Next Article in Journal
Circulating Levels of Hydrogen Sulfide (H2S) in Patients with Age-Related Diseases: A Systematic Review and Meta-Analysis
Next Article in Special Issue
Fungal Endophytes: Microfactories of Novel Bioactive Compounds with Therapeutic Interventions; A Comprehensive Review on the Biotechnological Developments in the Field of Fungal Endophytic Biology over the Last Decade
Previous Article in Journal
PKD1 Mutation Is a Biomarker for Autosomal Dominant Polycystic Kidney Disease
Previous Article in Special Issue
Inhibitory Potential of Synthetic Amino Acid Derivatives against Digestive Enzymes as Promising Hypoglycemic and Anti-Obesity Agents
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

The Outstanding Chemodiversity of Marine-Derived Talaromyces

by
Rosario Nicoletti
1,2,*,
Rosa Bellavita
3 and
Annarita Falanga
2
1
Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
2
Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
3
Department of Pharmacy, University of Naples Federico II, 80100 Napoli, Italy
*
Author to whom correspondence should be addressed.
Biomolecules 2023, 13(7), 1021; https://doi.org/10.3390/biom13071021
Submission received: 1 June 2023 / Revised: 16 June 2023 / Accepted: 19 June 2023 / Published: 21 June 2023
(This article belongs to the Special Issue New Advances in Natural Products in Drug Discovery)

Abstract

:
Fungi in the genus Talaromyces occur in every environment in both terrestrial and marine contexts, where they have been quite frequently found in association with plants and animals. The relationships of symbiotic fungi with their hosts are often mediated by bioactive secondary metabolites, and Talaromyces species represent a prolific source of these compounds. This review highlights the biosynthetic potential of marine-derived Talaromyces strains, using accounts from the literature published since 2016. Over 500 secondary metabolites were extracted from axenic cultures of these isolates and about 45% of them were identified as new products, representing a various assortment of chemical classes such as alkaloids, meroterpenoids, isocoumarins, anthraquinones, xanthones, phenalenones, benzofurans, azaphilones, and other polyketides. This impressive chemodiversity and the broad range of biological properties that have been disclosed in preliminary assays qualify these fungi as a valuable source of products to be exploited for manifold biotechnological applications.

1. Introduction

The genus Talaromyces (Eurotiomycetes, Trichocomaceae) was established about 70 years ago to classify the teleomorphs of some Penicillium species [1]. It was primarily considered to include soil fungi after the type species T. flavus was mainly reported and exploited as an antagonist of soil-borne plant pathogens [2]. However, as investigations within natural contexts progressed, Talaromyces species were found to occur in every environment and be associated not only with terrestrial organisms, such as plants [3] and insects [4], but also to be widespread at sea.
Symbiotic relationships involving fungi are often mediated by their extraordinary capacity for synthesizing bioactive compounds, playing either a promoting or a detrimental role toward the host [5,6]. This is the case for Talaromyces species too, based on the high number of reports in the literature [7,8,9,10]. Following a review on the bioactive products of the marine-derived strains of these fungi published at the beginning of 2016 [11], this paper examines the biosynthetic capacities of Talaromyces strains recovered from marine sources based on the pertinent literature published since then, in view of providing an updated account on the chemodiversity of these fungi in relation to their possible biotechnological applications.

2. Occurrence of Talaromyces in the Marine Environment

Deeply rooted in our culture, considering land and sea as separate worlds, the concept of grouping in the two broad categories of terrestrial and marine organisms is basically referable to higher animals and plants, the species of which are generally adapted to either one or the other of these macroecological contexts. However, despite attempts by early marine mycologists, such separation has not proved to be effective in the case of fungi; indeed, a multitude of fungal species originally described from terrestrial sources have been later reported in marine contexts [11,12,13].
Resulting from an increasing number of studies worldwide, the species in the genus Talaromyces represent a good example of this adaptability. In fact, an examination of the literature published since 2016 yielded 95 reports of about 30 species (Table 1). Two of them (T. haitouensis and T. zhenhaienis) were not previously identified in terrestrial contexts, representing a further indication that these fungi are not merely occasional in marine environments. In 30 cases, the isolates were not identified at the species level (reported as Talaromyces sp. in Table 1), which could imply an even higher species diversity. Indeed, the issue of species identification for Talaromyces is quite fickle, following the recent spread of biomolecular tools in fungal taxonomy and the ensuing nomenclatural revisions. Currently, there are over 170 accepted species in this genus, which are grouped into seven sections [14,15]; four of them (Helici, Islandici, Talaromyces, and Trachyspermi) include the species listed in Table 1. Besides the most common species, i.e., T. purpureogenus, T. verruculosus, T. stipitatus, T. pinophilus, and T. funiculosus, the new species T. haitouensis and T. zhenhaienis also belong to the section Talaromyces [16]. The species T. cellulolyticus and T. variabile have been reported in synonymy with T. pinophilus and T. wortmannii, respectively [14]; however, in Table 1 we used their old names to avoid possible confusion. Additionally, we provisionally considered the species name T. cyanescens, even if it is not included in the updated list of accepted Talaromyces species [15]. Several strains examined in this review were identified by the authors with reference to the old Penicillium nomenclature [17,18,19,20,21,22,23,24,25,26,27,28,29,30]; however, their identity as Talaromyces has been confirmed by morphological descriptions and/or a blast of their DNA sequences in GenBank.
The sources of isolation of these marine-derived Talaromyces (Table 1) are diverse, including sediments, water samples, and a variety of plants and animals, within which no specific symbiotic association can be inferred for the time being. As for their geographic origins, it is quite impressive that about 80% of these findings come from Asia and about half from China, which undoubtedly reflects a higher attention paid to the issue of biodiversity by researchers in this area. Reports from ocean trenches and Antarctica further confirm the extraordinary adaptability of these fungi to extreme environmental conditions.

3. Structural Aspects

Our overview of the pertinent literature published since 2016 yielded a list of as many as 514 compounds that are reported as secondary metabolites of marine-derived Talaromyces strains, resulting from the combination of 230 novel and 284 known products (Table 2 and Table 3). Such an impressive chemodiversity originates from comprehensive genetic bases driving various biosynthetic pathways and assorted biogenic schemes, so that the classification of some structurally complex compounds in a defined chemotype is problematic. Therefore, our attempt to group these products into classes, as indicated in Table 2 and Table 3, is affected by some approximations for a few compounds presenting complex structures.
The remarkable number of new compounds resulting from the biochemical characterization of Talaromyces strains show some degree of specificity, possibly reflecting chemotaxonomic relevance. In this respect, the novel products displaying uncommon scaffolds require verification for the possible occurrence of structural analogs in other fungi; however, after many years of study, some compounds have been found exclusively or almost exclusively in Talaromyces and can be considered as candidates for the assessment of phylogenetic relations. This is the case of funicone-like compounds, which are characterized by a molecular structure that is built on a γ-pyrone ring linked through a ketone group to an α-resorcylic acid nucleus (Figure 1 (1)); besides the true funicones, the other products in this series present modifications on the α-resorcylic acid nucleus, the γ-pyrone ring, or both moieties, and are grouped into the phthalide, furopyrone, and pyridone subclasses [10,112,113]. Among the widely represented oxaphenalenones, duclauxins present diverse polycylic skeletons, generally containing a common dihydrocoumarin benzo[de]isochromen-1(3H)-one moiety (Figure 1 (2)), while bacillisporins are based on a conjugated 6/6/6/5/6/6/6 ring system (Figure 1 (3)), and, in duclauxamides, the ester in one monomer is replaced by an amide group (Figure 1 (4)). Multiple polycyclic bridged frames can be found in other products from this class, such as verruculosins (Figure 1 (5)), talaromycesones (Figure 1 (6)), and macrosporusones (Figure 1 (7)) [81,114]. Other typical Talaromyces secondary metabolites are mitorubrins (Figure 1 (8)) [115], N-(4-hydroxy-2-methoxyphenyl)acetamide (Figure 1 (9)), and chrodrimanins (Figure 1 (10)) [37]. Indeed, after the taxonomic framework is more accurately set following the recent revisions and improvements in the identification procedures, it is to be expected that a thorough examination of the biochemical properties of the accepted taxa may help in considering a number of products as possible chemotaxonomic markers, even for species discrimination within the genus Talaromyces.
Other products are representative of widespread classes of organic compounds. Besides being common in plants, isocoumarins have been reported as secondary metabolites in many fungi [116]; nevertheless, twenty new compounds of this type have been described from eight marine-derived Talaromyces strains. Azaphilones are another class of typical fungal secondary metabolites [117] that have been particularly investigated as products of Talaromyces strains of marine origin, representing one of the most credited sources of these pigments [35,96,110,111]. Likewise, anthraquinones and the related xanthones have also found application as dyes, but their more widespread occurrence in plants has, so far, diminished the appeal of this fungal source [118,119]; however, new products from these classes have been characterized from marine-derived strains of T. islandicus [93], T. stipitatus [83], and Talaromyces sp. [74].
Also widespread among fungi, meroterpenoids are inclusive of very diverse compounds with complex structures of mixed biogenic origin [120]. As such, it is not surprising that the chemosynthetically versatile Talaromyces spp. may be able to produce a wide array of these compounds, with a variety of novel structural models. This is the case of talaromyolides A and D (Figure 2 (11,12)), which present two novel carbon skeletons [58]. Taladrimanin A (Figure 2 (13)) represents the first drimane-type meroterpenoid, with a C10 polyketide unit bearing an 8R configuration [78]. The above-mentioned chrodrimanins include chlorinated (chrodrimanins K and L) and trichlorinated (chrodrimanin O) versions (Figure 2 (1416)), with the latter displaying a unique dichlorine functionality [21,101]. The related amestolkolides A–D (Figure 2 (17,18)) present a congested pentacyclic skeleton [100], while talaromynoids A, G, H, and I (Figure 2 (1922)) possess unprecedented 5/7/6/5/6/6, 6/7/6/6/6/5, 6/7/6/5/6/5/4, and 7/6/5/6/5/4 polycyclic systems, respectively [59]. Other peculiar compounds have been identified among terpenoids, such as talascortene A (Figure 2 (23)), a cleistanthane-type diterpenoid possessing a chlorine atom in a peculiar position [64]; moreover, diolhinokiic acid (Figure 2 (24)) is the first thujopsene-type sesquiterpenoid containing a 9,10-diol moiety, while roussoellol C (Figure 2 (25)) possesses a novel tetracyclic fusicoccane framework with an unexpected hydroxyl at C-4 [109]. Finally, talasteroid (Figure 2 (26)) is a new withanolide with a 4-substituted 2,3-dimethyl-2-butenolide ring in its side chain [84].
Structural elucidation has also disclosed some rare or unique molecular scaffolds in other classes. Talaropeptins A and B (Figure 3 (27,28)) are two new tripeptides that have been identified as products of a non-ribosomal peptide synthase gene cluster, presenting an unusual heterocyclic scaffold and N-trans-cinnamoyl moiety [108]. The new penixanthones C–D (Figure 3 (29,30)) also display an unprecedented polycyclic scaffold [90]. Talarodrides A–D (Figure 3 (3134)) share a rare caged bicyclo-decadiene with a bridgehead olefin and maleic anhydride core skeleton, while the first case of a naturally occurring 5/7/6 methanocyclononafuran skeleton can be observed in talarodrides E–F (Figure 3 (35,36)) [72]. The oxidized tricyclic system of talaramide A (Figure 3 (37)) has been found for the second time in alkaloids [91]. From a strain of T. mangshanicus, talaromanloid A (Figure 3 (38)), talaromydene (Figure 3 (39)), and ditalaromylectones A–B (Figure 3 (40,41)) show novel carbon scaffolds; in particular, ditalaromylectone A is a dimeric molecule of 10-hydroxy-8-demethyltalaromydine and dioxo-propanylidene-pyrrolidinyl acrylic acid, while ditalaromylectone B is a cyclized dimer of hydroxydemethyltalaromydines [51]. Talabenzofurans A–B (Figure 3 (42,43)) possess a peculiar thioester moiety derived from benzofuran and 2-hydroxy-3-mercaptopropionic acid, which is rarely observed in natural products [76]. Novel structural features have also been reported in the typical classes of funicones, with pinophilones A–B (Figure 3 (44,45)) showing a dihydrofuran moiety for the first time in these compounds [26], and oxaphenalenones. Among the latter, talaromyoxaones A–B (Figure 3 (46,47)) present a hemiacetal frame and an unprecedented spiro-isobenzofuran-pyranone unit showing biosynthetic enantiodivergence [60]. Finally, the new polyketides, penitalarins A–C (Figure 3 (4850)), with a 3,6-dioxabicyclo(3.1.0)hexane ring, are likely a result of synergistic biosynthesis; in fact, they were identified from co-cultures of two strains of T. aculeatus and T. variabile, while none of them was found when the two strains were cultured independently [24].
Other compounds have proved to be analogs of known products, bringing to their structural revision. For instance, NMR data indicated that talaromyacin A (Figure 3 (51)) [95] is identical to sequoiamonascin A, which was originally reported from an endophytic strain of Aspergillus parasiticus [121]. Likewise, talacyanol C (Figure 3 (52)), from a strain of T. cyanescens [38], corresponds to a diastereoisomer of pinophol A, a polyene previously identified as a product of a strain of T. pinophilus endophytic in Salvia miltiorrhiza [122].
Probably the best example of the chemodiversity in Talaromyces is represented by strain G59 of T. purpureogenus (generally referred to in the literature as Penicillium purpurogenum). In fact, its biosynthetic potential has been explored through the induction of mutants and the activation of silent biosynthetic pathways, by means of neomycin and diethylsulphate, which led to the identification of a long series of compounds. With reference to products identified after 2015, this list includes five cyclic dipeptides, including the novel penicimutide [18]; a novel oxaphenalenone, penicimutalidine, along with the known SF226, bacillisporin C, and corymbiferan lactone A [104]; the novel cyclopentachromone sulfide chromosulfine [102]; the rare carbamate-containing prenylated indole alkaloids penicimutamides A–E [105,106]; the new diketopiperazine derivatives penicimutanolones A–B, penicimutanolone A methyl ether, penicimumide [56], penicimutanin C, and the known penicimutanin A, fructigenines A–B, and rugulosuvine A [107]; the known azaphilones (-)-mitorubrin and (-)-mitorubrinol, isolated along with the new polyketide purpurogenic acid [99]; two new polyketides, purpurofuranone and purpuropyranone, and the known cillifuranone and taiwapyrone [98].

3.1. Biogenesis and Structure-Activity Relationships

Some clues on the biogenic origins of secondary metabolites have been gathered by the research activity on marine-derived Talaromyces. For instance, 6-hydroxymellein was identified as a possible precursor in the synthesis of meroterpenoids, such as taladrimanin A [78], talaromytin, and the talaromyolides [58]. Other meroterpenoids are presumed to be derived from aromatic polyketide 3,5-dimethylorsellinic acid, such as the talaromynoids [59], amestolkolides, and their related compounds [100], while orsellinic acid is considered to be the biogenic precursor of talabenzofurans and eurothiocins [76], as well as compounds in the funicone series [112,113]. A biosynthetic pathway was proposed for the alkaloid talaramide A, which involves acetyl, malonic acid, and l-leucine as possible precursors [91]. Finally, the joint isolation of benzophenones and xanthones as products of a strain of T. islandicus is considered to support the hypothetic biogenesis of xanthones via a benzophenone intermediate [49].
The finding of series of analog compounds differing in certain molecular substitutions has allowed comparative hypotheses concerning bioactivities. Questinol, citreorosein, and fallacinol (Figure 4 (5355)) are structurally similar anthraquinones, in which hydroxyl groups have been determined to be essential for their reported anti-obesity activities. In fact, a replacement of the hydroxyls at C-1 (as in questinol) or C-3 (as in fallacinol) by a methoxy group diminishes or completely removes this kind of bioactivity [83]. Moreover, the increasing molecular polarity and hydroxylation of the non-aromatic carbons in structures of anthraquinones was found to strengthen their antibacterial effects, but to weaken their antioxidant activity [93]. The hydroxy group on the benzene ring is also essential for the antioxidant properties of talamins A and D (Figure 4 (56,57)) [52]. The methylation of the carboxylic group of peniphenone (Figure 4 (58)) reduces its immunosuppressive activity; moreover, the immunosuppressive properties of sydowinin A and pinselin are, respectively, higher than those of sydowinin B and hydroxy-methyl-oxo-xanthene-carboxylate (Figure 4 (5962)), indicating that the hydroxyl group at C-2 is relevant for this activity [17]. The antibacterial activity of trihydroxy-methoxy-methylbenzophenone (Figure 4 (63)) was found to be weakened by methoxylation at C-3 [49]. Conversely, the methylation of 14-OH likely enhances the antibacterial activity of talascortenes (Figure 2 (23)) [64]. Likewise, among talarodrides, the higher antibacterial performance of talarodride B (Figure 3 (32)) is indicative of the key role played by its methoxy group [72]. Among isocoumarins (Figure 4 (64)), aspergillumarin B (Figure 4 (65)), with a hydroxy group at C-13, shows no antibacterial activity, unlike other members of this class, such as aspergillumarin A (Figure 4 (66)), peniciisocoumarin D, and penicilloxalone B, presenting a keto group in this position; this is indicative of a relevant role of the latter in the bioactivity of these compounds [70]. Again, the presence of two keto carbonyl groups at C-10 and C-13 in amestolkolide B (Figure 4 (67)) is thought to enhance its anti-inflammatory effects, in addition to the role of its epoxy group as an active function, which is known to easily react with nucleophiles by ring opening [100].
In another case, the strong α-glucosidase inhibitory effect of eurothiocin D (Figure 4 (68)) is presumed to be derived from α-d-glucopyranosyl unit substitution, which likely supports its interaction with the enzyme. Moreover, a hydrophilic terminal of the isopentenyl group plays an important role in α-glucosidase inhibition [48]. The presence of a lactone ring and hydroxyl at C-10 is crucial for the antimicrobial activity of the depsidone derivatives talaronins A–E (Figure 4 (6973)), which are considered as promising leads against Helicobacter pylori [77]. The dimethylcyclobutanol subunit has been proposed as relevant for the antiviral activity of talaromyolide D (Figure 2 (12)), making it a valuable target for biosynthetic studies [58]. Furthermore, the dimeric oxyphenalenone scaffold has proved to be essential for the antibacterial and antibiofilm activities of bacillisporins; moreover, the acetoxy group in bacillisporin A has been determined to potentiate bioactivity in comparison with bacillisporin B (Figure 1 (3)), bearing a hydroxyl at this position [54]. Finally, comparative assessments concerning mangrovamide A (Figure 4 (74)) and its 11,17-epi-isomer have indicated a higher antibacterial activity when both C-11 and C-17 are in R configuration [45].

3.2. Other Biological Sources of the Known Compounds

The data presented in the previous section are indicative of the quite original biosynthetic capacities of Talaromyces species/strains, to such an extent that even a good proportion of the known secondary metabolites (Table 3) were first identified from these fungi. Besides the previously mentioned funicones, vermistatins, oxaphenalenones, chrodrimanins, verruculides, mitorubrins, and related azaphilones, this share includes compounds such as deoxyrubralactone, the mangrovamides, miniolutelide C, penicillide and its related products, hydroxypentacecilide, penicifuran, the purpuresters, purpurogenolide E, purpurquinone, the talaromycins, thailandolide B, and wortmin [8,11]. Moreover, the coculnols, which are structurally related to penicillic acid, were originally found in co-cultures of a strain of Talaromyces sp. and a strain of Fusarium solani [123]. Penicillide appears to be the most common of the above products; in fact, it was identified from five isolates of different species, besides being previously reported from a few more marine-derived strains [11] and being quite frequent among terrestrial Talaromyces, too [10,124]. Whether or not this product has implications in the biosynthesis of other secondary metabolites deserves circumstantial studies.
Several products in Table 3 are of a general occurrence among fungi and have been reported to represent biosynthetic intermediates or perform a structural role. This is the case of tyrosol, melleins, benzaldehyde, benzoic, mevalonic and orsellinic acid derivatives, and ergosterols.
Many secondary metabolites were first identified from the phylogenetically related Penicillium and Aspergillus, which is indicative of a partly common genetic background. In fact, compounds such as alantrypinone, berkedrimane B, the berkeleyacetals, cillifuranone, corymbiferan lactone A, the expansols, the fructigenines, penicilloxalone B, penicillquei A, penioxalicin, pinselin, questin, questinol, rugulosin, rugulosuvine, and the secalonic acids have been previously reported from Penicillium species [11,125], while aspergilactone B, the aspergillumarins, asperitaconic acid, the austins, azaspirofuran A, the carnemycins, dihydroaspyrone, diorcinol, eurothiocin A, flavuside B, fonsecinone A, nafuredin, the pseurotins, sequoiamonascin C, similanpyrone B, the sydowinins, terrein, and territrem B are primarily known as Aspergillus secondary metabolites [7,126]. In particular, a long series of compounds were first identified from A. fumigatus, including fumigaclavine, the fumiquinazolines, fumiquinone B, fumigatin oxide, helvolic acid, trypacidin, the tryptoquivalines, and tryprostatin derivatives, in connection with the thorough investigational activity carried out around this human pathogenic species [127].
Other products are well known or were first identified from other fungi. Some of these are more commonly reported as secondary metabolites of important genera, such as Fusarium, known as producer of naphthoquinones [128,129], along with the decalin polyketide fusarielin M [130] and trichothecene solaniol [131], while altenusin and alternaphenol are quite commonly reported among Alternaria mycotoxins [132]. On the other hand, many compounds are apparently less renowned since they are reported from fungi of a lower ecological or economic impact. This is the case of chaetominine and rheoemodin from Chaetomium spp. [133]; ramulosins from Pestalotia ramulosa (currently Truncatella angustata) [134]; xylapyrone E from an endophytic Xylaria sp. [135]; leptosphaerin G, which is structurally related to secalonic acids, from a strain of Leptosphaeria sp. [136]; sclerotinins, characterized as plant growth promoters from Sclerotinia sclerotiorum [137]; the alkaloid premalbrancheamide from Premalbranchea aurantiaca [138]; sordarin, which is better known as an antifungal product from Podospora (=Sordaria) araneosa [139]; taiwapyrone from Cercospora taiwanensis [140]; and piniterpenoid D from the fruit bodies of the basidiomycete Phellinus pini [141]. Moreover, ethyl everninate was originally identified from the lichen Evernia prunastri [142], while nodulisporipyrone A and scirpyrone H were characterized from endolichenic strains of Nodulisporium sp. [143] and an unknown species belonging to the Sarcosomataceae [144], respectively.
Interestingly, some products were first identified from marine strains of uncommon fungal species; this is the case of the remisporines, from the typical marine fungus Remispora maritima [145], monodictyphenone and pestalotiorin, respectively, from algal endophytic strains of Monodictys putredinis [146] and Pestalotiopsis sp. [147]. Moreover, phomaligol A was previously identified as a product of several fungi of marine origin [148], while the more common tenellic acids were first obtained from the freshwater fungus Dendrospora tenella [149].
This brief overview on the occurrence of the secondary metabolites of marine-derived Talaromyces as products of other fungal species underlines a remarkable biochemical affinity with both Penicillium and Aspergillus, which can be easily explained in terms of the phylogenetic proximity among these genera. However, their ability to synthesize many products, which are known in more phylogenetically distant fungi, is also quite evident. Although secondary metabolites can be synthesized through various and diverse biochemical pathways in different organisms, the hypothesis of a horizontal transfer of gene clusters encoding for the synthesis of the bioactive secondary metabolites among fungi, which was advanced at the end of the past millennium [150,151], has recently become more and more credited as a process driving the evolution in these organisms. It is also thought to involve their symbiotic associates [152,153], which provides an additional account on the extent of the chemodiversity in fungi characterized by a propensity toward an endophytic/endozoic lifestyle, such as Talaromyces [3,4]. In this respect, it is quite amazing to find that the incisterols, reported as products of T. versatilis [89], were first identified as a new sterol class from marine sponges [154]. The identification of the new withanolide compound talasteroid [84] is also meaningful, since it follows the finding of withanolide as a secondary metabolite of a strain of T. pinophilus endophytic in Withania somnifera [155]; notably, withanolides were previously known from plants only, with some products having been reported to possess antifungal activity [156].

4. Biological Properties

The research instances supporting the biological characterization of marine-derived Talaromyces strains are various. Some strains have shown effectiveness as biocontrol agents against plant pathogens [71,157]; others have been considered as a source of enzymes, such as phytase [62], chitinases, cellulases, and β-glucosidases [66,158], or have been investigated in preliminary assays as a source of pigments [35] and bioactive peptides [159].
In some cases, bioactivity assessments have been carried out at a preliminary stage by using organic extracts without performing product purification, with reference to antioxidant, antitumor, antifungal, antibacterial, acetylcholinesterase, and α-glucosidase inhibitory properties [39,41,43,55,69,85,160]. However, most of the reports in the literature concern the biological properties of purified compounds, as summarized in Table 4. Overall, the available data are indicative of quite variable effects in both qualitative and quantitative terms; however, for the time being, the preliminary nature of many of these studies does not allow for a determination of the applicative relevance of these findings. Indeed, the definition of exhaustive protocols, considering the most accurate assays and most responsive microbial/cell line panels, would help in obtaining a more reliable appreciation of the real potential of these products.
Most of the assays concerning these new compounds were carried out on the inhibitory effects against microbes and cancer cell lines, representing only preliminary indications of their antibiotic and/or antitumor properties. Indeed, more accurate assessments and an elucidation of the mechanisms of action are required for the aim of bringing the best products to the attention of pharmacologists. However, there are some exceptions where bioactivity has been explored with reference to specific targets. This is the case of talaverrucin A, which has been characterized as an inhibitor of the Wnt/β-catenin pathway acting upstream of the β-catenin level [81]. This pathway is known to play a pivotal role in the embryonic development and homeostasis maintenance in vertebrates, and its dysregulation is associated with various diseases, such as congenital malformations and several kinds of cancers [161].
Besides the new findings reported in the recent literature, the biological properties of many of these compounds have been investigated in previous studies, with some of them being characterized as candidate pharmaceutical products. This is the case of bacillisporins, duclauxins, and other oxaphenalenone analogs, with reference to their notable antibacterial and antitumor properties [114]. Antitumor activity has been also documented for 3-O-methylfunicone, on account of its multiple concurrent antiproliferative, proapoptotic, and gene-modulatory effects in several tumor cell lines [162,163,164,165,166,167], along with its recently disclosed anticholesterolemic [19] and antiviral properties [168,169]. More generally, these valuable bioactivities have been found to characterize other funicone and vermistatin compounds [112,113]. Many other products deserve consideration for their valuable antitumor and antimicrobial properties, such as depsidones, naphthoquinones, cyclopeptides, and other bioactive peptides, which are quite commonly reported from marine-derived fungi [170,171,172].
The biotechnological exploitation of marine-derived Talaromyces products may go well beyond the pharmaceutical field. In fact, besides the antiviral and tyrosine phosphatase inhibitory properties reported in Table 4, chrodrimanins were previously characterized as potent and selective blockers of the γ-aminobutyric acid-gated chloride channels in silkworms (Bombyx mori), introducing them as a lead for the development of safer pesticides [173]. In this respect, the many isocoumarins have disclosed anti-acetylcholinesterase properties, making them credited for this application, in addition to their possible employment in the treatment of Alzheimer’s disease, as well as other medical disorders, based on their anti-inflammatory and α-glucosidase inhibitory properties [174].

5. Conclusions

This overview, considering papers published in the last seven years, resulted in the impressive number of 514 secondary metabolites being extracted from cultures of marine-derived Talaromyces strains, depicting the outstanding chemodiversity of these fungi. This conspicuous biochemical booty was derived from investigations on the biosynthetic capacities concerning just 54 strains out of a total of 95 reported from marine sources in this period. Since about 45% of the products were originally identified from these strains, it is reasonable to expect an increase in this number of new compounds as long as the exploration of such a valuable trove is carried on by the scientific community in the future. At the same time, the remarkable proportion of products displaying various kinds of bioactivity introduces perspectives for the identification and possible exploitation of new drug prospects. The extent to which this expectation will materialize is largely dependent on the set up of conventional guidelines for defining effective screening protocols that may enable the performance of more exhaustive assessments of these bioactive properties.

Author Contributions

Conceptualization, R.N.; resources, R.N. and R.B.; data curation, R.B. and A.F.; writing—original draft preparation, R.N. and A.F.; writing—review and editing, R.N. and A.F. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created.

Acknowledgments

Authors acknowledge the kind support by Sarah Lucchesi (University of Southern Maine, Portland, ME, USA) for the literature search.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Benjamin, C.R. Ascocarps of Aspergillus and Penicillium. Mycologia 1955, 47, 669–687. [Google Scholar] [CrossRef]
  2. Adams, P.B. The potential of mycoparasites for biological control of plant diseases. Ann. Rev. Phytopathol. 1990, 28, 59–72. [Google Scholar] [CrossRef]
  3. Nicoletti, R.; Andolfi, A.; Salvatore, M.M. Endophytic fungi of the genus Talaromyces and plant health. In Microbial Endophytes and Plant Growth; Solanki, M.K., Yadav, M.K., Singh, B.P., Gupta, V.K., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 183–213. [Google Scholar]
  4. Nicoletti, R.; Becchimanzi, A. Talaromyces–insect relationships. Microorganisms 2022, 10, 45. [Google Scholar] [CrossRef]
  5. Kempken, F.; Rohlfs, M. Fungal secondary metabolite biosynthesis–a chemical defence strategy against antagonistic animals? Fungal Ecol. 2010, 3, 107–114. [Google Scholar] [CrossRef]
  6. Devi, R.; Kaur, T.; Kour, D.; Rana, K.L.; Yadav, A.; Yadav, A.N. Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb. Biosyst. 2020, 5, 21–47. [Google Scholar] [CrossRef]
  7. Frisvad, J.C. Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Front. Microbiol. 2015, 5, 773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  8. Zhai, M.M.; Li, J.; Jiang, C.X.; Shi, Y.P.; Di, D.L.; Crews, P.; Wu, Q.X. The bioactive secondary metabolites from Talaromyces species. Nat. Prod. Bioprosp. 2016, 6, 1–24. [Google Scholar] [CrossRef] [Green Version]
  9. Nicoletti, R.; Salvatore, M.M.; Andolfi, A. Secondary metabolites of mangrove-associated strains of Talaromyces. Mar. Drugs 2018, 16, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  10. Proksa, B. Talaromyces flavus and its metabolites. Chem. Pap. 2010, 64, 696–714. [Google Scholar] [CrossRef]
  11. Nicoletti, R.; Trincone, A. Bioactive compounds produced by strains of Penicillium and Talaromyces of marine origin. Mar. Drugs 2016, 14, 37. [Google Scholar] [CrossRef] [Green Version]
  12. Pang, K.L.; Overy, D.P.; Jones, E.G.; da Luz Calado, M.; Burgaud, G.; Walker, A.K.; Johnson, J.A.; Kerr, R.G.; Cha, H.J.; Bills, G.F. ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: Toward a new consensual definition. Fungal Biol. Rev. 2016, 30, 163–175. [Google Scholar] [CrossRef]
  13. Gladfelter, A.S.; James, T.Y.; Amend, A.S. Marine fungi. Curr. Biol. 2019, 29, R191–R195. [Google Scholar] [CrossRef] [PubMed]
  14. Yilmaz, N.; Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of the genus Talaromyces. Stud. Mycol. 2014, 78, 175–341. [Google Scholar] [CrossRef] [Green Version]
  15. Houbraken, J.; Kocsubé, S.; Visagie, C.M.; Yilmaz, N.; Wang, X.C.; Meijer, M.; Kraak, B.; Hubka, V.; Bensch, K.; Samson, R.A.; et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud. Mycol. 2020, 96, 141–153. [Google Scholar] [CrossRef] [PubMed]
  16. Han, P.J.; Sun, J.Q.; Wang, L. Two new sexual Talaromyces species discovered in estuary soil in China. J. Fungi 2022, 8, 36. [Google Scholar] [CrossRef]
  17. Liu, H.; Chen, S.; Liu, W.; Liu, Y.; Huang, X.; She, Z. Polyketides with immunosuppressive activities from mangrove endophytic fungus Penicillium sp. ZJ-SY2. Mar. Drugs 2016, 14, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. Wang, N.; Cui, C.B.; Li, C.W. A new cyclic dipeptide penicimutide: The activated production of cyclic dipeptides by introduction of neomycin-resistance in the marine-derived fungus Penicillium purpurogenum G59. Arch. Pharm. Res. 2016, 39, 762–770. [Google Scholar] [CrossRef]
  19. Wu, C.; Zhao, Y.; Chen, R.; Liu, D.; Liu, M.; Proksch, P.; Guo, P.; Lin, W. Phenolic metabolites from mangrove-associated Penicillium pinophilum fungus with lipid-lowering effects. RSC Adv. 2016, 6, 21969–21978. [Google Scholar] [CrossRef]
  20. Huang, H.; Liu, T.; Wu, X.; Guo, J.; Lan, X.; Zhu, Q.; Zheng, X.; Zhang, K. A new antibacterial chromone derivative from mangrove-derived fungus Penicillium aculeatum (No. 9EB). Nat. Prod. Res. 2017, 31, 2593–2598. [Google Scholar] [CrossRef]
  21. Kong, F.D.; Ma, Q.Y.; Huang, S.Z.; Wang, P.; Wang, J.F.; Zhou, L.M.; Yuan, J.Z.; Dai, H.F.; Zhao, Y.X. Chrodrimanins K–N and related meroterpenoids from the fungus Penicillium sp. SCS-KFD09 isolated from a marine worm, Sipunculus nudus. J. Nat. Prod. 2017, 80, 1039–1047. [Google Scholar] [CrossRef]
  22. Sumilat, D.A.; Yamazaki, H.; Endo, K.; Rotinsulu, H.; Wewengkang, D.S.; Ukai, K.; Namikoshi, M. A new biphenyl ether derivative produced by Indonesian ascidian-derived Penicillium albobiverticillium. J. Nat. Med. 2017, 71, 776–779. [Google Scholar] [CrossRef]
  23. Tao, H.; Wei, X.; Lin, X.; Zhou, X.; Dong, J.; Yang, B. Penixanthones A and B, two new xanthone derivatives from fungus Penicillium sp. SYFz-1 derived of mangrove soil sample. Nat. Prod. Res. 2017, 31, 2218–2222. [Google Scholar] [CrossRef]
  24. Zhang, Z.; He, X.; Zhang, G.; Che, Q.; Zhu, T.; Gu, Q.; Li, D. Inducing secondary metabolite production by combined culture of Talaromyces aculeatus and Penicillium variabile. J. Nat. Prod. 2017, 80, 3167–3171. [Google Scholar] [CrossRef] [PubMed]
  25. Yang, B.; Tao, H.; Lin, X.; Wang, J.; Liao, S.; Dong, J.; Zhou, X.; Liu, Y. Prenylated indole alkaloids and chromone derivatives from the fungus Penicillium sp. SCSIO041218. Tetrahedron 2018, 74, 77–82. [Google Scholar] [CrossRef]
  26. He, F.; Li, X.; Yu, J.H.; Zhang, X.; Nong, X.; Chen, G.; Zhu, K.; Wang, Y.Y.; Bao, J.; Zhang, H. Secondary metabolites from the mangrove sediment-derived fungus Penicillium pinophilum SCAU037. Fitoterapia 2019, 136, 104177. [Google Scholar] [CrossRef] [PubMed]
  27. Ma, M.; Ge, H.; Yi, W.; Wu, B.; Zhang, Z. Bioactive drimane sesquiterpenoids and isocoumarins from the marine-derived fungus Penicillium minioluteum ZZ1657. Tetr. Lett. 2020, 61, 151504. [Google Scholar] [CrossRef]
  28. Wang, B.; Chen, Q.H.; Jiang, T.; Cai, Y.W.; Huang, G.L.; Sun, X.P.; Zheng, C.J. Secondary metabolites from the mangrove-derived fungus Penicillium verruculosum and their bioactivities. Chem. Nat. Comp. 2021, 57, 588–591. [Google Scholar] [CrossRef]
  29. Hawas, U.W.; Abou El-Kassem, L.T.; Ahmed, E.F.; Alghamdi, R.A. Bioactive sulfonyl metabolites from the Red Sea endophytic fungus Penicillium aculeatum. Nat. Prod. Res. 2022, 36, 2713–2721. [Google Scholar] [CrossRef]
  30. Mei, R.Q.; Wang, B.; Zeng, W.N.; Huang, G.L.; Chen, G.Y.; Zheng, C.J. Bioactive isocoumarins isolated from a mangrove-derived fungus Penicillium sp. MGP11. Nat. Prod. Res. 2022, 36, 1260–1265. [Google Scholar] [CrossRef]
  31. Fouillaud, M.; Venkatachalam, M.; Llorente, M.; Magalon, H.; Cuet, P.; Dufossé, L. Biodiversity of pigmented fungi isolated from marine environment in La Réunion Island, Indian Ocean: New resources for colored metabolites. J. Fungi 2017, 3, 36. [Google Scholar] [CrossRef] [PubMed]
  32. Chen, S.; Liu, Y.; Liu, Z.; Cai, R.; Lu, Y.; Huang, X.; She, Z. Isocoumarins and benzofurans from the mangrove endophytic fungus Talaromyces amestolkiae possess α-glucosidase inhibitory and antibacterial activities. RSC Adv. 2016, 6, 26412–26420. [Google Scholar] [CrossRef]
  33. Huang, L.J.; Li, X.A.; Jin, M.Y.; Guo, W.X.; Lei, L.R.; Liu, R.; Zhang, M.Z.; Guo, D.L.; Wang, D.; Zhou, Y.; et al. Two previously undescribed phthalides from Talaromyces amestolkiae, a symbiotic fungus of Syngnathus acus. J. Asian Nat. Prod. Res. 2023, 25, 147–155. [Google Scholar] [CrossRef] [PubMed]
  34. Cai, J.; Zhou, X.M.; Yang, X.; Tang, M.M.; Liao, Q.Y.; Meng, B.Z.; Liao, S.; Chen, G.Y. Three new bioactive natural products from the fungus Talaromyces assiutensis JTY2. Bioorg. Chem. 2020, 94, 103362. [Google Scholar] [CrossRef]
  35. Mishra, R.C.; Kalra, R.; Dilawari, R.; Deshmukh, S.K.; Barrow, C.J.; Goel, M. Characterization of an endophytic strain Talaromyces assiutensis, CPEF04 with evaluation of production medium for extracellular red pigments having antimicrobial and anticancer properties. Front. Microbiol. 2021, 12, 665702. [Google Scholar] [CrossRef] [PubMed]
  36. Heydari, H.; Koc, A.; Simsek, D.; Gozcelioglu, B.; Altanlar, N.; Konuklugil, B. Isolation, identification and bioactivity screening of Turkish marine-derived fungi. Farmacia 2019, 67, 780–788. [Google Scholar] [CrossRef] [Green Version]
  37. Xu, H.; Zhou, L.; Wang, M.; Wei, L.; Qu, H.; Ma, J.; Ju, J.; Han, Z. Chemical constituents from marine derived fungus Talaromyces cellulolyticus SHJ-3 and its chemotaxonomic significance. Biochem. Syst. Ecol. 2022, 100, 104377. [Google Scholar] [CrossRef]
  38. Shin, H.J.; Anh, C.V.; Cho, D.Y.; Choi, D.K.; Kang, J.S.; Trinh, P.T.H.; Choi, B.K.; Lee, H.S. New polyenes from the marine-derived fungus Talaromyces cyanescens with anti-neuroinflammatory and cytotoxic activities. Molecules 2021, 26, 836. [Google Scholar] [CrossRef]
  39. Anand, B.G.; Thomas, C.N.; Prakash, S. In vitro cytotoxicity and antimicrobial activity of Talaromyces flavus SP5 inhabited in the marine sediment of Southern Coast of India. Chin. J. Nat. Med. 2016, 14, 913–921. [Google Scholar] [CrossRef]
  40. Cai, J.; Zhu, X.C.; Zeng, W.N.; Wang, B.; Luo, Y.P.; Liu, J.; Chen, M.J.; Li, G.Y.; Huang, G.L.; Chen, G.Y.; et al. Talaromarins A–F: Six new isocoumarins from mangrove-derived fungus Talaromyces flavus TGGP35. Mar. Drugs 2022, 20, 361. [Google Scholar] [CrossRef] [PubMed]
  41. Chalearmsrimuang, T.; Suasa-ard, S.; Jantasorn, A.; Dethoup, T. Effects of marine antagonistic fungi against plant pathogens and rice growth promotion activity. J. Pure Appl. Microbiol. 2022, 16, 402–419. [Google Scholar] [CrossRef]
  42. Liu, C.H.; Huang, X.; Xie, T.N.; Duan, N.; Xue, Y.R.; Zhao, T.X.; Lever, M.A.; Hinrichs, K.U.; Inagaki, F. Exploration of cultivable fungal communities in deep coal-bearing sediments from~ 1.3 to 2.5 km below the ocean floor. Environ. Microbiol. 2017, 19, 803–818. [Google Scholar] [CrossRef]
  43. Nie, Y.; Yang, W.; Liu, Y.; Yang, J.; Lei, X.; Gerwick, W.H.; Zhang, Y. Acetylcholinesterase inhibitors and antioxidants mining from marine fungi: Bioassays, bioactivity coupled LC–MS/MS analyses and molecular networking. Mar. Life Sci. Technol. 2020, 2, 386–397. [Google Scholar] [CrossRef]
  44. Zahri, M.Z.C.; Rehan, M.M.; Kamarudin, K.R.; Lufti, F.N.M.; Radzi, S.M.; Rehan, A.M. Checklist of marine fungi and yeasts associated with Holothuria (Mertensiothuria) leucospilota from Pangkor Island. J. Sust. Nat. Res. 2020, 1, 29–36. [Google Scholar]
  45. Wang, Y.; Li, X.; Lü, F.; Yang, S.; Meng, L.; Wang, B. Discovery of prenylated indole alkaloid and natural xanthone from cold-seep sediment derived fungus Talaromyces funiculosus SD-523. J. Oceanol. Limnol. 2023. [Google Scholar] [CrossRef]
  46. Shi, C.; Chen, J.; Ge, Q.; Sun, J.; Guo, W.; Wang, J.; Peng, L.; Xu, Q.; Fan, G.; Zhang, W.; et al. Draft genomes and comparative analysis of seven mangrove rhizosphere-associated fungi isolated from Kandelia obovata and Acanthus ilicifolius. Front. Fungal Biol. 2021, 2, 626904. [Google Scholar] [CrossRef]
  47. Cong, M.; Zhang, Y.; Feng, X.; Pang, X.; Liu, Y.; Zhang, X.; Yang, Z.; Wang, J. Anti-inflammatory alkaloids from the cold-seep-derived fungus Talaromyces helicus SCSIO41311. 3 Biotech 2022, 12, 161. [Google Scholar] [CrossRef]
  48. Li, M.; Li, S.; Hu, J.; Gao, X.; Wang, Y.; Liu, Z.; Zhang, W. Thioester-containing benzoate derivatives with α-glucosidase inhibitory activity from the deep-sea-derived fungus Talaromyces indigoticus FS688. Mar. Drugs 2022, 20, 33. [Google Scholar] [CrossRef] [PubMed]
  49. Li, H.L.; Li, X.M.; Liu, H.; Meng, L.H.; Wang, B.G. Two new diphenylketones and a new xanthone from Talaromyces islandicus EN-501, an endophytic fungus derived from the marine red alga Laurencia okamurai. Mar. Drugs 2016, 14, 223. [Google Scholar] [CrossRef] [Green Version]
  50. Heo, Y.M.; Lee, H.; Kim, K.; Kwon, S.L.; Park, M.Y.; Kang, J.E.; Kim, G.H.; Kim, B.S.; Kim, J.J. Fungal diversity in intertidal mudflats and abandoned solar salterns as a source for biological resources. Mar. Drugs 2019, 17, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  51. Zhang, K.; Zhang, X.; Lin, R.; Yang, H.; Song, F.; Xu, X.; Wang, L. New secondary metabolites from the marine-derived fungus Talaromyces mangshanicus BTBU20211089. Mar. Drugs 2022, 20, 79. [Google Scholar] [CrossRef] [PubMed]
  52. Song, Q.; Yang, S.Q.; Li, X.M.; Hu, X.Y.; Li, X.; Wang, B.G. Aromatic polyketides from the deep-sea cold-seep mussel associated endozoic fungus Talaromyces minioluteus CS-138. Mar. Drugs 2022, 20, 529. [Google Scholar] [CrossRef]
  53. Muwawa, E.M.; Makonde, H.M.; Obieze, C.C.; Jefwa, J.M.; Kahindi, J.H.P.; Khasa, D.P. Isolation, characterization and biotechnological potential of tropical culturable rhizospheric fungi from four mangrove species in Kenya. Afr. J. Microbiol. Res. 2020, 14, 541–554. [Google Scholar]
  54. Machado, F.P.; Rodrigues, I.C.; Georgopolou, A.; Gales, L.; Pereira, J.A.; Costa, P.M.; Mistry, S.; Ghoran, S.H.; Silva, A.M.S.; Dethoup, T.; et al. New hybrid phenalenone dimer, highly conjugated dihydroxylated C28 steroid and azaphilone from the culture extract of a marine sponge-associated fungus, Talaromyces pinophilus KUFA 1767. Mar. Drugs 2023, 21, 194. [Google Scholar] [CrossRef] [PubMed]
  55. Kumari, M.; Taritla, S.; Sharma, A.; Jayabaskaran, C. Antiproliferative and antioxidative bioactive compounds in extracts of marine-derived endophytic fungus Talaromyces purpureogenus. Front. Microbiol. 2018, 9, 1777. [Google Scholar] [CrossRef] [Green Version]
  56. Wang, N.; Li, C.W.; Cui, C.B.; Cai, B.; Xu, L.L.; Zhu, H.J. Four new antitumor metabolites isolated from a mutant 3-f-31 strain derived from Penicillium purpurogenum G59. Eur. J. Med. Chem. 2018, 158, 548–558. [Google Scholar] [CrossRef] [PubMed]
  57. Teixeira, T.R.; Santos, G.S.; Turatti, I.C.C.; Paziani, M.H.; von Zeska Kress, M.R.; Colepicolo, P.; Debonsi, H.M. Characterization of the lipid profile of Antarctic brown seaweeds and their endophytic fungi by gas chromatography–mass spectrometry (GC–MS). Polar Biol. 2019, 42, 1431–1444. [Google Scholar] [CrossRef]
  58. Cao, X.; Shi, Y.; Wu, X.; Wang, K.; Huang, S.; Sun, H.; Dickschat, J.S.; Wu, B. Talaromyolides A–D and talaromytin: Polycyclic meroterpenoids from the fungus Talaromyces sp. CX11. Org. Lett. 2019, 21, 6539–6542. [Google Scholar] [CrossRef]
  59. Huang, Z.H.; Liang, X.; Li, C.J.; Gu, Q.; Ma, X.; Qi, S.H. Talaromynoids A–I, highly oxygenated meroterpenoids from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517 and their lipid accumulation inhibitory activities. J. Nat. Prod. 2021, 84, 2727–2737. [Google Scholar] [CrossRef]
  60. Liang, X.; Huang, Z.H.; Shen, W.B.; Lu, X.H.; Zhang, X.X.; Ma, X.; Qi, S.H. Talaromyoxaones A and B: Unusual oxaphenalenone spirolactones as phosphatase inhibitors from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. J. Org. Chem. 2021, 86, 12831–12839. [Google Scholar] [CrossRef]
  61. Taritla, S.; Kumari, M.; Kamat, S.; Bhat, S.G.; Jayabaskaran, C. Optimization of physicochemical parameters for production of cytotoxic secondary metabolites and apoptosis induction activities in the culture extract of a marine algal–derived endophytic fungus Aspergillus sp. Front. Pharm. 2021, 12, 542891. [Google Scholar] [CrossRef]
  62. Ahmed, N.E.; Salem, S.S.; Hashem, A.H. Statistical optimization, partial purification, and characterization of phytase produced from Talaromyces purpureogenus NSA20 using potato peel waste and its application in dyes de-colorization. Biointerface Res. Appl. Chem. 2022, 12, 4417–4431. [Google Scholar]
  63. Küppers, L.; Ebrahim, W.; El-Neketi, M.; Özkaya, F.C.; Mándi, A.; Kurtán, T.; Orfali, R.S.; Müller, W.E.G.; Hartmann, R.; Lin, W.; et al. Lactones from the sponge-derived fungus Talaromyces rugulosus. Mar. Drugs 2017, 15, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  64. Meng, L.H.; Li, X.M.; Zhang, F.Z.; Wang, Y.N.; Wang, B.G. Talascortenes A–G, highly oxygenated diterpenoid acids from the sea-anemone-derived endozoic fungus Talaromyces scorteus AS-242. J. Nat. Prod. 2020, 83, 2528–2536. [Google Scholar] [CrossRef] [PubMed]
  65. Dewapriya, P.; Prasad, P.; Damodar, R.; Salim, A.A.; Capon, R.J. Talarolide A, a cyclic heptapeptide hydroxamate from an Australian marine tunicate-associated fungus, Talaromyces sp. (CMB-TU011). Org. Lett. 2017, 19, 2046–2049. [Google Scholar] [CrossRef] [PubMed]
  66. Paranetharan, M.S.; Thirunavukkarasu, N.; Rajamani, T.; Murali, T.S.; Suryanarayanan, T.S. Salt-tolerant chitin and chitosan modifying enzymes from Talaromyces stipitatus, a mangrove endophyte. Mycosphere 2018, 9, 215–226. [Google Scholar] [CrossRef]
  67. Lumbreras-Martínez, H.; Espinoza, C.; Fernández, J.J.; Norte, M.; Lagunes, I.; Padrón, J.M.; Lopez-Portillo, J.; Trigos, Á. Bioprospecting of fungi with antiproliferative activity from the mangrove sediment of the Tampamachoco coastal lagoon, Veracruz, Mexico. Sci. Fungorum 2018, 48, 53–60. [Google Scholar] [CrossRef]
  68. Liu, H.; Yan, C.; Li, C.; You, T.; She, Z. Naphthoquinone derivatives with anti-inflammatory activity from mangrove-derived endophytic fungus Talaromyces sp. SK-S009. Molecules 2020, 25, 576. [Google Scholar] [CrossRef] [Green Version]
  69. Rahaman, M.S.; Siraj, M.A.; Sultana, S.; Seidel, V.; Islam, M.A. Molecular phylogenetics and biological potential of fungal endophytes from plants of the Sundarbans mangrove. Front. Microbiol. 2020, 11, 570855. [Google Scholar] [CrossRef]
  70. Ma, M.; Yi, W.; Qin, L.; Lian, X.Y.; Zhang, Z. Talaromydien a and talaroisocoumarin A, new metabolites from the marine-sourced fungus Talaromyces sp. ZZ1616. Nat. Prod. Res. 2021, 36, 460–465. [Google Scholar] [CrossRef]
  71. Luo, M.; Chen, Y.; He, J.; Tang, X.; Wu, X.; Xu, C. Identification of a new Talaromyces strain DYM25 isolated from the Yap Trench as a biocontrol agent against Fusarium wilt of cucumber. Microbiol. Res. 2021, 251, 126841. [Google Scholar] [CrossRef]
  72. Zhao, Y.; Sun, C.; Huang, L.; Zhang, X.; Zhang, G.; Che, Q.; Li, D.; Zhu, T. Talarodrides A–F, nonadrides from the Antarctic sponge-derived fungus Talaromyces sp. HDN1820200. J. Nat. Prod. 2021, 84, 3011–3019. [Google Scholar] [CrossRef]
  73. Liu, G.; Huo, R.; Niu, S.; Song, F.; Liu, L. Two new cytotoxic decalin derivatives from marine-derived fungus Talaromyces sp. Chem. Biodiver. 2022, 19, e202100990. [Google Scholar] [CrossRef]
  74. Song, F.; Dong, Y.; Wei, S.; Zhang, X.; Zhang, K.; Xu, X. New antibacterial secondary metabolites from a marine-derived Talaromyces sp. strain BTBU20213036. Antibiotics 2022, 11, 222. [Google Scholar] [CrossRef] [PubMed]
  75. Li, J.; Chen, C.; Fang, T.; Wu, L.; Liu, W.; Tang, J.; Long, Y. New steroid and isocoumarin from the mangrove endophytic fungus Talaromyces sp. SCNU-F0041. Molecules 2022, 27, 5766. [Google Scholar] [CrossRef] [PubMed]
  76. Zhang, R.; Zhang, J.; Huo, R.; Xue, Y.; Hong, K.; Liu, L. Sulfur-containing benzofurans and α-pyrones from the mangrove-derived fungus Talaromyces sp. WHUF0341. Front. Mar. Sci. 2022, 9, 1034945. [Google Scholar] [CrossRef]
  77. Lv, H.; Su, H.; Xue, Y.; Jia, J.; Bi, H.; Wang, S.; Zhang, J.; Zhu, M.; Emam, M.; Wang, H.; et al. Polyketides with potential bioactivities from the mangrove-derived fungus Talaromyces sp. WHUF0362. Mar. Life Sci. Technol. 2023, 3, 303–312. [Google Scholar] [CrossRef] [PubMed]
  78. Hong, X.; Guan, X.; Lai, Q.; Yu, D.; Chen, Z.; Fu, X.; Zhang, B.; Chen, C.; Shao, Z.; Xia, J.; et al. Characterization of a bioactive meroterpenoid isolated from the marine-derived fungus Talaromyces sp. Appl. Microbiol. Biotechnol. 2022, 106, 2927–2935. [Google Scholar] [CrossRef]
  79. Hong, X.; Tang, L.; Chen, Z.; Lai, Q.; Zhang, B.; Jiang, Y.; Wang, X.; He, R.; Lin, J.; Shao, Z.; et al. Benzoquinone and furopyridinone derivatives from the marine-derived fungus Talaromyces sp. MCCC 3A01752. Nat. Prod. Res. 2022, 17, 13–26. [Google Scholar] [CrossRef]
  80. Nuansri, S.; Rukachaisirikul, V.; Muanprasat, C.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J. Furanone, morpholinone and tetrahydrofuran derivatives from the marine-derived fungus Talaromyces sp. PSU-MF07. Nat. Prod. Res. 2022, 3, 267–286. [Google Scholar] [CrossRef]
  81. Sun, C.; Liu, Q.; Shah, M.; Che, Q.; Zhang, G.; Zhu, T.; Zhou, J.; Rong, X.; Li, D. Talaverrucin A, heterodimeric oxaphenalenone from antarctica sponge-derived fungus Talaromyces sp. HDN151403, inhibits Wnt/β-catenin signaling pathway. Org. Lett. 2022, 24, 3993–3997. [Google Scholar] [CrossRef]
  82. Cai, R.; Chen, S.; Long, Y.; She, Z. Depsidones from Talaromyces stipitatus SK-4, an endophytic fungus of the mangrove plant Acanthus ilicifolius. Phytochem. Lett. 2017, 20, 196–199. [Google Scholar] [CrossRef]
  83. Noinart, J.; Buttachon, S.; Dethoup, T.; Gales, L.; Pereira, J.A.; Urbatzka, R.; Freitas, S.; Lee, M.; Silva, A.M.S.; Pinto, M.M.M.; et al. A new ergosterol analog, a new bis-anthraquinone and anti-obesity activity of anthraquinones from the marine sponge-associated fungus Talaromyces stipitatus KUFA 0207. Mar. Drugs 2017, 15, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  84. Zhang, Y.H.; Zhao, Y.J.; Qi, L.; Du, H.F.; Cao, F.; Wang, C.Y. Talasteroid, a new withanolide from the marine-derived fungus Talaromyces stollii. Nat. Prod. Res. 2022. [Google Scholar] [CrossRef] [PubMed]
  85. Castro-Carvalho, B.; Ramos, A.A.; Prata-Sena, M.; Malhão, F.; Moreira, M.; Gargiulo, D.; Dethoup, T.; Buttachon, S.; Kijjoa, A.; Rocha, E. Marine-derived fungi extracts enhance the cytotoxic activity of doxorubicin in nonsmall cell lung cancer cells A459. Pharmacogn. Res. 2017, 9, S92–S98. [Google Scholar]
  86. Buttachon, S.; Zin, W.W.M.; Dethoup, T.; Gales, L.; Pereira, J.A.; Silva, A.M.; Kijjoa, A. Secondary metabolites from the culture of the marine sponge-associated fungi Talaromyces tratensis and Sporidesmium circinophorum. Planta Med. 2016, 82, 888–896. [Google Scholar] [CrossRef] [Green Version]
  87. Wang, M.; Yang, L.; Feng, L.; Hu, F.; Zhang, F.; Ren, J.; Qiu, Y.; Wang, Z. Verruculosins A–B, new oligophenalenone dimers from the soft coral-derived fungus Talaromyces verruculosus. Mar. Drugs 2019, 17, 516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  88. Zhang, X.; Li, Y.; Yu, Z.; Liang, X.; Qi, S. Phylogenetic diversity and bioactivity of culturable deep-sea-derived fungi from Okinawa Trough. J. Oceanol. Limnol. 2021, 39, 892–902. [Google Scholar] [CrossRef]
  89. Li, J.X.; Lei, X.X.; Tan, Y.H.; Liu, Y.H.; Yang, B.; Li, Y.Q. Two new bioactive polyphenols from the soft coral-derived fungus Talaromyces sp. SCSIO 041201. Nat. Prod. Res. 2021, 35, 5778–5785. [Google Scholar] [CrossRef]
  90. Huang, J.; She, J.; Yang, X.; Liu, J.; Zhou, X.; Yang, B. A new macrodiolide and two new polycyclic chromones from the fungus Penicillium sp. SCSIO041218. Molecules 2019, 24, 1686. [Google Scholar] [CrossRef] [Green Version]
  91. Chen, S.; He, L.; Chen, D.; Cai, R.; Long, Y.; Lu, Y.; She, Z. Talaramide A, an unusual alkaloid from the mangrove endophytic fungus Talaromyces sp. (HZ-YX1) as an inhibitor of mycobacterial PknG. New J. Chem. 2017, 41, 4273–4276. [Google Scholar] [CrossRef]
  92. Wang, B.; Nong, X.H.; Zeng, W.N.; Li, S.S.; Li, G.Y.; Liu, J.; Huang, G.L.; Zheng, C.J. Study on bioactive secondary metabolites from the mangrove-derived fungus Penicillium verruculosum TGM14. Chem. Nat. Comp. 2022, 58, 812–815. [Google Scholar] [CrossRef]
  93. Li, H.L.; Li, X.M.; Li, X.; Wang, C.Y.; Liu, H.; Kassack, M.U.; Meng, L.H.; Wang, B.G. Antioxidant hydroanthraquinones from the marine algal-derived endophytic fungus Talaromyces islandicus EN-501. J. Nat. Prod. 2017, 80, 162–168. [Google Scholar] [CrossRef]
  94. Liu, Z.; Kou, J.; Li, M.; Chen, Y.; Li, S.; Li, H.; Zhang, W. Molecular networking-based discovery of new polyketides from the deep-sea-derived fungus Talaromyces indigoticus FS688. Tetrahedron 2023, 138, 133410. [Google Scholar] [CrossRef]
  95. Cao, X.; Ge, Y.; Lan, D.; Wu, X.; Wu, B. Spirocyclic polyketides from the marine fungus Talaromyces sp. CX11. Fitoterapia 2023, 164, 105359. [Google Scholar] [CrossRef] [PubMed]
  96. Li, M.; Huang, H.; Chen, Y.; Li, S.; Liu, Z.; Wang, Y.; Zhang, W.; Gao, X. Polyketides from the deep-sea-derived fungus Talaromyces indigoticus FS688 and their cytotoxicites. Chin. J. Org. Chem. 2022, 42, 2975–2980. [Google Scholar] [CrossRef]
  97. Venkatachalam, M.; Magalon, H.; Dufossé, L.; Fouillaud, M. Production of pigments from the tropical marine-derived fungi Talaromyces albobiverticillius: New resources for natural red-colored metabolites. J. Food Comp. Anal. 2018, 70, 35–48. [Google Scholar] [CrossRef]
  98. Wu, C.J.; Qiao, H.; Cui, C.B.; Yang, Y.; Xu, R.; Sun, C.X.; Li, D.H.; Li, C.W. Two new polyketides isolated from a diethyl sulphate mutant of marine-derived Penicillium purpurogenum G59. Nat. Prod. Res. 2019, 33, 2977–2981. [Google Scholar] [CrossRef]
  99. Xia, M.W.; Yang, Y.; Xu, R.; Li, C.W.; Cui, C.B. A new polyketide purpurogenic acid: The activated production of polyketides by the diethyl sulphate mutagenesis of marine-derived Penicillium purpurogenum G59. Nat. Prod. Res. 2019, 33, 89–94. [Google Scholar] [CrossRef]
  100. Chen, S.; Ding, M.; Liu, W.; Huang, X.; Liu, Z.; Lu, Y.; Liu, H.; She, Z. Anti-inflammatory meroterpenoids from the mangrove endophytic fungus Talaromyces amestolkiae YX1. Phytochemistry 2018, 146, 8–15. [Google Scholar] [CrossRef]
  101. Kong, F.D.; Zhang, R.S.; Ma, Q.Y.; Xie, Q.Y.; Wang, P.; Chen, P.W.; Zhou, L.M.; Dai, H.F.; Luo, D.Q.; Zhao, Y.X. Chrodrimanins O–S from the fungus Penicillium sp. SCS-KFD09 isolated from a marine worm, Sipunculus nudus. Fitoterapia 2017, 122, 1–6. [Google Scholar] [CrossRef]
  102. Yi, L.; Cui, C.B.; Li, C.W.; Peng, J.X.; Gu, Q.Q. Chromosulfine, a novel cyclopentachromone sulfide produced by a marine-derived fungus after introduction of neomycin resistance. RSC Adv. 2016, 6, 43975–43979. [Google Scholar] [CrossRef]
  103. Cao, X.; Shi, Y.; Wu, S.; Wu, X.; Wang, K.; Sun, H.; He, S.; Dickschat, J.S.; Wu, B. Polycyclic meroterpenoids, talaromyolides E−K for antiviral activity against pseudorabies virus from the endophytic fungus Talaromyces purpureogenus. Tetrahedron 2020, 76, 131349. [Google Scholar] [CrossRef]
  104. Li, C.W.; Xia, M.W.; Cui, C.B.; Peng, J.X.; Li, D.H. A novel oxaphenalenone, penicimutalidine: Activated production of oxaphenalenones by the diethyl sulphate mutagenesis of marine-derived fungus Penicillium purpurogenum G59. RSC Adv. 2016, 6, 82277–82281. [Google Scholar] [CrossRef]
  105. Li, C.W.; Wu, C.J.; Cui, C.B.; Xu, L.L.; Cao, F.; Zhu, H.J. Penicimutamides A–C: Rare carbamate-containing alkaloids from a mutant of the marine-derived Penicillium purpurogenum G59. RSC Adv. 2016, 6, 73383–73387. [Google Scholar] [CrossRef]
  106. Wu, C.J.; Li, C.W.; Gao, H.; Huang, X.J.; Cui, C.B. Penicimutamides D–E: Two new prenylated indole alkaloids from a mutant of the marine-derived Penicillium purpurogenum G59. RSC Adv. 2017, 7, 24718–24722. [Google Scholar] [CrossRef] [Green Version]
  107. Wang, N.; Dong, Y.; Yang, Y.; Xu, R.; Li, C.W.; Cui, C.B. Penicimutanin C, a new alkaloidal compound, isolated from a neomycin-resistant mutant 3-f-31 of Penicillium purpurogenum G59. Chem. Biodivers. 2020, 17, e2000241. [Google Scholar] [CrossRef]
  108. Zhou, C.; Cao, X.; Ge, Y.; Wu, X.; Zhang, Z.; Ma, Y.; Dickschat, J.S.; Wu, B. Talaropeptins A and B, tripeptides with an N-trans-cinnamoyl moiety from the marine-derived fungus Talaromyces purpureogenus CX11. J. Nat. Prod. 2022, 85, 2620–2625. [Google Scholar] [CrossRef]
  109. Wang, W.; Wan, X.; Liu, J.; Wang, J.; Zhu, H.; Chen, C.; Zhang, Y. Two new terpenoids from Talaromyces purpurogenus. Mar. Drugs 2018, 16, 150. [Google Scholar] [CrossRef] [Green Version]
  110. Lebeau, J.; Petit, T.; Fouillaud, M.; Dufossé, L.; Caro, Y. Alternative extraction and characterization of nitrogen-containing azaphilone red pigments and ergosterol derivatives from the marine-derived fungal Talaromyces sp. 30570 strain with industrial relevance. Microorganisms 2020, 8, 1920. [Google Scholar] [CrossRef]
  111. Lebeau, J.; Venkatachalam, M.; Fouillaud, M.; Petit, T.; Vinale, F.; Dufossé, L.; Caro, Y. Production and new extraction method of polyketide red pigments produced by ascomycetous fungi from terrestrial and marine habitats. J. Fungi 2017, 3, 34. [Google Scholar] [CrossRef] [Green Version]
  112. Nicoletti, R.; Manzo, E.; Ciavatta, M.L. Occurence and bioactivities of funicone-related compounds. Int. J. Mol. Sci. 2009, 10, 1430–1444. [Google Scholar] [CrossRef] [PubMed]
  113. Salvatore, M.M.; DellaGreca, M.; Andolfi, A.; Nicoletti, R. New insights into chemical and biological properties of funicone-like compounds. Toxins 2022, 14, 466. [Google Scholar] [CrossRef] [PubMed]
  114. Shahid, H.; Cai, T.; Wang, Y.; Zheng, C.; Yang, Y.; Mao, Z.; Ding, P.; Shan, T. Duclauxin derivatives from fungi and their biological activities. Front. Microbiol. 2021, 12, 766440. [Google Scholar] [CrossRef] [PubMed]
  115. Suzuki, S.; Hosoe, T.; Nozawa, K.; Yaguchi, T.; Udagawa, S.I.; Kawai, K.I. Mitorubrin derivatives on ascomata of some Talaromyces species of ascomycetous fungi. J. Nat. Prod. 1999, 62, 1328–1329. [Google Scholar] [CrossRef] [PubMed]
  116. Tammam, M.A.; El-Din, M.I.G.; Abood, A.; El-Demerdash, A. Recent advances in the discovery, biosynthesis, and therapeutic potential of isocoumarins derived from fungi: A comprehensive update. RSC Adv. 2023, 13, 8049–8089. [Google Scholar] [CrossRef] [PubMed]
  117. Osmanova, N.; Schultze, W.; Ayoub, N. Azaphilones: A class of fungal metabolites with diverse biological activities. Phytochem. Rev. 2010, 9, 315–342. [Google Scholar] [CrossRef]
  118. Diaz-Munoz, G.; Miranda, I.L.; Sartori, S.K.; de Rezende, D.C.; Diaz, M.A. Anthraquinones: An overview. Stud. Nat. Prod. Chem. 2018, 58, 313–338. [Google Scholar]
  119. Panda, S.S.; Chand, M.; Sakhuja, R.; Jain, S.C. Xanthones as potential antioxidants. Curr. Med. Chem. 2013, 20, 4481–4507. [Google Scholar] [CrossRef]
  120. Zhao, M.; Tang, Y.; Xie, J.; Zhao, Z.; Cui, H. Meroterpenoids produced by fungi: Occurrence, structural diversity, biological activities, and their molecular targets. Eur. J. Med. Chem. 2021, 209, 112860. [Google Scholar] [CrossRef]
  121. Stierle, D.B.; Stierle, A.A.; Bugni, T. Sequoiamonascins A−D: Novel anticancer metabolites isolated from a redwood endophyte. J. Org. Chem. 2003, 68, 4966–4969. [Google Scholar] [CrossRef]
  122. Zimowska, B.; Bielecka, M.; Abramczyk, B.; Nicoletti, R. Bioactive products from endophytic fungi of sages (Salvia spp.). Agriculture 2020, 10, 543. [Google Scholar] [CrossRef]
  123. Nonaka, K.; Chiba, T.; Suga, T.; Asami, Y.; Iwatsuki, M.; Masuma, R.; Omura, S.; Shiomi, K. Coculnol, a new penicillic acid produced by a coculture of Fusarium solani FKI-6853 and Talaromyces sp. FKA-65. J. Antib. 2015, 68, 530–532. [Google Scholar] [CrossRef] [PubMed]
  124. Salvatore, M.M.; DellaGreca, M.; Nicoletti, R.; Salvatore, F.; Vinale, F.; Naviglio, D.; Andolfi, A. Talarodiolide, a new 12-membered macrodiolide, and GC/MS investigation of culture filtrate and mycelial extracts of Talaromyces pinophilus. Molecules 2018, 23, 950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  125. Frisvad, J.C.; Smedsgaard, J.; Larsen, T.O.; Samson, R.A. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 2004, 49, 201–241. [Google Scholar]
  126. Frisvad, J.C.; Larsen, T.O. Chemodiversity in the genus Aspergillus. Appl. Microbiol. Biotechnol. 2015, 99, 7859–7877. [Google Scholar] [CrossRef] [PubMed]
  127. Frisvad, J.C.; Rank, C.; Nielsen, K.F.; Larsen, T.O. Metabolomics of Aspergillus fumigatus. Med. Mycol. 2009, 47, S53–S71. [Google Scholar] [CrossRef] [PubMed]
  128. Medentsev, A.G.; Arinbasarova, A.Y.; Akimenko, V.K. Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Appl. Biochem. Microbiol. 2005, 41, 503–507. [Google Scholar] [CrossRef]
  129. Tammam, M.A.; Sebak, M.; Greco, C.; Kijjoa, A.; El-Demerdash, A. Chemical diversity, biological activities and biosynthesis of fungal naphthoquinones and their derivatives: A comprehensive update. J. Mol. Struct. 2022, 1268, 133711. [Google Scholar] [CrossRef]
  130. Chen, D.; Liu, L.; Lu, Y.; Chen, S. Identification of fusarielin M as a novel inhibitor of Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB). Bioorg. Chem. 2021, 106, 104495. [Google Scholar] [CrossRef]
  131. Ishii, K.; Sakai, K.; Ueno, Y.; Tsunoda, H.; Enomoto, M. Solaniol, a toxic metabolite of Fusarium solani. Appl. Microbiol. 1971, 22, 718–720. [Google Scholar] [CrossRef]
  132. Lou, J.; Fu, L.; Peng, Y.; Zhou, L. Metabolites from Alternaria fungi and their bioactivities. Molecules 2013, 18, 5891–5935. [Google Scholar] [CrossRef] [PubMed]
  133. Hamed, S.R.; Abdel-Azeem, A.M.; Dar, P.M. Recent advancements on the role of biologically active secondary metabolites from Chaetomium. In Recent Developments on Genus Chaetomium; Abdel-Azeem, A.M., Ed.; Springer: Cham, Switzerland, 2020; pp. 177–204. [Google Scholar]
  134. Stodola, F.H.; Cabot, C.; Benjamin, C.R. Structure of ramulosin, a metabolic product of the fungus Pestalotia ramulosa. Biochem. J. 1964, 9, 92–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  135. Zhang, H.; Deng, Z.; Guo, Z.; Peng, Y.; Huang, N.; He, H.; Tu, X.; Zou, K. Effect of culture conditions on metabolite production of Xylaria sp. Molecules 2015, 20, 7940–7950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  136. Lin, J.; Liu, S.; Sun, B.; Niu, S.; Li, E.; Liu, X.; Che, Y. Polyketides from the ascomycete fungus Leptosphaeria sp. J. Nat. Prod. 2010, 73, 905–910. [Google Scholar] [CrossRef] [PubMed]
  137. Sassa, T.; Aoki, H.; Namiki, M.; Munakata, K. Plant growth promoting metabolites of Sclerotinia sclerotiorum: Part I. Isolation and structures of sclerotinin A and B. Agr. Biol. Chem. 1968, 32, 1432–1439. [Google Scholar]
  138. Ding, Y.; Greshock, T.J.; Miller, K.A.; Sherman, D.H.; Williams, R.M. Premalbrancheamide: Synthesis, isotopic labeling, biosynthetic incorporation, and detection in cultures of Malbranchea aurantiaca. Org. Lett. 2008, 10, 4863–4866. [Google Scholar] [CrossRef] [Green Version]
  139. Hauser, V.D.; Sigg, H.P. Isolierung und abbau von sordarin. 1. Mitteilung über sordarin. Helv. Chim. Acta 1971, 54, 1178–1190. [Google Scholar] [CrossRef]
  140. Camarda, L.; Merlini, L.; Nasini, G. Metabolites of Cercospora. Taiwapyrone, an α-pyrone of unusual structure from Cercospora taiwanensis. Phytochemistry 1976, 15, 537–539. [Google Scholar] [CrossRef]
  141. Li, X.; Gao, J.; Li, M.; Cui, H.; Jiang, W.; Tu, Z.C.; Yuan, T. Aromatic cadinane sesquiterpenoids from the fruiting bodies of Phellinus pini block SARS-CoV-2 Spike–ACE2 interaction. J. Nat. Prod. 2021, 84, 2385–2389. [Google Scholar] [CrossRef]
  142. Ter Heide, R.; Provatoroff, N.; Traas, P.C.; De Valois, P.J.; Van der Plasse, N.; Wobben, H.J.; Timmer, R. Qualitative analysis of the odoriferous fraction of oakmoss (Evernia prunastri). J. Agric. Food Chem. 1975, 23, 950–957. [Google Scholar] [CrossRef]
  143. Zhao, Q.; Wang, C.X.; Yu, Y.; Wang, G.Q.; Zheng, Q.C.; Chen, G.D.; Lian, Y.Y.; Lin, F.; Guo, L.D.; Gao, H. Nodulisporipyrones A–D, new bioactive α-pyrone derivatives from Nodulisporium sp. J. Asian Nat. Prod. Res. 2015, 17, 567–575. [Google Scholar] [CrossRef] [PubMed]
  144. Tian, J.F.; Yu, R.J.; Li, X.X.; Gao, H.; Guo, L.D.; Tang, J.S.; Yao, X.S. ¹H and ¹³C NMR spectral assignments of 2-pyrone derivatives from an endophytic fungus of Sarcosomataceae. Magn. Reson. Chem. 2015, 53, 866–871. [Google Scholar] [CrossRef] [PubMed]
  145. Kong, F.; Carter, G.T. Remisporine B, a novel dimeric chromenone derived from spontaneous Diels–Alder reaction of remisporine A. Tetr. Lett. 2003, 44, 3119–3122. [Google Scholar] [CrossRef]
  146. Krick, A.; Kehraus, S.; Gerhäuser, C.; Klimo, K.; Nieger, M.; Maier, A.; Fiebig, H.H.; Atodiresei, I.; Raabe, G.; Fleischhauser, J.; et al. Potential cancer chemopreventive in vitro activities of monomeric xanthone derivatives from the marine algicolous fungus Monodictys putredinis. J. Nat. Prod. 2007, 70, 353–360. [Google Scholar] [CrossRef] [PubMed]
  147. Arunpanichlert, J.; Rukachaisirikul, V.; Phongpaichit, S.; Supaphon, O.; Sakayaroj, J. Meroterpenoid, isocoumarin, and phenol derivatives from the seagrass-derived fungus Pestalotiopsis sp. PSU-ES194. Tetrahedron 2015, 71, 882–888. [Google Scholar] [CrossRef]
  148. Liu, X.J.; Li, H.J.; Ma, W.Z.; Zhang, F.M.; Xu, M.Y.; Mahmud, T.; Lan, W.J. Phomaligols F–I, polyoxygenated cyclohexenone derivatives from marine-derived fungus Aspergillus flavus BB1. Bioorg. Chem. 2021, 115, 105269. [Google Scholar] [CrossRef] [PubMed]
  149. Oh, H.; Kwon, T.O.; Gloer, J.B.; Marvanová, L.; Shearer, C.A. Tenellic acids A−D: New bioactive diphenyl ether derivatives from the aquatic fungus Dendrospora tenella. J. Nat. Prod. 1999, 62, 580–583. [Google Scholar] [CrossRef] [PubMed]
  150. Walton, J.D. Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: An hypothesis. Fungal Gen. Biol. 2000, 30, 167–171. [Google Scholar] [CrossRef] [Green Version]
  151. Rosewich, U.L.; Kistler, H.C. Role of horizontal gene transfer in the evolution of fungi. Ann. Rev. Phytopathol. 2000, 38, 325–363. [Google Scholar] [CrossRef] [Green Version]
  152. Husnik, F.; McCutcheon, J.P. Functional horizontal gene transfer from bacteria to eukaryotes. Nat. Rev. Microbiol. 2018, 16, 67–79. [Google Scholar] [CrossRef]
  153. Barreiro, C.; Gutiérrez, S.; Olivera, E.R. Fungal horizontal gene transfer: A history beyond the phylogenetic kingdoms. In Horizontal Gene Transfer: Breaking Borders between Living Kingdoms; Villa, G.T., Viñas, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 315–336. [Google Scholar]
  154. Ciminiello, P.; Fattorusso, E.; Magno, S.; Mangoni, A.; Pansini, M. Incisterols, a new class of highly degraded sterols from the marine sponge Dictyonella incisa. J. Am. Chem. Soc. 1990, 112, 3505–3509. [Google Scholar] [CrossRef]
  155. Sathiyabama, M.; Parthasarathy, R. Withanolide production by fungal endophyte isolated from Withania somnifera. Nat. Prod. Res. 2018, 32, 1573–1577. [Google Scholar] [CrossRef] [PubMed]
  156. Xia, G.Y.; Cao, S.J.; Chen, L.X.; Qiu, F. Natural withanolides, an update. Nat. Prod. Rep. 2022, 39, 784–813. [Google Scholar] [CrossRef] [PubMed]
  157. Eakjamnong, W.; Keawsalong, N.; Dethoup, T. Novel ready-to-use dry powder formulation of Talaromyces tratensis KUFA0091 to control dirty panicle disease in rice. Biol. Control 2021, 152, 104454. [Google Scholar] [CrossRef]
  158. Paranetharan, M.S.; Thirunavukkarasu, N.; Rajamani, T.; Suryanarayanan, T.S. Biomass destructuring enzymes of fungal endophytes of mangrove roots. Curr. Res. Environ. Appl. Mycol. 2022, 12, 259–267. [Google Scholar] [CrossRef]
  159. Dewapriya, P.; Khalil, Z.G.; Prasad, P.; Salim, A.A.; Cruz-Morales, P.; Marcellin, E.; Capon, R.J. Talaropeptides AD: Structure and biosynthesis of extensively N-methylated linear peptides from an Australian marine tunicate-derived Talaromyces sp. Front. Chem. 2018, 6, 394. [Google Scholar] [CrossRef]
  160. Dethoup, T.; Kaewsalong, N.; Songkumorn, P.; Jantasorn, A. Potential application of a marine-derived fungus, Talaromyces tratensis KUFA 0091 against rice diseases. Biol. Control 2018, 119, 1–6. [Google Scholar] [CrossRef]
  161. Hiremath, I.S.; Goel, A.; Warrier, S.; Kumar, A.P.; Sethi, G.; Garg, M. The multidimensional role of the Wnt/β-catenin signaling pathway in human malignancies. J. Cell Physiol. 2022, 237, 199–238. [Google Scholar] [CrossRef]
  162. Stammati, A.; Nicoletti, R.; De Stefano, S.; Zampaglioni, F.; Zucco, F. Cytostatic properties of a novel compound derived from Penicillium pinophilum: An in vitro study. Altern. Lab. Anim. 2002, 30, 69–75. [Google Scholar] [CrossRef]
  163. Buommino, E.; Nicoletti, R.; Gaeta, G.M.; Orlando, M.; Ciavatta, M.L.; Baroni, A.; Tufano, M.A. 3-O-methylfunicone, a secondary metabolite produced by Penicillium pinophilum, induces growth arrest and apoptosis in HeLa cells. Cell Prolif. 2004, 37, 413–426. [Google Scholar] [CrossRef]
  164. Baroni, A.; De Luca, A.; De Filippis, A.; Petrazzuolo, M.; Manente, L.; Nicoletti, R.; Tufano, M.A.; Buommino, E. 3-O-methylfunicone, a metabolite of Penicillium pinophilum, inhibits proliferation of human melanoma cells by causing G2+ M arrest and inducing apoptosis. Cell Prolif. 2009, 42, 541–553. [Google Scholar] [CrossRef] [PubMed]
  165. Buommino, E.; Paoletti, I.; De Filippis, A.; Nicoletti, R.; Ciavatta, M.L.; Menegozzo, S.; Menegozzo, M.; Tufano, M.A. 3-O-Methylfunicone, a metabolite produced by Penicillium pinophilum, modulates ERK1/2 activity, affecting cell motility of human mesothelioma cells. Cell Prolif. 2010, 43, 114–123. [Google Scholar] [CrossRef] [PubMed]
  166. Buommino, E.; Tirino, V.; De Filippis, A.; Silvestri, F.; Nicoletti, R.; Ciavatta, M.L.; Pirozzi, G.; Tufano, M.A. 3-O-methylfunicone, from Penicillium pinophilum, is a selective inhibitor of breast cancer stem cells. Cell Prolif. 2011, 44, 401–409. [Google Scholar] [CrossRef] [PubMed]
  167. Buommino, E.; De Filippis, A.; Nicoletti, R.; Menegozzo, M.; Menegozzo, S.; Ciavatta, M.L.; Rizzo, A.; Brancato, V.; Tufano, M.A.; Donnarumma, G. Cell-growth and migration inhibition of human mesothelioma cells induced by 3-O-methylfunicone from Penicillium pinophilum and cisplatin. Investig. New Drugs 2012, 30, 1343–1351. [Google Scholar] [CrossRef]
  168. Fiorito, F.; Cerracchio, C.; Salvatore, M.M.; Serra, F.; Pucciarelli, A.; Amoroso, M.G.; Nicoletti, R.; Andolfi, A. Antiviral property of the fungal metabolite 3-O-methylfunicone in bovine herpesvirus 1 infection. Microorganisms 2022, 10, 188. [Google Scholar] [CrossRef]
  169. Cerracchio, C.; Iovane, V.; Salvatore, M.M.; Amoroso, M.G.; Dakroub, H.; DellaGreca, M.; Nicoletti, R.; Andolfi, A.; Fiorito, F. Effectiveness of the fungal metabolite 3-O-methylfunicone towards canine coronavirus in a canine fibrosarcoma cell line (A72). Antibiotics 2022, 11, 1594. [Google Scholar] [CrossRef]
  170. Wang, C.; Tang, S.; Cao, S. Antimicrobial compounds from marine fungi. Phytochem. Rev. 2021, 20, 85–117. [Google Scholar] [CrossRef]
  171. Bellavita, R.; Maione, A.; Merlino, F.; Siciliano, A.; Dardano, P.; De Stefano, L.; Galdiero, S.; Galdiero, E.; Grieco, P.; Falanga, A. Antifungal and antibiofilm activity of cyclic temporin L peptide analogues against albicans and non-albicans Candida species. Pharmaceutics 2022, 14, 454. [Google Scholar] [CrossRef]
  172. Youssef, F.S.; Ashour, M.L.; Singab, A.N.B.; Wink, M. A comprehensive review of bioactive peptides from marine fungi and their biological significance. Mar. Drugs 2019, 17, 559. [Google Scholar] [CrossRef] [Green Version]
  173. Xu, Y.; Furutani, S.; Ihara, M.; Ling, Y.; Yang, X.; Kai, K.; Hayashi, H.; Matsuda, K. Meroterpenoid chrodrimanins are selective and potent blockers of insect GABA-gated chloride channels. PLoS ONE 2015, 10, e0122629. [Google Scholar] [CrossRef]
  174. Noor, A.O.; Almasri, D.M.; Bagalagel, A.A.; Abdallah, H.M.; Mohamed, S.G.A.; Mohamed, G.A.; Ibrahim, S.R.M. Naturally occurring isocoumarins derivatives from endophytic fungi: Sources, isolation, structural characterization, biosynthesis, and biological activities. Molecules 2020, 25, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Figure 1. Structures of typical Talaromyces secondary metabolites.
Figure 1. Structures of typical Talaromyces secondary metabolites.
Biomolecules 13 01021 g001
Figure 2. Novel structural models found in meroterpenoids of marine-derived Talaromyces.
Figure 2. Novel structural models found in meroterpenoids of marine-derived Talaromyces.
Biomolecules 13 01021 g002
Figure 3. Novel structural models found in secondary metabolites of marine-derived Talaromyces.
Figure 3. Novel structural models found in secondary metabolites of marine-derived Talaromyces.
Biomolecules 13 01021 g003
Figure 4. Secondary metabolites of marine-derived Talaromyces considered in studies on structure-activity relationships.
Figure 4. Secondary metabolites of marine-derived Talaromyces considered in studies on structure-activity relationships.
Biomolecules 13 01021 g004
Table 1. Talaromyces species reported in the literature from marine sources since 2016.
Table 1. Talaromyces species reported in the literature from marine sources since 2016.
SpeciesSourceLocationReference
T. aculeatusmangrove (Kandelia candel, leaf)Guangdong (China)[20] *
deep sea sedimentIndian Ocean[24] *
red alga (Laurencia obtusa)Suez Gulf (Egypt)[29] *
T. albobiverticilliuscoral rubble, sedimentLa Reunion Island[31] *
unidentified ascidianManado (Indonesia)[22] *
T. amestolkiaemangrove (Kandelia obovata, leaf)Guangdong (China)[32] *
pipefish (Syngnathus acus) †Hainan (China)[33] *
T. assiutensismangrove (Ceriops tagal, leaf)South China Sea[34] *
mangrove (Avicennia marina, root)Maharashtra (India)[35]
T. brunneussponge (Axinella polypoides)Marmara (Turkey)[36]
T. cellulolyticuscoralSouth China Sea[37] *
T. cyanescensgreen alga (Caulerpa sp.)Da Nang (Vietnam)[38] *
T. flavussedimentKanyakumari district (India)[39]
mangrove (Acanthus ilicifolius, stem)Hainan (China)[40] *
sponge (Mycale sp.)Samaesarn Island (Thailand)[41]
T. funiculosusdeep sea sedimentShimokita Peninsula (Japan)[42]
mangrove sedimentHainan (China)[23,25] *
coral (Porites compressa)Zhanjiang (China)[43]
sea cucumber (Holothuria leucospilota)Pangkor Island (Malaysia)[44]
deep sea sedimentSouth China Sea[45] *
T. fuscoviridismangrove rhizosphereHainan (China)[46]
T. haitouensismudflat in estuaryJiangsu (China)[16]
T. helicusdeep sea sedimentSouth China Sea[47] *
T. indigoticusdeep sea sedimentSouth China Sea[48] *
T. islandicusred alga (Laurencia okamurai)Qingdao (China)[49] *
T. lianimudflat in intertidal zoneYongyudo (South Korea)[50]
T. mangshanicussedimentSouth China Sea[51] *
T. minioluteussedimentEast China Sea[27] *
mussel (Gigantidas platifrons)South China Sea[52] *
T. pinophilusmangrove sedimentXiamen (China)[19] *
mangrove rhizosphereTecheng Isle (China)[26] *
mangrove (A. marina) rhizosphereGazi Bay (Kenya)[53]
sponge (Mycale sp.)Samaesarn Island (Thailand)[54] *
T. purpureogenusmudflat in intertidal zoneTianjin (China)[18] *
brown algaKovalam (India)[55]
mud at the coastlineHebei (China)[56] *
brown alga (Phaeurus antarcticus)Half Moon Island (Antarctica)[57]
red alga (Grateloupia filicina)Zhejiang (China)[58] *
soft coralNansha islands (China)[59] *
soft coralSouth China Sea[60] *
brown alga (Sargassum muticum)Kerala (India)[61]
waterSharm El-Sheikh governorate (Egypt)[62]
T. rotundusreef waterLa Reunion Island[31]
T. rugulosussponge (Axinella cannabina)Sığaçık-İzmir (Turkey)[63] *
T. scorteussea anemone (Cerianthus sp.)Magellan Sea Mounts[64] *
Talaromyces sp.mangrove (Sonneratia apetala, leaf)Guangdong (China)[17] *
unidentified tunicateTweed Heads (Australia)[65] *
annellid (Sipunculus nudus)Haikou Bay (China)[21] *
mangrove (Rhizophora mucronata, root)Andaman Islands (India)[66]
mangrove (Laguncularia racemosa) rhizosphereVera Cruz (Mexico)[67]
abandoned saltern
mudflat in intertidal zone
Yubudo (South Korea)
Gopado, Yongyudo (South Korea)
[50]
mangrove (R. mucronata) rhizosphereGazi Bay, Mida Creek (Kenya)[53]
coral (Porites pukoensis)Zhanjiang (China)[43]
mangrove (K. obovata, fruit)Guangxi (China)[68] *
mangrove (Brownlowia tersa, stem)Sundarbans (Bangladesh)[69]
mangrove (Ceriops decandra, bark)
mangrove (Heritiera fomes, bark)
mangrove (Xylocarpus granatum, bark)
mangrove (Xylocarpus moluccensis, bark)
halibut (Hippoglossus sp.)Zhejiang (China)[70] *
waterYap Trench[71]
spongeWeddell Sea (Antarctica)[72] *
mangrove (X. granatum, root)Hainan (China)[30] *
sedimentZhejiang (China)[73] *
mudflat in intertidal zoneQingdao (China)[74] *
mangrove (Kandelia sp., leaf)Guangdong (China)[75] *
mangrove soilHainan (China)[76,77] *
waterDongshan Island (China)[78,79] *
unidentified spongeBulon Island (Thailand)[80] *
unidentified spongePrydz Bay (Antarctica)[81] *
T. stipitatusmangrove (A. ilicifolius, leaf)Guanxi (China)[82] *
sponge (Stylissa flabelliformis)Samaesarn Island (Thailand)[83] *
mangrove (A. marina, root)Tamil Nadu (India)[66]
mudflat in intertidal zoneYongyudo (South Korea)[50]
mangrove (R. mucronata) rhizosphereGazi Bay (Kenya)[53]
brown alga (S. muticum)Kerala (India)[61]
T. stolliiunknownBohai Sea (China)[84] *
T. trachyspermussponge (Clathria reinwardti)Kram Island (Thailand)[85]
T. tratensissponge (Mycale sp.)Samaesarn Island (Thailand)[86] *
T. variabilismangrove rhizosphereFujian (China)[24] *
T. verruculosusreef waterLa Reunion Island[31]
soft coral (Goniopora sp.)Hainan (China)[87] *
mangrove (A. marina) rhizosphereMida Creek (Kenya)[53]
mangrove (C. tagal) rhizosphereGazi Bay (Kenya)
mangrove (X. moluccensis, pneumatophores)Sundarbans (Bangladesh)[69]
deep-sea sedimentOkinawa Trough[88]
mangrove (X. granatum)South China Sea[28] *
T. versatilissoft coralYongxing Island (China)[89] *
T. zhenhaiensismudflat in estuaryZhejiang (China)[16]
† This isolation source is unreliable, considering that the authors describe it as a “marine herb”; * these entries report on strains used for identification of secondary metabolites.
Table 2. Novel compounds reported as secondary metabolites of marine-derived Talaromyces.
Table 2. Novel compounds reported as secondary metabolites of marine-derived Talaromyces.
CompoundSpeciesReference
Alkaloids
Chaetominine B T. helicus[47]
Ditalaromylectones A–BT. mangshanicus[51]
11,17-epi-Mangrovamide A T. funiculosus[43]
Mangrovamides D–K T. funiculosus[25]
Mangrovlide A T. funiculosus[90]
Talaramide A T. amestolkiae[91]
Talaromanloid A T. mangshanicus[51]
Amides
Penicimumide T. purpureogenus[56]
Talaromydene T. mangshanicus[51]
Talaromydien A Talaromyces sp.
T. verruculosus
[70]
[92]
Talaromylectone T. mangshanicus[51]
Anthraquinones
4-8-Dihydroxyconiothyrinone B, 8-11-dihydroxyconiothyrinone B, 8-hydroxyconiothyrinone B, 8-dihydroxy-10-O-methyldendryol E T. islandicus[93]
2,2′-bis-(7-Methyl-1,4,5-trihydroxy-anthracene-9,10-dione) T. stipitatus[83]
Rugulosin D Talaromyces sp.[74]
Azaphilones
Azaphilone compounds 1–3 and 5T. indigoticus[94]
7-epi-Pinazaphilone BT. pinophilus[54]
Talaromyacins A–C T. purpureogenus[95]
Benzofurans
Eurothiocins C–H T. indigoticus[48]
1-(5-Hydroxy-7-methoxybenzofuran-3-yl)ethan-1-one, 5-hydroxy-7-methoxy-2-methylbenzofuran-3-carboxylic acid T. amestolkiae[32]
(2-Hydroxypropan-2-yl)-6-methyl-2,3-dihydrobenzofuran-4-ol T. indigoticus[96]
Isoprenyl-benzofuran derivativeT. indigoticus[94]
Talabenzofurans A–C Talaromyces sp.[76]
Talarominine A T. minioluteus[52]
Benzophenones
2,2′,5′-Trihydroxy-3-methoxy-3′-methylbenzophenone, 2,2′,3,5-tetrahydroxy-3′-methylbenzophenone T. islandicus[49]
Benzoquinones
Anserinone C Talaromyces sp.[79]
Chromones
2-(2′-Hydroxypropyl)-5-methyl-7,8-dihydroxychromone T. aculeatus[20]
Decalins
Fusarielins O–PTalaromyces sp.[73]
Depsidones
5′-Hydroxypenicillide T. pinophilus[19]
Talamins A–D T. minioluteus[52]
Talaromyones A–BT. stipitatus
Talaromyces sp.
[82]
[77]
Talaronins A–H Talaromyces sp.[77]
Diphenyl ethers
2-Hydroxy-6-(2′-hydroxy-3′-hydroxymethyl-5-methylphenoxy)-benzoic acid T. albobiverticillius[22]
Funicones
Pinophilones A–E T. pinophilus[26]
Furans
Talarofuranone, talarotetrahydrofuran Talaromyces sp.[80]
Indenes
1,2-Indandiol T. funiculosus[23]
Isocoumarins
Aspergillumarin CTalaromycs sp.[75]
5,6-Dihydroxy-3-(4-hydroxypentyl)-isochroman-1-one, 6,8-dihydroxy-5-methoxy-3-methyl-isochromen-1-one, 5-hydroxy-4-(1-hydroxyethyl)-8-methoxyisocoumarin, 6-hydroxy-8-methoxy-3,4-dimethylisocoumarin, isobutyric acid 5,7-dihydroxy-2-methyl-4-oxo-3,4-dihydro-naphththalen-1-yl methyl esterT. amestolkiae[32]
3-(4,5-Dihydroxy-pentyl)-8-hydroxy-isochroman-1-oneT. amestolkiae
T. flavus
[32]
[40]
Penicimarins L–M Talaromyces sp.[30]
Peniisocoumarin H T. minioluteus[27]
Talaroisocoumarin A Talaromyces sp.[70]
Talaromarins A–F T. flavus[40]
Talumarins A–B T. rugulosus[63]
Tratenopyrone T. tratensis[86]
Ketones
6-(2-Carboxyvinyl)-N-GABA-PP-VT. albobiverticillius[97]
Penicillquei C T. verruculosus[92]
Penicimutanolones A–B, penicimutanolone A methyl ether T. purpureogenus[56]
Penitalarins A–CT. aculeatus/T. variabilis[24]
2-Prop-1-en-1-yl-oct-4-ene-1,6,7-triol T. indigoticus[96]
Purpurofuranone T. purpureogenus[98]
Purpurogenic acid T. purpureogenus[99]
Purpuropyranone T. purpureogenus[98]
Talarocyclopenta A–C T. assiutensis[34]
Lactones
Lactone acid n-butyl ester, lactone diacid 7-O-n-butyl ester, 4-methoxylactone acid n-butyl ester T. rugulosus[40]
5-Methylhexahydrofuro[2,3-b]furan-2-yl-ethanol T. indigoticus[96]
Nafuredin B T. aculeatus/T. variabilis[24]
cis-Resorcylide, 7-O-n-butylresorcylides, 7-hydroxyresorcylides, 7-methoxyresorcylides T. rugulosus[40]
Talarodilactones A–B T. rugulosus[40]
Meroterpenoids
Amestolkolides A–D T. amestolkiae[100]
Chrodrimanins K–S Talaromyces sp.[21,101]
ChromosulfineT. purpureogenus[102]
Taladrimanin A Talaromyces sp.[78]
Talaromynoids A–I T. purpureogenus[59]
Talaromyolides A–K T. purpureogenus[58,103]
Talaromytin T. purpureogenus[58]
Morpholinones
Talaromorpholinone Talaromyces sp.[80]
Naphthoquinones
Talanaphthoquinones A–B Talaromyces sp.[68]
Nonadrides
Talarodrides A–F Talaromyces sp.[72]
Phenalenones
Abeopyrenulin, 11-apopyrenulin T. purpureogenus[60]
Amestolkins A–B T. amestolkiae[33]
Bacillisporins K–L Talaromyces sp.[74]
Dihydroxy-ergosta-4,6,8(14)-tetraen-3-one T. pinophilus[54]
Penicimutalidine T. purpureogenus[104]
Penicimutamides A–E T. purpureogenus[105,106]
Penicimutanin C T. purpureogenus[107]
Talaromyoxaones A–BT. purpureogenus[60]
Talaropinophilide, talaropinophilone T. pinophilus[54]
Talaverrucin A Talaromyces sp.[81]
Verruculosins A–B T. verruculosus[87]
Peptides
PenicimutideT. purpureogenus[18]
Talaropeptins A–B T. purpureogenus[108]
Polyenes
Talacyanols A–C T. cyanescens[38]
Polyphenols
Talaversatilis A–B T. versatilis[89]
Pyrones
Talapyrones A–B Talaromyces sp.[76]
Pyrroles
(R)-3-Hydroxy-2,7-dimethylfuro[3,4-b]pyridin-5(7H)-one Talaromyces sp.[79]
10-Hydroxy-8-demethyltalaromydine, 11-hydroxy-8-demethyltalaromydine T. mangshanicus[51]
Sterols
Cyclosecosteroid A Talaromyces sp.[75]
Talarosterone T. stipitatus[83]
Talasteroid T. stollii[84]
Sulfones
Pensulfonamide, pensulfonoxy T. aculeatus[29]
Terpenes
Dihydroxyisocupressic acid T. scorteus[64]
9,10-Diolhinokiic acid T. purpureogenus[109]
Purpurides E–GT. minioluteus[27]
Roussellol C T. purpureogenus[109]
Talascortenes A–G T. scorteus[64]
Verruculides B2–B3 Talaromyces sp.[21]
Xanthones
Penixanthones A–D T. funiculosus[23,90]
1,4,7-Trihydroxy-6-methylxanthone T. islandicus[49]
Table 3. Secondary metabolites identified as products of marine-derived Talaromyces that are also known from other biological sources.
Table 3. Secondary metabolites identified as products of marine-derived Talaromyces that are also known from other biological sources.
CompoundSpeciesReference
Acids
Asperitaconic acid B, butylitaconic acidT. assiutensis[34]
Bromothiobenzoic acid T. aculeatus[29]
Coculnol, acetylcoculnol Talaromycs sp.[79]
Hydroxybenzoic acid T. versatilis[89]
8-Hydroxy-carboxy-methylenenonanoic acid, 9-hydroxy-carboxy-methylenenonanoic acid T. assiutensis[34]
Isocyclopaldic acidT. funiculosus[45]
Methylcurvulinate T. minioluteus[27]
Methylorsellinate T. indigoticus[96]
Alcohols
bis-Methoxybenzyl-butanediol T. tratensis[86]
Alkaloids
AlantrypinoneT. verruculosus[28]
Chaetominine T. helicus[47]
Cyclotryprostatin B T. helicus[47]
Cyclotryprostatin E T. purpureogenus[109]
Dihydroxyfumitremorgin CT. helicus[47]
Fructigenines A–B T. purpureogenus[107]
Fumigaclavine C, fumigatin oxide, fumiquinazolines F, G, JT. helicus[47]
Mangrovamides A, C, G, I T. funiculosus[25,45]
Methoxyspirotryprostatin B T. purpureogenus
T. helicus
[109]
[47]
Methyl-hexahydro-pyrazino-pyrido-indole-dione T. purpureogenus[92]
Penicimutanin A T. purpureogenus[107]
Premalbrancheamide T. purpureogenus[106]
Pseurotin A, F1, methylpseurotin A, norpseurotin A T. helicus[47]
Rugulosuvine A T. purpureogenus[107]
Spiro-dipyrrolo-pyrazine-indole-trione T. helicus[47]
Tryptoquivalines F, J, isotryptoquivaline F T. helicus[47]
Amides
Hydroxy-methoxyphenyl-acetamideT. cellulolyticus[37]
Hydroxy-methyl-oxobutyl-butanamide Talaromyces sp.[80]
Anthraquinones
Acetylquestinol T. pinophilus[34]
Citrorosein T. stipitatus
T. minioluteus
[83]
[27]
Dihydroxy-methoxy-methyl-anthracene-dione T. funiculosus[23]
Emodin, fallacinol, questinol, rheoemodin T. stipitatus[83]
Questin T. funiculosus[45]
Rugulosin ATalaromyces sp.[74]
Azaphilones
FK17-P2b1 T. minioluteus
Talaromyces sp.
[27]
[78]
Glutarylmonascorubraminic acid, hydroxyethyl-monascorubramin, threonine-monascorubramine, threonine-rubropunctamine, GABA-rubropunctatinT. albobiverticillius[110]
Mitorubrin T. purpureogenus
Talaromyces sp.
[99]
[73]
Mitorubrinol T. purpureogenus[99]
Monascorubramine, glutarylrubropunctamine, glycylrubropunctatinT. albobiverticillius[111]
Peniazaphilin B Talaromyces sp.[76,79]
Pinazaphilone BTalaromyces sp.[73]
Pinophilin Talaromyces sp.[73]
Pinophilins B, G T. pinophilus[26]
Purpurquinone A T. minioluteus[27]
Sch1385568T. pinophilus[34]
Sch725680T. pinophilus[26]
Sequoiamonascin C Talaromyces sp.[73]
Wortmin T. tratensis[86]
Benzaldehydes
Dihydroxybenzaldehyde Talaromyces sp.[77]
Ethyl-dihydroxy-methylbenzaldehyde Talaromyces sp.[78]
Hydroxybenzaldehyde, hydroxy-methylbutenyl-benzaldehyde Talaromyces sp.[79]
Benzofurans
Carboxy-methyl-butenyl-octahydro-methoxycarbonyl-3-methyl-methylene-oxo-benzofuranacetic acid Talaromyces sp.[80]
Dihydroxy-dimethyl-dibenzofuran T. versatilis[89]
Eurothiocin A T. cyanescens
T. indigoticus
Talaromyces sp.
[38]
[48]
[76]
Purpuresters A–B T. minioluteus[27]
Trypacidin T. helicus[47]
Benzoquinones
Fumiquinone BT. helicus[47]
Cerebrosides
Flavuside BT. verruculosus[28]
Cyclopentenones, Cyclohexenones
Phomaligol AT. funiculosus[45]
TerreinT. verruculosus[92]
Decalins
Fusarielin M Talaromyces sp.[73]
Depsidones
Dehydroisopenicillide, dehydroxypenicillide, purpactin CT. pinophilus[19]
Isopenicillide T. pinophilus[19,26]
MethyldehydroisopenicillideT. pinophilus[26]
Penicillide T. pinophilus
T. funiculosus
T. stipitatus
T. verruculosus
Talaromyces sp.
[19,26]
[23]
[82]
[28]
[74]
Purpactin A (=vermixocin B)T. pinophilus
T. stipitatus
Talaromyces sp.
[19]
[82]
[77]
Purpactin C’ Talaromyces sp.[77]
Secopenicillide AT. pinophilus
Talaromyces sp.
[19]
[77]
Secopenicillide B T. stipitatus
Talaromyces sp.
[82]
[77]
Diphenyl ethers
Diorcinol, methyldiorcinol, methoxycarbonyldiorcinol T. versatilis[89]
Methoxy-methyl-biphenyltriolT. mangshanicus[51]
Methyl tenellate T. pinophilus[19]
Tenellic acid A T. stipitatus[82]
Tenellic acid C T. stipitatus
Talaromyces sp.
[82]
[77]
Esters
Ethyl everninateT. indigoticus[96]
Methyl-hydroxy-methylhexenoate, methyl-hydroxyphenyl-acetate T. minioluteus[27]
Funicones
Demethylvermistatin, epi-hydroxydihydrovermistatin, methyldihydrovermistatin, penisimplicissin, demethylpenisimplicissin, penicidones C–DT. pinophilus[26]
Dihydrovermistatin T. pinophilus
Talaromyces sp.
[26]
[78]
Funicone, deoxyfunicone T. pinophilus[19]
Methylfunicone, hydroxyvermistatin, methoxyvermistatin T. pinophilus[19,26]
Vermistatin T. pinophilus
Talaromyces sp.
[19,26]
[73,78]
Furans
Azaspirofuran AT. helicus[47]
Cillifuranone T. purpureogenus[98]
Glycosides
Carnemycins B, E T. verruculosus[28]
Isocoumarins
Aspergillumarin AT. amestolkiae
T. flavus
T. rugulosus
T. verruculosus
Talaromyces sp.
[32]
[40]
[63]
[92]
[30,70,75]
Aspergillumarin B T. amestolkiae
T. verruculosus
Talaromyces sp.
[32]
[92]
[70,75]
Dihydroxy-2-hydroxypropyl-methylisochromenone, dihydroxy-2S-hydroxypropyl-methylisochromenone T. flavus
Talaromyces sp.
[40]
[78]
Dihydroxyl-oxoisochromanyl-propanoic acidTalaromyces sp.[75]
Dihydroxymellein Talaromyces sp.[77]
Dihydroxy-trimethylisochromanone, dihydroxy-trimethylisochroman Talaromyces sp.[79]
Dimethyl-dihydroxyisocoumarin T. amestolkiae[32]
Hydroxy-hydroxymethyl-methoxy-methylisocoumarin T. amestolkiae[32]
Hydroxy-hydroxypropyl-methoxyisochromanone T. flavus[40]
Hydroxymellein T. cellulolyticus
Talaromyces sp.
[37]
[78,79]
Hydroxy-methoxy-dimethylchromone T. minioluteus[52]
Hydroxy-methoxy-methylphthalide T. funiculosus[90]
Hydroxy-methyl-dimethoxycoumarin Talaromyces sp.[70]
Hydroxypropyl-hydroxy-dihydroisocoumarin T. flavus[40]
HydroxyramulosinTalaromyces sp.[76]
Orthosporin T. minioluteus[27]
Penicifuran A Talaromyces sp.[70]
Peniciisocoumarins A–G T. flavus[40]
Peniciisocoumarin D Talaromyces sp.[70]
Peniciisocoumarins E–F Talaromyces sp.[30]
Penicilloxalone B Talaromyces sp.[30,70]
Penicimarin B T. amestolkiae[32]
Penicimarin CT. amestolkiae
T. flavus
[32]
[40]
Penicimarin G T. flavus
Talaromyces sp.
T. verruculosus
[40]
[30]
[92]
Penicimarin H T. flavus
Talaromyces sp.
[40]
[30]
Penicimarin I Talaromyces sp.[30]
Penicimarin N T. flavus[40]
Pestalotiorin T. flavus
Talaromycs sp.
[40]
[79]
RamulosinT. cyanescens
Talaromyces sp.
[38]
[76]
Sclerotinin A Talaromyces sp.[78,79]
Sclerotinin B Talaromyces sp.[79]
Sescandelin T. amestolkiae
Talaromyces sp.
[32]
[70]
Sescandelin B T. amestolkiae[32]
Trihydroxy-hydroxyethylisocoumarin T. amestolkiae
Talaromyces sp.
[32]
[70]
Ketones
Dihydro-hydroxy-hydroxymethyl-methoxy-methylnaphtho-furandione Talaromyces sp.[68]
Methyl-dihydropyranoneTalaromyces sp.[78]
Penicillquei AT. verruculosus[92]
Lactones
Aspergilactone B T. verruculosus[92]
Carboxyphthalide T. aculeatus[20]
Corymbiferan lactone A T. purpureogenus[104]
Dehydromevalonic lactone, mevalonolactoneT. funiculosus[90]
Deoxyrubralactone T. pinophilus[34]
Lactone acid, lactone diacid T. rugulosus[63]
Nafuredin A T. aculeatus/T. variabilis
T. mangshanicus
[24]
[51]
Meroterpenoids
Austinolide T. purpureogenus
T. mangshanicus
T. stollii
[103]
[51]
[84]
Austin, austinol, dehydroaustin T. stollii[84]
Berkeleyacetal, berkeleyacetal A, epoxyberkeleydioneT. purpureogenus[59]
Chrodrimanins A–B T. amestolkiae
Talaromyces sp.
T. cellulolyticus
T. stollii
[100]
[21,78]
[37]
[84]
Chrodrimanin C T. cellulolyticus
T. stollii
[37]
[84]
Chrodrimanin E Talaromyces sp.[101]
Chrodrimanin F Talaromyces sp.
T. cellulolyticus
[101]
[37]
Chrodrimanin H Talaromyces sp.
T. cellulolyticus
[21,78]
[37]
Dehydroaustinol T. mangshanicus
T. stollii
[51]
[84]
Hydroxypentacecilide A Talaromyces sp.[101]
Miniolutelide C T. purpureogenus[59]
Preaustinoid T. purpureogenus[103]
Purpurogenolide E T. amestolkiae[100]
Territrem B T. verruculosus[92]
Thailandolide B Talaromyces sp.[79]
Verruculide A T. cellulolyticus[37]
Verruculide B Talaromyces sp.[101]
Naphthoquinones
Acetonyl-methyl-hydroxy-methoxy-naphthazarin, acetyloxyethyl-hydroxy-dimethoxy-naphthalenedione, hydroxy-hydroxyethyl-dimethoxy-naphthalenedione Talaromyces sp.[68]
Anhydrofusarubin Talaromyces sp.[68]
Ethyl-dimethoxyjuglone Talaromyces sp.[68]
Javanicin, anhydrojavanicin Talaromyces sp.[68]
Peptides
Cyclo(l-Val- l-Pro), cyclo(l-Ile- l-Pro), cyclo(l-Leu- l-Pro), cyclo(l-Phe- l-Pro) T. purpureogenus[18]
Phenalenones
Bacillisporin ATalaromyces sp.
T. pinophilus
[81]
[34]
Bacillisporin BT. aculeatus
Talaromyces sp.
T. pinophilus
[20]
[74]
[34]
Bacillisporin CT. aculeatus
T. purpureogenus
Talaromyces sp.
[20]
[104]
[77]
Bacillisporin FT. verruculosus[87]
Dihydroxy-hydroxybenzylidene-methylbutenyl-indane-carboxylic acid methyl ester T. verruculosus[28]
Duclauxin, xenoclauxinT. verruculosus[87]
Macrosporusone D Talaromyces sp.[74]
SF226 T. purpureogenus[104]
Phenols
AcetamidophenolTalaromyces sp.[70]
Alternaphenol BTalaromyces sp.[77]
Altenusin T. mangshanicus
Talaromyces sp.
[51]
[73]
Expansols C–F T. versatilis[89]
Hydroxymethyl-methyl-heptenylphenol T. versatilis[89]
Methyl-hydroxy-trimethylphenylpropionate T. funiculosus[90]
Pyrocatechol Talaromyces sp.[79]
Talaromycin C, deacetyltalaromycin C T. pinophilus
Talaromyces sp.
[19]
[77]
Trihydroxybutyl-hydroxy-hydroxy-methylphenoxy-methylphenylacetate T. versatilis[89]
Tyrosol T. verruculosus[28]
Phenones
Isomonodictyphenone T. versatilis[89]
MonodictyphenoneT. albobiverticillius[22]
Pyridines
Aminopyridine T. verruculosus[28]
Pyrones
Dihydroaspyrone T. indigoticus[96]
Fonsecinone A T. aculeatus[29]
Nodulisporipyrone A Talaromyces sp.[76]
Scirpyrone H, xylapyrone ET. indigoticus[96]
Similanpyrone B, hydroxy-dimethylpyroneTalaromyces sp.[77]
Taiwapyrone T. purpureogenus[98]
Pyrrolidines
Dioxo-propanylidene-pyrrolidinyl- acrylic acid, propanylidene-pyrrolidine-dione T. mangshanicus[51]
Sterols
CerevisterolTalaromycs sp.[75]
Cyathisterone T. stipitatus[83]
Dankasterone T. purpureogenus[109]
Dankasterone B T. funiculosus[25]
Epidioxyergostadienol T. verruculosus
Talaromyces sp.
[28]
[75]
Ergostatrienol T. aculeatus[29]
Ergosterol, ergostadienetetraol, ergostadienetriol T. albobiverticillius
T. verruculosus
Talaromyces sp.
[111]
[28]
[75]
Ergosterol-endoperoxide, ergostatetraenone T. stipitatus[83]
Ganodermaside A T. verruculosus[28]
Helvolic acid T. aculeatus[29]
Hydroxy-ergostatrienoneT. stollii[84]
Methylincisterol, dimethylincisterol A3 T. versatilis[89]
Terpenes
Berkedrimane B T. minioluteus[27]
Hydroxyconfertifolin T. minioluteus[27]
Penioxalicin Talaromyces sp.[80]
Piniterpenoid D T. pinophilus[34]
Sordarin Talaromyces sp.[65]
Solaniol Talaromyces sp.[68]
Xanthones
Conioxanthone A Talaromycs sp.[17]
Dihydroxymethyl-hydroxymethylxanthone T. funiculosus[45]
Leptosphaerin G T. funiculosus[25]
Pinselin, methyl-hydroxy-methyl-oxo-xanthene-carboxylate, sydowinins A–BTalaromycs sp.[17]
Remisporine B, epi-remisporine B Talaromycs sp.[17]
Secalonic acid AT. stipitatus[83]
Secalonic acid DTalaromyces sp.[77]
Trihydroxymethylxanthone T. islandicus[49]
Table 4. Bioactivities of secondary metabolites produced by marine-derived Talaromyces strains.
Table 4. Bioactivities of secondary metabolites produced by marine-derived Talaromyces strains.
Compound NameReported Bioactivities 1References
Acetonyl-methyl-hydroxy-methoxy-naphthazarin, acetyloxyethyl-hydroxy-dimethoxy-naphthalenedioneanti-inflammatory, cytotoxic (RAW 264.7)[68]
Alantrypinoneα-glucosidase inhibitor[28]
Altenusinantioxidant, cytotoxic (B16, MCF-7, HepG2)
antibacterial (S. aureus), antifungal (C. albicans)
[73]
[51]
Amestolkolides A–Banti-inflammatory[100]
Amestolkines A–Banti-inflammatory[33]
Anhydrofusarubin, anhydrojavanicinanti-inflammatory[68]
Anserinone Cantibacterial (S. aureus), cytotoxic (MKN1)[79]
Aspergillumarin Aα-glucosidase inhibitor
antibacterial (E. coli, MRSA), antifungal (C. albicans)
antioxidant
[32]
[70]
[30]
Aspergillumarin Bα-glucosidase inhibitor[32]
Asperitaconic acid Banti-inflammatory[34]
Austin, austinol, austinolide, dehydroaustin, dehydroaustinolantioxidant[84]
Azaspirofuran Aanti-inflammatory[47]
Bacillisporin Aα-glucosidase inhibitor, antibacterial (B. subtilis)
antibacterial (S. aureus, MRSA)
[20]
[54]
Bacillisporin Bα-glucosidase inhibitor, antibacterial (B. subtilis)
antibacterial (E. faecalis, S.aureus, MRSA)
antibacterial (S. aureus)
[20]
[54]
[74]
Bacillisporin Cantiproliferative (K562, HL-60, BGC-823, HeLa)[104]
Bacillisporin Fprotein tyrosine phosphatase inhibitor[87]
Bacillisporins K–Lantibacterial (S. aureus)[74]
Bromothiobenzoic acidantibacterial (E. coli, K. pneumoniae, S. aureus), cytotoxic (HCT 116, HepG2 MCF-7)[29]
Chrodrimanins A, Cantioxidant[84]
Chrodrimanin Bprotein tyrosine phosphatase inhibitor
antioxidant
[101]
[84]
Chrodrimanins K, Nantiviral (H1N1)[21]
Chrodrimanins O, R–Sprotein tyrosine phosphatase inhibitor[101]
Chromosulfineantiproliferative-proapoptotic (MCF-7, K562, HL-60, HeLa, BGC-823)[102]
Citrorosein, questinollipid lowering[83]
Conioxanthone Aimmunosuppressive[17]
Corymbiferan lactone Aantiproliferative (HL-60, BGC-823, HeLa)[104]
Cyclosecosteroid Aacetylcholineterase inhibitor[75]
Cyclotryprostatin Banti-inflammatory[47]
Dankasteroneantiproliferative (HL-60, A549, MCF-7, SW480)[109]
Dehydroisopenicillideanticholesterol, lipid lowering[19]
Dihydro-hydroxy-hydroxymethyl-methoxy-methyl-naphthofurandioneanti-inflammatory[68]
Dihydroxyconiothyrinone Bantibacterial (E. coli, E. tarda, S. aureus), antioxidant[93]
Dihydroxy-dimethyl-dibenzofuranantibacterial (E. coli, E. faecalis, MRSA, S. aureus), antifouling (B. neritina)[89]
Dihydroxyfumitremorgin Canti-inflammatory[47]
Dihydroxy-hydroxybenzylidene-methylbutenyl-indane-carboxylic acid methyl esterantibacterial (B. cereus, S. albus, S. aureus)[28]
Dihydroxy-hydroxypentyl-isochromanoneα-glucosidase inhibitor
α-glucosidase inhibitor, antioxidant
[32]
[40]
Dihydroxy-hydroxypropyl-methyl-isochromenone, hydroxy-hydroxypropyl-methoxyisochromanone, hydroxypropyl-hydroxy-dihydroisocoumarinantioxidant[40]
Dihydroxyisocupressic acidantibacterial (V. parahemolyticus)[72]
Dihydroxy-methoxy-methylisochromenone, dihydroxy-pentyl-hydroxy-isochromanone, dimethyl-dihydroxyisocoumarin, hydroxy-hydroxyethyl-methoxyisocoumarin, hydroxy-hydroxymethyl-methoxy-methylisocoumarin, hydroxy-methoxy-dimethylisocoumarinα-glucosidase inhibitors[32]
Dihydroxy-methyldendryol Eantibacterial (S. aureus), antioxidant[93]
Dihydroxy-methyl-hydroxymethyl-xanthoneantibacterial (A. hydrophila)[45]
Diolhinokiic acidantiproliferative (HL-60, A549)[109]
Diorcinol, methoxycarbonyldiorcinolantibacterial (E. coli, E. faecalis, MRSA, S. aureus), antifouling (B. neritina)[89]
Ditalaromylectone Aantifungal (C. albicans)[51]
Epoxyberkeleydionelipid lowering[59]
Ergosta-trienolcytotoxic (HepG2, MCF-7)[29]
Ethyl-dimethoxyjugloneanti-inflammatory[68]
Eurothiocin Aα-glucosidase inhibitor
anti-inflammatory
[76]
[38]
Eurothiocins D, F, Gα-glucosidase inhibitors[48]
Expansols E–Fantifouling (B. neritina)[89]
Fructigenines A–Bantiproliferative (K562, HeLa, HL-60, BGC-823, MCF-7)[107]
Fumigaclavine C, fumigatin oxide, fumiquinazoline F, fumiquinone Banti-inflammatory[47]
Funicone, deoxyfunicone, 3-O-methylfunicone, hydroxyvermistatin, methoxyvermistatinanticholesterol, lipid lowering[19]
Fusarielins M, O, Pcytotoxic (B16)[73]
Hydroxyconiothyrinone Bantibacterial (S. aureus), antioxidant[93]
Hydroxy-ergosta-trienoneantioxidant[84]
Hydroxy-hydroxyethyl-dimethoxy-naphthalenedioneanti-inflammatory, cytotoxic (RAW 264.7)[68]
Hydroxy-hydroxy-hydroxymethyl-methylphenoxy-benzoic acidprotein tyrosine phosphatase inhibitor[22]
Hydroxy-methoxy-benzofuranyl-ethanone, hydroxy-methoxy- methylbenzofuran-carboxylic acidantibacterial (B. subtilis, E. coli, S. aureus, S. epidermidis)[32]
Hydroxy-methyl-dimethoxycoumarinantibacterial (MRSA), antifungal (C. albicans)[70]
Hydroxypentacecilide Aantiviral (H1N1)[21]
Hydroxypropyl-methyl-dihydroxychromoneantibacterial (Salmonella)[20]
Isobutyric acid dihydroxy-methyl-oxo-dihydro-naphththalenyl methyl esterα-glucosidase inhibitor[32]
Isocyclopaldic acidantibacterial (A. hydrophila, E. coli, M. luteus, P. aeruginosa, V. anguillarum, V. harveyi, V. parahemolyticus)[45]
Isotryptoquivaline Fanti-inflammatory[47]
Javanicinanti-inflammatory, cytotoxic (RAW 264.7)[68]
Macrosporusone Dantibacterial (S. aureus)[74]
epi-Mangrovamide Aantibacterial (V. harveyi. V. parahaemolyticus)[45]
Mangrovamide Iantibacterial (A. hydrophila, E. coli, M. luteus, P. aeruginosa, V. anguillarum, V. harveyi, V. parahemolyticus)[45]
Methoxy-methyl-biphenyl-triolantibacterial (S. aureus)[51]
Methylhexahydrofuro-furanylethanolcytotoxic (SF-268, MCF-7, HepG2, A549)[96]
Methylincisterol, dimethylincisterol A3antifouling (B. neritina)[89]
Methylpseurotin A, norpseurotin Aanti-inflammatory[47]
Methyltenellatelipid lowering[19]
Monodictyphenoneprotein tyrosine phosphatase inhibitor[22]
Nafuredin Bcytotoxic (HeLa, MCF-7, K562, HCT 116, HL-60, A549)[24]
Penicidone Cα-glucosidase inhibitor[26]
Penicifuran Aantibacterial (E. coli, MRSA), antifungal (C. albicans)[70]
Peniciisocoumarins C, F, Gantioxidant[40]
Peniciisocoumarin Dα-glucosidase inhibitor, antioxidant
antibacterial (E. coli, MRSA), antifungal (C. albicans)
[40]
[70]
Peniciisocoumarin Eantioxidant[30]
Peniciisocoumarin Hantibacterial (E. coli, MRSA), antifungal (C. albicans)[27]
Penicillideα-glucosidase inhibitor
cytotoxic (H1975, HL7702, K562, MCF-7)
[26]
[23]
Penicilloxalone Bantibacterial (E. coli, MRSA)
antioxidant
[70]
[30]
Penicimarins B–Cα-glucosidase inhibitor[32]
Penicimarin Gantibacterial (B. cereus, E. coli, S. aureus), antioxidant
α-glucosidase inhibitor, antioxidant
[92]
[30]
Penicimarin Hantioxidant
α-glucosidase inhibitor, antioxidant
[40]
[30]
Penicimarin Iα-glucosidase inhibitor[30]
Penicimarins L–Mantioxidant[30]
Penicimarin Nα-glucosidase inhibitor, antioxidant[40]
Penicimumideantiproliferative (A549, HeLa, MCF-7, HepG2, NCI-H1975, HL-60, K562, LS180, SW480, HT29, BXPC-3, PANC-1)[56]
Penicimutalidineantiproliferative (K562, HL-60, BGC-823, HeLa)[104]
Penicimutamides A–Fantiproliferative (K562, HL-60, BGC-823, HeLa)[105,106]
Penicimutanines A, Cantiproliferative (K562, HeLa, HL-60, BGC-823, MCF-7)[107]
Penicimutanolones A–B, penicimutanolone A methyl etherantiproliferative (A549, HeLa, MCF-7, HCT 116, HepG2, NCI-H1975, HL-60, K562, LS180, SW480, HT29, PC-3, BXPC-3, PANC-1)[56]
Penicimutideantiproliferative (HeLa)[18]
Penioxalicinantibacterial (MRSA)[80]
Peniphenone, pinselinimmunosuppressive[17]
Penixanthones A–Bantiallergic
cytotoxic (H1975, HL7702, K562, MCF-7)
[25]
[23]
Penixanthones C–Dcytotoxic (K562, MCF-7, Huh7)[90]
Pensulfonamideantibacterial (E. coli, K. pneumoniae, S. aureus), antifungal (A. niger and C. albicans), cytotoxic (MCF-7, HCT 116, HepG2)[29]
Pensulfonoxyantibacterial (E. coli, K. pneumoniae, S. aureus), antifungal (A. niger), cytotoxic (HCT 116, HepG2)[29]
Pestalotiorinα-glucosidase inhibitor[40]
Propenyl-octene-triolcytotoxic (SF-268, MCF-7, HepG2, A549)[96]
Purpactin Aantibacterial (H. pylori)
α-glucosidase inhibitor
[77]
[82]
Purpurides E–Fantibacterial (E. coli, MRSA), antifungal (C. albicans)[27]
Purpuride Gantibacterial (E. coli, MRSA), antifungal (C. albicans), antiproliferative (U251, U87MG)[27]
Purpurogenic acidantiproliferative (K562, HL-60, HeLa, BGC-823)[99]
Roussoellol Cantiproliferative (HL-60, A549, MCF-7, SW480)[109]
Rugulosin Aantibacterial (S. aureus)[74]
Rugulosuvineantiproliferative (K562, HeLa, HL-60, BGC-823, MCF-7)[107]
Sch1385568antibacterial (MRSA, S. aureus)[54]
Sch725680α-glucosidase inhibitor, antibacterial (M. smegmatis, S. aureus)[26]
Secalonic acid Dantibacterial (H. pylori), cytotoxic (Bel-7402, HCT 116)[77]
Secopenicillide Alipid lowering[19]
Secopenicillide Bantibacterial (H. pylori)[77]
Sequoiamonascin Ccytotoxic (B16, MCF-7)[73]
Sescandelinα-glucosidase inhibitor
antibacterial (E. coli, MRSA), antifungal (C. albicans)
[32]
[70]
Sescandelin Bα-glucosidase inhibitor[32]
SF226antiproliferative (K562, HL-60, BGC-823, HeLa)[104]
Solaniolanti-inflammatory, cytotoxic (RAW 264.7)[68]
Sydowinin Aimmunosuppressive[17]
Talabenzofuran Cα-glucosidase inhibitor[76]
Talacyanol Aanti-inflammatory, cytotoxic (HCT-15, NUGC-3, MDA-MB-231, PC-3, NCI-H23, ACHN) [38]
Taladrimanin Aantibacterial (S. aureus), antiproliferative-proapoptotic (MGC803, MKN28)[78]
Talamin Aantibacterial (V. vulnificus), antioxidant[52]
Talamin Bantibacterial (MRSA, V. vulnificus)[52]
Talamin Dantioxidant[52]
Talanaphthoquinone Aanti-inflammatory, cytotoxic (RAW 264.7)[68]
Talaramidemycobacterial PknG kinase inhibitor[91]
Talarocyclopenta Aantibacterial (E. coli, S. aureus), anti-inflammatory[34]
Talarocyclopenta Bantibacterial (B. cereus, B. subtilis, E. coli, M. tetragenus, S. albus, S. aureus), anti-inflammatory[34]
Talarocyclopenta Canti-inflammatory[34]
Talarodilactones A–B cytotoxic (L5178Y)[63]
Talarodrides A–Bantibacterial (P. mirabilis, V. parahemolyticus)[72]
Talaroisocoumarin Aantibacterial (E. coli, MRSA), antifungal (C. albicans)[70]
Talaromarin Fantioxidant[40]
Talarominine Aantibacterial (MRSA, M. luteus, P. aeruginosa, V. harveyi, V. vulnificus), antioxidant[52]
Talaromynoid Eprotein tyrosine phosphatase inhibitor[59]
Talaromynoids G–Ilipid lowering[59]
Talaromyolides D, I, Kantiviral (PRV)[58,103]
Talaromyone Aantibacterial (H. pylori)[77]
Talaromyone Bantibacterial (B. subtilis), α-glucosidase inhibitor[82]
Talaromyoxaones A–Bprotein tyrosine phosphatase inhibitors[60]
Talaronin Eantibacterial (H. pylori)[77]
Talaropeptins A–Bantifungal (F. oxysporum)[108]
Talascortenesantibacterial (A. hydrophila, E. coli, E. tarda, M. luteus, P. aeruginosa, V. harveyi, V. parahemolyticus), antifungal (C. gloeosporioides, F. oxysporum, G. graminis, R. cerealis)[64]
Talasteroidantioxidant[84]
Talaverrucin AWnt/β-catenin pathway inhibitor[81]
Tenellic acid Aα-glucosidase inhibitor[82]
Tetrahydroxymethylbenzophenone, trihydroxymethylxanthone antibacterial (E. coli, P. aeruginosa, S. aureus, V. alginolyticus, V. harveyi, V. parahaemolyticus), antioxidant[49]
Trihydroxybutyl-hydroxy-hydroxy-methylphenoxy-methylphenylacetateantibacterial (E. coli, E. faecalis, MRSA, S. aureus)[89]
Trihydroxy-hydroxyethyl-isocoumarinα-glucosidase inhibitor[32]
Trihydroxy-methoxymethylbenzophenoneantioxidant[49]
Vermistatinanticholesterol, lipid lowering
cytotoxic (B16)
[19]
[73]
Verruculide B2antibacterial (S. aureus)[21]
Verruculosin A, xenoclauxinprotein tyrosine phosphatase inhibitor[87]
1 Microbial species and cell types used in bioassays are indicated in brackets.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Nicoletti, R.; Bellavita, R.; Falanga, A. The Outstanding Chemodiversity of Marine-Derived Talaromyces. Biomolecules 2023, 13, 1021. https://doi.org/10.3390/biom13071021

AMA Style

Nicoletti R, Bellavita R, Falanga A. The Outstanding Chemodiversity of Marine-Derived Talaromyces. Biomolecules. 2023; 13(7):1021. https://doi.org/10.3390/biom13071021

Chicago/Turabian Style

Nicoletti, Rosario, Rosa Bellavita, and Annarita Falanga. 2023. "The Outstanding Chemodiversity of Marine-Derived Talaromyces" Biomolecules 13, no. 7: 1021. https://doi.org/10.3390/biom13071021

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop