP) is not only a prerequisite for regulating oocyte meiosis, but also the key intercellular factor for affecting GJC function in COCs. However, there are no reports on whether cAMP regulates connexin 37 (Cx37) expression, one of the main connexin proteins, in sheep COCs. In this study, the expression of Cx37 protein and gene in immature sheep COC was detected using immunohistochemistry and PCR. Subsequently, the effect of cAMP on Cx37 expression in sheep COCs cultured in a gonadotropin-free culture system for 10 min or 60 min was evaluated using competitive ELISA, real-time fluorescent quantitative PCR (RT-qPCR), and Western blot. The results showed that the Cx37 protein was present in sheep oocytes and cumulus cells; the same results were found with respect to GJA4 gene expression. In the gonadotropin-free culture system, compared to the control, significantly higher levels of cAMP as well as Cx37 gene and protein expression were found in sheep COCs following treatment in vitro with Forskolin and IBMX (100 μM and 500 μM)) for 10 min (p < 0.05). Compared to the controls (at 10 or 60 min), cAMP levels in sheep COCs were significantly elevated as a result of Forskolin and IBMX treatment (p < 0.05). Following culturing in vitro for 10 min or 60 min, Forskolin and IBMX treatment can significantly promote Cx37 expression in sheep COCs (p < 0.05), a phenomenon which can be counteracted when the culture media is supplemented with RP-cAMP, a cAMP-specific competitive inhibitor operating through suppression of the protein kinase A (PKA). In summary, this study reports the preliminary regulatory mechanism of cAMP involved in Cx37 expression for the first time, and provides a novel explanation for the interaction between cAMP and GJC communication during sheep COC culturing in vitro. Full article
(This article belongs to the Special Issue The 10th Anniversary of JDB: Feature Papers)
Show Figures

Figure 1

Previous Issue
Back to TopTop