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Abstract: Fungi in the genus Talaromyces occur in every environment in both terrestrial and marine
contexts, where they have been quite frequently found in association with plants and animals. The
relationships of symbiotic fungi with their hosts are often mediated by bioactive secondary metabo-
lites, and Talaromyces species represent a prolific source of these compounds. This review highlights
the biosynthetic potential of marine-derived Talaromyces strains, using accounts from the literature
published since 2016. Over 500 secondary metabolites were extracted from axenic cultures of these
isolates and about 45% of them were identified as new products, representing a various assortment
of chemical classes such as alkaloids, meroterpenoids, isocoumarins, anthraquinones, xanthones,
phenalenones, benzofurans, azaphilones, and other polyketides. This impressive chemodiversity and
the broad range of biological properties that have been disclosed in preliminary assays qualify these
fungi as a valuable source of products to be exploited for manifold biotechnological applications.

Keywords: Talaromyces; marine-derived fungi; Penicillium subgenus Biverticillium; bioactive compounds;
biotechnological applications; chemotaxonomy

1. Introduction

The genus Talaromyces (Eurotiomycetes, Trichocomaceae) was established about 70 years
ago to classify the teleomorphs of some Penicillium species [1]. It was primarily considered
to include soil fungi after the type species T. flavus was mainly reported and exploited as
an antagonist of soil-borne plant pathogens [2]. However, as investigations within natural
contexts progressed, Talaromyces species were found to occur in every environment and be
associated not only with terrestrial organisms, such as plants [3] and insects [4], but also to be
widespread at sea.

Symbiotic relationships involving fungi are often mediated by their extraordinary capac-
ity for synthesizing bioactive compounds, playing either a promoting or a detrimental role
toward the host [5,6]. This is the case for Talaromyces species too, based on the high number of
reports in the literature [7–10]. Following a review on the bioactive products of the marine-
derived strains of these fungi published at the beginning of 2016 [11], this paper examines
the biosynthetic capacities of Talaromyces strains recovered from marine sources based on the
pertinent literature published since then, in view of providing an updated account on the
chemodiversity of these fungi in relation to their possible biotechnological applications.

2. Occurrence of Talaromyces in the Marine Environment

Deeply rooted in our culture, considering land and sea as separate worlds, the concept
of grouping in the two broad categories of terrestrial and marine organisms is basically
referable to higher animals and plants, the species of which are generally adapted to either
one or the other of these macroecological contexts. However, despite attempts by early
marine mycologists, such separation has not proved to be effective in the case of fungi;
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indeed, a multitude of fungal species originally described from terrestrial sources have
been later reported in marine contexts [11–13].

Resulting from an increasing number of studies worldwide, the species in the genus Ta-
laromyces represent a good example of this adaptability. In fact, an examination of the literature
published since 2016 yielded 95 reports of about 30 species (Table 1). Two of them (T. haitouensis
and T. zhenhaienis) were not previously identified in terrestrial contexts, representing a further
indication that these fungi are not merely occasional in marine environments. In 30 cases, the
isolates were not identified at the species level (reported as Talaromyces sp. in Table 1), which
could imply an even higher species diversity. Indeed, the issue of species identification for
Talaromyces is quite fickle, following the recent spread of biomolecular tools in fungal taxonomy
and the ensuing nomenclatural revisions. Currently, there are over 170 accepted species in
this genus, which are grouped into seven sections [14,15]; four of them (Helici, Islandici, Ta-
laromyces, and Trachyspermi) include the species listed in Table 1. Besides the most common
species, i.e., T. purpureogenus, T. verruculosus, T. stipitatus, T. pinophilus, and T. funiculosus, the
new species T. haitouensis and T. zhenhaienis also belong to the section Talaromyces [16]. The
species T. cellulolyticus and T. variabile have been reported in synonymy with T. pinophilus and
T. wortmannii, respectively [14]; however, in Table 1 we used their old names to avoid possible
confusion. Additionally, we provisionally considered the species name T. cyanescens, even if it is
not included in the updated list of accepted Talaromyces species [15]. Several strains examined
in this review were identified by the authors with reference to the old Penicillium nomen-
clature [17–30]; however, their identity as Talaromyces has been confirmed by morphological
descriptions and/or a blast of their DNA sequences in GenBank.

Table 1. Talaromyces species reported in the literature from marine sources since 2016.

Species Source Location Reference

T. aculeatus

mangrove (Kandelia candel, leaf) Guangdong (China) [20] *

deep sea sediment Indian Ocean [24] *

red alga (Laurencia obtusa) Suez Gulf (Egypt) [29] *

T. albobiverticillius
coral rubble, sediment La Reunion Island [31] *

unidentified ascidian Manado (Indonesia) [22] *

T. amestolkiae
mangrove (Kandelia obovata, leaf) Guangdong (China) [32] *

pipefish (Syngnathus acus) † Hainan (China) [33] *

T. assiutensis
mangrove (Ceriops tagal, leaf) South China Sea [34] *

mangrove (Avicennia marina, root) Maharashtra (India) [35]

T. brunneus sponge (Axinella polypoides) Marmara (Turkey) [36]

T. cellulolyticus coral South China Sea [37] *

T. cyanescens green alga (Caulerpa sp.) Da Nang (Vietnam) [38] *

T. flavus

sediment Kanyakumari district (India) [39]

mangrove (Acanthus ilicifolius, stem) Hainan (China) [40] *

sponge (Mycale sp.) Samaesarn Island (Thailand) [41]

T. funiculosus

deep sea sediment Shimokita Peninsula (Japan) [42]

mangrove sediment Hainan (China) [23,25] *

coral (Porites compressa) Zhanjiang (China) [43]

sea cucumber (Holothuria leucospilota) Pangkor Island (Malaysia) [44]

deep sea sediment South China Sea [45] *

T. fuscoviridis mangrove rhizosphere Hainan (China) [46]

T. haitouensis mudflat in estuary Jiangsu (China) [16]

T. helicus deep sea sediment South China Sea [47] *

T. indigoticus deep sea sediment South China Sea [48] *

T. islandicus red alga (Laurencia okamurai) Qingdao (China) [49] *
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Table 1. Cont.

Species Source Location Reference

T. liani mudflat in intertidal zone Yongyudo (South Korea) [50]

T. mangshanicus sediment South China Sea [51] *

T. minioluteus
sediment East China Sea [27] *

mussel (Gigantidas platifrons) South China Sea [52] *

T. pinophilus

mangrove sediment Xiamen (China) [19] *

mangrove rhizosphere Techeng Isle (China) [26] *

mangrove (A. marina) rhizosphere Gazi Bay (Kenya) [53]

sponge (Mycale sp.) Samaesarn Island (Thailand) [54] *

T. purpureogenus

mudflat in intertidal zone Tianjin (China) [18] *

brown alga Kovalam (India) [55]

mud at the coastline Hebei (China) [56] *

brown alga (Phaeurus antarcticus) Half Moon Island (Antarctica) [57]

red alga (Grateloupia filicina) Zhejiang (China) [58] *

soft coral Nansha islands (China) [59] *

soft coral South China Sea [60] *

brown alga (Sargassum muticum) Kerala (India) [61]

water Sharm El-Sheikh governorate (Egypt) [62]

T. rotundus reef water La Reunion Island [31]

T. rugulosus sponge (Axinella cannabina) Sığaçık-İzmir (Turkey) [63] *

T. scorteus sea anemone (Cerianthus sp.) Magellan Sea Mounts [64] *

Talaromyces sp.

mangrove (Sonneratia apetala, leaf) Guangdong (China) [17] *

unidentified tunicate Tweed Heads (Australia) [65] *

annellid (Sipunculus nudus) Haikou Bay (China) [21] *

mangrove (Rhizophora mucronata, root) Andaman Islands (India) [66]

mangrove (Laguncularia racemosa) rhizosphere Vera Cruz (Mexico) [67]

abandoned saltern
mudflat in intertidal zone

Yubudo (South Korea)
Gopado, Yongyudo (South Korea) [50]

mangrove (R. mucronata) rhizosphere Gazi Bay, Mida Creek (Kenya) [53]

coral (Porites pukoensis) Zhanjiang (China) [43]

mangrove (K. obovata, fruit) Guangxi (China) [68] *

mangrove (Brownlowia tersa, stem)

Sundarbans (Bangladesh) [69]

mangrove (Ceriops decandra, bark)

mangrove (Heritiera fomes, bark)

mangrove (Xylocarpus granatum, bark)

mangrove (Xylocarpus moluccensis, bark)

halibut (Hippoglossus sp.) Zhejiang (China) [70] *

water Yap Trench [71]

sponge Weddell Sea (Antarctica) [72] *

mangrove (X. granatum, root) Hainan (China) [30] *

sediment Zhejiang (China) [73] *

mudflat in intertidal zone Qingdao (China) [74] *

mangrove (Kandelia sp., leaf) Guangdong (China) [75] *

mangrove soil Hainan (China) [76,77] *

water Dongshan Island (China) [78,79] *

unidentified sponge Bulon Island (Thailand) [80] *

unidentified sponge Prydz Bay (Antarctica) [81] *
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Table 1. Cont.

Species Source Location Reference

T. stipitatus

mangrove (A. ilicifolius, leaf) Guanxi (China) [82] *

sponge (Stylissa flabelliformis) Samaesarn Island (Thailand) [83] *

mangrove (A. marina, root) Tamil Nadu (India) [66]

mudflat in intertidal zone Yongyudo (South Korea) [50]

mangrove (R. mucronata) rhizosphere Gazi Bay (Kenya) [53]

brown alga (S. muticum) Kerala (India) [61]

T. stollii unknown Bohai Sea (China) [84] *

T. trachyspermus sponge (Clathria reinwardti) Kram Island (Thailand) [85]

T. tratensis sponge (Mycale sp.) Samaesarn Island (Thailand) [86] *

T. variabilis mangrove rhizosphere Fujian (China) [24] *

T. verruculosus

reef water La Reunion Island [31]

soft coral (Goniopora sp.) Hainan (China) [87] *

mangrove (A. marina) rhizosphere Mida Creek (Kenya)
[53]

mangrove (C. tagal) rhizosphere Gazi Bay (Kenya)

mangrove (X. moluccensis, pneumatophores) Sundarbans (Bangladesh) [69]

deep-sea sediment Okinawa Trough [88]

mangrove (X. granatum) South China Sea [28] *

T. versatilis soft coral Yongxing Island (China) [89] *

T. zhenhaiensis mudflat in estuary Zhejiang (China) [16]

† This isolation source is unreliable, considering that the authors describe it as a “marine herb”; * these entries
report on strains used for identification of secondary metabolites.

The sources of isolation of these marine-derived Talaromyces (Table 1) are diverse,
including sediments, water samples, and a variety of plants and animals, within which no
specific symbiotic association can be inferred for the time being. As for their geographic
origins, it is quite impressive that about 80% of these findings come from Asia and about half
from China, which undoubtedly reflects a higher attention paid to the issue of biodiversity
by researchers in this area. Reports from ocean trenches and Antarctica further confirm the
extraordinary adaptability of these fungi to extreme environmental conditions.

3. Structural Aspects

Our overview of the pertinent literature published since 2016 yielded a list of as many as
514 compounds that are reported as secondary metabolites of marine-derived Talaromyces strains,
resulting from the combination of 230 novel and 284 known products (Tables 2 and 3). Such an
impressive chemodiversity originates from comprehensive genetic bases driving various biosyn-
thetic pathways and assorted biogenic schemes, so that the classification of some structurally
complex compounds in a defined chemotype is problematic. Therefore, our attempt to group
these products into classes, as indicated in Tables 2 and 3, is affected by some approximations
for a few compounds presenting complex structures.

Table 2. Novel compounds reported as secondary metabolites of marine-derived Talaromyces.

Compound Species Reference

Alkaloids
Chaetominine B T. helicus [47]
Ditalaromylectones A–B T. mangshanicus [51]
11,17-epi-Mangrovamide A T. funiculosus [43]
Mangrovamides D–K T. funiculosus [25]
Mangrovlide A T. funiculosus [90]
Talaramide A T. amestolkiae [91]
Talaromanloid A T. mangshanicus [51]
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Table 2. Cont.

Compound Species Reference

Amides
Penicimumide T. purpureogenus [56]
Talaromydene T. mangshanicus [51]

Talaromydien A Talaromyces sp.
T. verruculosus

[70]
[92]

Talaromylectone T. mangshanicus [51]

Anthraquinones
4-8-Dihydroxyconiothyrinone B, 8-11-dihydroxyconiothyrinone B,
8-hydroxyconiothyrinone B, 8-dihydroxy-10-O-methyldendryol E T. islandicus [93]

2,2′-bis-(7-Methyl-1,4,5-trihydroxy-anthracene-9,10-dione) T. stipitatus [83]
Rugulosin D Talaromyces sp. [74]

Azaphilones
Azaphilone compounds 1–3 and 5 T. indigoticus [94]
7-epi-Pinazaphilone B T. pinophilus [54]
Talaromyacins A–C T. purpureogenus [95]

Benzofurans
Eurothiocins C–H T. indigoticus [48]
1-(5-Hydroxy-7-methoxybenzofuran-3-yl)ethan-1-one,
5-hydroxy-7-methoxy-2-methylbenzofuran-3-carboxylic acid T. amestolkiae [32]

(2-Hydroxypropan-2-yl)-6-methyl-2,3-dihydrobenzofuran-4-ol T. indigoticus [96]
Isoprenyl-benzofuran derivative T. indigoticus [94]
Talabenzofurans A–C Talaromyces sp. [76]
Talarominine A T. minioluteus [52]

Benzophenones
2,2′,5′-Trihydroxy-3-methoxy-3′-methylbenzophenone,
2,2′,3,5-tetrahydroxy-3′-methylbenzophenone T. islandicus [49]

Benzoquinones
Anserinone C Talaromyces sp. [79]

Chromones
2-(2′-Hydroxypropyl)-5-methyl-7,8-dihydroxychromone T. aculeatus [20]

Decalins
Fusarielins O–P Talaromyces sp. [73]

Depsidones
5′-Hydroxypenicillide T. pinophilus [19]
Talamins A–D T. minioluteus [52]

Talaromyones A–B T. stipitatus
Talaromyces sp.

[82]
[77]

Talaronins A–H Talaromyces sp. [77]

Diphenyl ethers
2-Hydroxy-6-(2′-hydroxy-3′-hydroxymethyl-5-methylphenoxy)-
benzoic acid T. albobiverticillius [22]

Funicones
Pinophilones A–E T. pinophilus [26]

Furans
Talarofuranone, talarotetrahydrofuran Talaromyces sp. [80]

Indenes
1,2-Indandiol T. funiculosus [23]

Isocoumarins
Aspergillumarin C Talaromycs sp. [75]
5,6-Dihydroxy-3-(4-hydroxypentyl)-isochroman-1-one,
6,8-dihydroxy-5-methoxy-3-methyl-isochromen-1-one,
5-hydroxy-4-(1-hydroxyethyl)-8-methoxyisocoumarin,
6-hydroxy-8-methoxy-3,4-dimethylisocoumarin, isobutyric acid
5,7-dihydroxy-2-methyl-4-oxo-3,4-dihydro-naphththalen-1-yl methyl ester

T. amestolkiae [32]

3-(4,5-Dihydroxy-pentyl)-8-hydroxy-isochroman-1-one T. amestolkiae
T. flavus

[32]
[40]

Penicimarins L–M Talaromyces sp. [30]
Peniisocoumarin H T. minioluteus [27]
Talaroisocoumarin A Talaromyces sp. [70]
Talaromarins A–F T. flavus [40]
Talumarins A–B T. rugulosus [63]
Tratenopyrone T. tratensis [86]
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Table 2. Cont.

Compound Species Reference

Ketones
6-(2-Carboxyvinyl)-N-GABA-PP-V T. albobiverticillius [97]
Penicillquei C T. verruculosus [92]
Penicimutanolones A–B, penicimutanolone A methyl ether T. purpureogenus [56]

Penitalarins A–C T. aculeatus/T.
variabilis [24]

2-Prop-1-en-1-yl-oct-4-ene-1,6,7-triol T. indigoticus [96]
Purpurofuranone T. purpureogenus [98]
Purpurogenic acid T. purpureogenus [99]
Purpuropyranone T. purpureogenus [98]
Talarocyclopenta A–C T. assiutensis [34]

Lactones
Lactone acid n-butyl ester, lactone diacid 7-O-n-butyl ester,
4-methoxylactone acid n-butyl ester T. rugulosus [40]

5-Methylhexahydrofuro[2,3-b]furan-2-yl-ethanol T. indigoticus [96]

Nafuredin B T. aculeatus/T.
variabilis [24]

cis-Resorcylide, 7-O-n-butylresorcylides, 7-hydroxyresorcylides,
7-methoxyresorcylides T. rugulosus [40]

Talarodilactones A–B T. rugulosus [40]

Meroterpenoids
Amestolkolides A–D T. amestolkiae [100]
Chrodrimanins K–S Talaromyces sp. [21,101]
Chromosulfine T. purpureogenus [102]
Taladrimanin A Talaromyces sp. [78]
Talaromynoids A–I T. purpureogenus [59]
Talaromyolides A–K T. purpureogenus [58,103]
Talaromytin T. purpureogenus [58]

Morpholinones
Talaromorpholinone Talaromyces sp. [80]

Naphthoquinones
Talanaphthoquinones A–B Talaromyces sp. [68]

Nonadrides
Talarodrides A–F Talaromyces sp. [72]

Phenalenones
Abeopyrenulin, 11-apopyrenulin T. purpureogenus [60]
Amestolkins A–B T. amestolkiae [33]
Bacillisporins K–L Talaromyces sp. [74]
Dihydroxy-ergosta-4,6,8(14)-tetraen-3-one T. pinophilus [54]
Penicimutalidine T. purpureogenus [104]
Penicimutamides A–E T. purpureogenus [105,106]
Penicimutanin C T. purpureogenus [107]
Talaromyoxaones A–B T. purpureogenus [60]
Talaropinophilide, talaropinophilone T. pinophilus [54]
Talaverrucin A Talaromyces sp. [81]
Verruculosins A–B T. verruculosus [87]

Peptides
Penicimutide T. purpureogenus [18]
Talaropeptins A–B T. purpureogenus [108]

Polyenes
Talacyanols A–C T. cyanescens [38]

Polyphenols
Talaversatilis A–B T. versatilis [89]

Pyrones
Talapyrones A–B Talaromyces sp. [76]

Pyrroles
(R)-3-Hydroxy-2,7-dimethylfuro[3,4-b]pyridin-5(7H)-one Talaromyces sp. [79]
10-Hydroxy-8-demethyltalaromydine,
11-hydroxy-8-demethyltalaromydine T. mangshanicus [51]
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Compound Species Reference

Sterols
Cyclosecosteroid A Talaromyces sp. [75]
Talarosterone T. stipitatus [83]
Talasteroid T. stollii [84]

Sulfones
Pensulfonamide, pensulfonoxy T. aculeatus [29]

Terpenes
Dihydroxyisocupressic acid T. scorteus [64]
9,10-Diolhinokiic acid T. purpureogenus [109]
Purpurides E–G T. minioluteus [27]
Roussellol C T. purpureogenus [109]
Talascortenes A–G T. scorteus [64]
Verruculides B2–B3 Talaromyces sp. [21]

Xanthones
Penixanthones A–D T. funiculosus [23,90]
1,4,7-Trihydroxy-6-methylxanthone T. islandicus [49]

Table 3. Secondary metabolites identified as products of marine-derived Talaromyces that are also
known from other biological sources.

Compound Species Reference

Acids
Asperitaconic acid B, butylitaconic acid T. assiutensis [34]
Bromothiobenzoic acid T. aculeatus [29]
Coculnol, acetylcoculnol Talaromycs sp. [79]
Hydroxybenzoic acid T. versatilis [89]
8-Hydroxy-carboxy-methylenenonanoic acid,
9-hydroxy-carboxy-methylenenonanoic acid T. assiutensis [34]

Isocyclopaldic acid T. funiculosus [45]
Methylcurvulinate T. minioluteus [27]
Methylorsellinate T. indigoticus [96]

Alcohols
bis-Methoxybenzyl-butanediol T. tratensis [86]

Alkaloids
Alantrypinone T. verruculosus [28]
Chaetominine T. helicus [47]
Cyclotryprostatin B T. helicus [47]
Cyclotryprostatin E T. purpureogenus [109]
Dihydroxyfumitremorgin C T. helicus [47]
Fructigenines A–B T. purpureogenus [107]
Fumigaclavine C, fumigatin oxide, fumiquinazolines F, G, J T. helicus [47]
Mangrovamides A, C, G, I T. funiculosus [25,45]

Methoxyspirotryprostatin B T. purpureogenus
T. helicus

[109]
[47]

Methyl-hexahydro-pyrazino-pyrido-indole-dione T. purpureogenus [92]
Penicimutanin A T. purpureogenus [107]
Premalbrancheamide T. purpureogenus [106]
Pseurotin A, F1, methylpseurotin A, norpseurotin A T. helicus [47]
Rugulosuvine A T. purpureogenus [107]
Spiro-dipyrrolo-pyrazine-indole-trione T. helicus [47]
Tryptoquivalines F, J, isotryptoquivaline F T. helicus [47]

Amides
Hydroxy-methoxyphenyl-acetamide T. cellulolyticus [37]
Hydroxy-methyl-oxobutyl-butanamide Talaromyces sp. [80]

Anthraquinones
Acetylquestinol T. pinophilus [34]

Citrorosein T. stipitatus
T. minioluteus

[83]
[27]

Dihydroxy-methoxy-methyl-anthracene-dione T. funiculosus [23]
Emodin, fallacinol, questinol, rheoemodin T. stipitatus [83]
Questin T. funiculosus [45]
Rugulosin A Talaromyces sp. [74]
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Table 3. Cont.

Compound Species Reference

Azaphilones

FK17-P2b1 T. minioluteus
Talaromyces sp.

[27]
[78]

Glutarylmonascorubraminic acid, hydroxyethyl-monascorubramin,
threonine-monascorubramine, threonine-rubropunctamine,
GABA-rubropunctatin

T. albobiverticillius [110]

Mitorubrin T. purpureogenus
Talaromyces sp.

[99]
[73]

Mitorubrinol T. purpureogenus [99]
Monascorubramine, glutarylrubropunctamine, glycylrubropunctatin T. albobiverticillius [111]
Peniazaphilin B Talaromyces sp. [76,79]
Pinazaphilone B Talaromyces sp. [73]
Pinophilin Talaromyces sp. [73]
Pinophilins B, G T. pinophilus [26]
Purpurquinone A T. minioluteus [27]
Sch1385568 T. pinophilus [34]
Sch725680 T. pinophilus [26]
Sequoiamonascin C Talaromyces sp. [73]
Wortmin T. tratensis [86]

Benzaldehydes
Dihydroxybenzaldehyde Talaromyces sp. [77]
Ethyl-dihydroxy-methylbenzaldehyde Talaromyces sp. [78]
Hydroxybenzaldehyde, hydroxy-methylbutenyl-benzaldehyde Talaromyces sp. [79]

Benzofurans
Carboxy-methyl-butenyl-octahydro-methoxycarbonyl-3-methyl-
methylene-oxo-benzofuranacetic acid Talaromyces sp. [80]

Dihydroxy-dimethyl-dibenzofuran T. versatilis [89]

Eurothiocin A
T. cyanescens
T. indigoticus

Talaromyces sp.

[38]
[48]
[76]

Purpuresters A–B T. minioluteus [27]
Trypacidin T. helicus [47]

Benzoquinones
Fumiquinone B T. helicus [47]

Cerebrosides
Flavuside B T. verruculosus [28]

Cyclopentenones, Cyclohexenones
Phomaligol A T. funiculosus [45]
Terrein T. verruculosus [92]

Decalins
Fusarielin M Talaromyces sp. [73]

Depsidones
Dehydroisopenicillide, dehydroxypenicillide, purpactin C T. pinophilus [19]
Isopenicillide T. pinophilus [19,26]
Methyldehydroisopenicillide T. pinophilus [26]

Penicillide

T. pinophilus
T. funiculosus
T. stipitatus

T. verruculosus
Talaromyces sp.

[19,26]
[23]
[82]
[28]
[74]

Purpactin A (=vermixocin B)
T. pinophilus
T. stipitatus

Talaromyces sp.

[19]
[82]
[77]

Purpactin C’ Talaromyces sp. [77]

Secopenicillide A T. pinophilus
Talaromyces sp.

[19]
[77]

Secopenicillide B T. stipitatus
Talaromyces sp.

[82]
[77]
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Table 3. Cont.

Compound Species Reference

Diphenyl ethers
Diorcinol, methyldiorcinol, methoxycarbonyldiorcinol T. versatilis [89]
Methoxy-methyl-biphenyltriol T. mangshanicus [51]
Methyl tenellate T. pinophilus [19]
Tenellic acid A T. stipitatus [82]

Tenellic acid C T. stipitatus
Talaromyces sp.

[82]
[77]

Esters
Ethyl everninate T. indigoticus [96]
Methyl-hydroxy-methylhexenoate, methyl-hydroxyphenyl-acetate T. minioluteus [27]

Funicones
Demethylvermistatin, epi-hydroxydihydrovermistatin,
methyldihydrovermistatin, penisimplicissin,
demethylpenisimplicissin, penicidones C–D

T. pinophilus [26]

Dihydrovermistatin T. pinophilus
Talaromyces sp.

[26]
[78]

Funicone, deoxyfunicone T. pinophilus [19]
Methylfunicone, hydroxyvermistatin, methoxyvermistatin T. pinophilus [19,26]

Vermistatin T. pinophilus
Talaromyces sp.

[19,26]
[73,78]

Furans
Azaspirofuran A T. helicus [47]
Cillifuranone T. purpureogenus [98]

Glycosides
Carnemycins B, E T. verruculosus [28]

Isocoumarins

Aspergillumarin A

T. amestolkiae
T. flavus

T. rugulosus
T. verruculosus
Talaromyces sp.

[32]
[40]
[63]
[92]

[30,70,75]

Aspergillumarin B
T. amestolkiae

T. verruculosus
Talaromyces sp.

[32]
[92]

[70,75]
Dihydroxy-2-hydroxypropyl-methylisochromenone,
dihydroxy-2S-hydroxypropyl-methylisochromenone

T. flavus
Talaromyces sp.

[40]
[78]

Dihydroxyl-oxoisochromanyl-propanoic acid Talaromyces sp. [75]
Dihydroxymellein Talaromyces sp. [77]
Dihydroxy-trimethylisochromanone, dihydroxy-trimethylisochroman Talaromyces sp. [79]
Dimethyl-dihydroxyisocoumarin T. amestolkiae [32]
Hydroxy-hydroxymethyl-methoxy-methylisocoumarin T. amestolkiae [32]
Hydroxy-hydroxypropyl-methoxyisochromanone T. flavus [40]

Hydroxymellein T. cellulolyticus
Talaromyces sp.

[37]
[78,79]

Hydroxy-methoxy-dimethylchromone T. minioluteus [52]
Hydroxy-methoxy-methylphthalide T. funiculosus [90]
Hydroxy-methyl-dimethoxycoumarin Talaromyces sp. [70]
Hydroxypropyl-hydroxy-dihydroisocoumarin T. flavus [40]
Hydroxyramulosin Talaromyces sp. [76]
Orthosporin T. minioluteus [27]
Penicifuran A Talaromyces sp. [70]
Peniciisocoumarins A–G T. flavus [40]
Peniciisocoumarin D Talaromyces sp. [70]
Peniciisocoumarins E–F Talaromyces sp. [30]
Penicilloxalone B Talaromyces sp. [30,70]
Penicimarin B T. amestolkiae [32]

Penicimarin C T. amestolkiae
T. flavus

[32]
[40]

Penicimarin G
T. flavus

Talaromyces sp.
T. verruculosus

[40]
[30]
[92]

Penicimarin H T. flavus
Talaromyces sp.

[40]
[30]

Penicimarin I Talaromyces sp. [30]
Penicimarin N T. flavus [40]
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Table 3. Cont.

Compound Species Reference

Pestalotiorin T. flavus
Talaromycs sp.

[40]
[79]

Ramulosin T. cyanescens
Talaromyces sp.

[38]
[76]

Sclerotinin A Talaromyces sp. [78,79]
Sclerotinin B Talaromyces sp. [79]

Sescandelin T. amestolkiae
Talaromyces sp.

[32]
[70]

Sescandelin B T. amestolkiae [32]

Trihydroxy-hydroxyethylisocoumarin T. amestolkiae
Talaromyces sp.

[32]
[70]

Ketones
Dihydro-hydroxy-hydroxymethyl-methoxy-methylnaphtho-
furandione Talaromyces sp. [68]

Methyl-dihydropyranone Talaromyces sp. [78]
Penicillquei A T. verruculosus [92]

Lactones
Aspergilactone B T. verruculosus [92]
Carboxyphthalide T. aculeatus [20]
Corymbiferan lactone A T. purpureogenus [104]
Dehydromevalonic lactone, mevalonolactone T. funiculosus [90]
Deoxyrubralactone T. pinophilus [34]
Lactone acid, lactone diacid T. rugulosus [63]

Nafuredin A
T. aculeatus/T.

variabilis
T. mangshanicus

[24]
[51]

Meroterpenoids

Austinolide
T. purpureogenus
T. mangshanicus

T. stollii

[103]
[51]
[84]

Austin, austinol, dehydroaustin T. stollii [84]
Berkeleyacetal, berkeleyacetal A, epoxyberkeleydione T. purpureogenus [59]

Chrodrimanins A–B

T. amestolkiae
Talaromyces sp.
T. cellulolyticus

T. stollii

[100]
[21,78]

[37]
[84]

Chrodrimanin C T. cellulolyticus
T. stollii

[37]
[84]

Chrodrimanin E Talaromyces sp. [101]

Chrodrimanin F Talaromyces sp.
T. cellulolyticus

[101]
[37]

Chrodrimanin H Talaromyces sp.
T. cellulolyticus

[21,78]
[37]

Dehydroaustinol T. mangshanicus
T. stollii

[51]
[84]

Hydroxypentacecilide A Talaromyces sp. [101]
Miniolutelide C T. purpureogenus [59]
Preaustinoid T. purpureogenus [103]
Purpurogenolide E T. amestolkiae [100]
Territrem B T. verruculosus [92]
Thailandolide B Talaromyces sp. [79]
Verruculide A T. cellulolyticus [37]
Verruculide B Talaromyces sp. [101]

Naphthoquinones
Acetonyl-methyl-hydroxy-methoxy-naphthazarin,
acetyloxyethyl-hydroxy-dimethoxy-naphthalenedione,
hydroxy-hydroxyethyl-dimethoxy-naphthalenedione

Talaromyces sp. [68]

Anhydrofusarubin Talaromyces sp. [68]
Ethyl-dimethoxyjuglone Talaromyces sp. [68]
Javanicin, anhydrojavanicin Talaromyces sp. [68]

Peptides
Cyclo(L-Val- L-Pro), cyclo(L-Ile- L-Pro), cyclo(L-Leu- L-Pro),
cyclo(L-Phe- L-Pro) T. purpureogenus [18]
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Table 3. Cont.

Compound Species Reference

Phenalenones

Bacillisporin A Talaromyces sp.
T. pinophilus

[81]
[34]

Bacillisporin B
T. aculeatus

Talaromyces sp.
T. pinophilus

[20]
[74]
[34]

Bacillisporin C
T. aculeatus

T. purpureogenus
Talaromyces sp.

[20]
[104]
[77]

Bacillisporin F T. verruculosus [87]
Dihydroxy-hydroxybenzylidene-methylbutenyl-indane-carboxylic
acid methyl ester T. verruculosus [28]

Duclauxin, xenoclauxin T. verruculosus [87]
Macrosporusone D Talaromyces sp. [74]
SF226 T. purpureogenus [104]

Phenols
Acetamidophenol Talaromyces sp. [70]
Alternaphenol B Talaromyces sp. [77]

Altenusin T. mangshanicus
Talaromyces sp.

[51]
[73]

Expansols C–F T. versatilis [89]
Hydroxymethyl-methyl-heptenylphenol T. versatilis [89]
Methyl-hydroxy-trimethylphenylpropionate T. funiculosus [90]
Pyrocatechol Talaromyces sp. [79]

Talaromycin C, deacetyltalaromycin C T. pinophilus
Talaromyces sp.

[19]
[77]

Trihydroxybutyl-hydroxy-hydroxy-methylphenoxy-
methylphenylacetate T. versatilis [89]

Tyrosol T. verruculosus [28]

Phenones
Isomonodictyphenone T. versatilis [89]
Monodictyphenone T. albobiverticillius [22]

Pyridines
Aminopyridine T. verruculosus [28]

Pyrones
Dihydroaspyrone T. indigoticus [96]
Fonsecinone A T. aculeatus [29]
Nodulisporipyrone A Talaromyces sp. [76]
Scirpyrone H, xylapyrone E T. indigoticus [96]
Similanpyrone B, hydroxy-dimethylpyrone Talaromyces sp. [77]
Taiwapyrone T. purpureogenus [98]

Pyrrolidines
Dioxo-propanylidene-pyrrolidinyl- acrylic acid,
propanylidene-pyrrolidine-dione T. mangshanicus [51]

Sterols
Cerevisterol Talaromycs sp. [75]
Cyathisterone T. stipitatus [83]
Dankasterone T. purpureogenus [109]
Dankasterone B T. funiculosus [25]

Epidioxyergostadienol T. verruculosus
Talaromyces sp.

[28]
[75]

Ergostatrienol T. aculeatus [29]

Ergosterol, ergostadienetetraol, ergostadienetriol
T. albobiverticillius

T. verruculosus
Talaromyces sp.

[111]
[28]
[75]

Ergosterol-endoperoxide, ergostatetraenone T. stipitatus [83]
Ganodermaside A T. verruculosus [28]
Helvolic acid T. aculeatus [29]
Hydroxy-ergostatrienone T. stollii [84]
Methylincisterol, dimethylincisterol A3 T. versatilis [89]
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Table 3. Cont.

Compound Species Reference

Terpenes
Berkedrimane B T. minioluteus [27]
Hydroxyconfertifolin T. minioluteus [27]
Penioxalicin Talaromyces sp. [80]
Piniterpenoid D T. pinophilus [34]
Sordarin Talaromyces sp. [65]
Solaniol Talaromyces sp. [68]

Xanthones
Conioxanthone A Talaromycs sp. [17]
Dihydroxymethyl-hydroxymethylxanthone T. funiculosus [45]
Leptosphaerin G T. funiculosus [25]
Pinselin, methyl-hydroxy-methyl-oxo-xanthene-carboxylate,
sydowinins A–B Talaromycs sp. [17]

Remisporine B, epi-remisporine B Talaromycs sp. [17]
Secalonic acid A T. stipitatus [83]
Secalonic acid D Talaromyces sp. [77]
Trihydroxymethylxanthone T. islandicus [49]

The remarkable number of new compounds resulting from the biochemical char-
acterization of Talaromyces strains show some degree of specificity, possibly reflecting
chemotaxonomic relevance. In this respect, the novel products displaying uncommon
scaffolds require verification for the possible occurrence of structural analogs in other
fungi; however, after many years of study, some compounds have been found exclusively
or almost exclusively in Talaromyces and can be considered as candidates for the assess-
ment of phylogenetic relations. This is the case of funicone-like compounds, which are
characterized by a molecular structure that is built on a γ-pyrone ring linked through a
ketone group to an α-resorcylic acid nucleus (Figure 1 (1)); besides the true funicones, the
other products in this series present modifications on the α-resorcylic acid nucleus, the
γ-pyrone ring, or both moieties, and are grouped into the phthalide, furopyrone, and pyri-
done subclasses [10,112,113]. Among the widely represented oxaphenalenones, duclauxins
present diverse polycylic skeletons, generally containing a common dihydrocoumarin
benzo[de]isochromen-1(3H)-one moiety (Figure 1 (2)), while bacillisporins are based on a
conjugated 6/6/6/5/6/6/6 ring system (Figure 1 (3)), and, in duclauxamides, the ester in
one monomer is replaced by an amide group (Figure 1 (4)). Multiple polycyclic bridged
frames can be found in other products from this class, such as verruculosins (Figure 1 (5)),
talaromycesones (Figure 1 (6)), and macrosporusones (Figure 1 (7)) [81,114]. Other typical
Talaromyces secondary metabolites are mitorubrins (Figure 1 (8)) [115], N-(4-hydroxy-2-
methoxyphenyl)acetamide (Figure 1 (9)), and chrodrimanins (Figure 1 (10)) [37]. Indeed,
after the taxonomic framework is more accurately set following the recent revisions and
improvements in the identification procedures, it is to be expected that a thorough exami-
nation of the biochemical properties of the accepted taxa may help in considering a number
of products as possible chemotaxonomic markers, even for species discrimination within
the genus Talaromyces.

Other products are representative of widespread classes of organic compounds. Be-
sides being common in plants, isocoumarins have been reported as secondary metabolites
in many fungi [116]; nevertheless, twenty new compounds of this type have been described
from eight marine-derived Talaromyces strains. Azaphilones are another class of typical
fungal secondary metabolites [117] that have been particularly investigated as products
of Talaromyces strains of marine origin, representing one of the most credited sources of
these pigments [35,96,110,111]. Likewise, anthraquinones and the related xanthones have
also found application as dyes, but their more widespread occurrence in plants has, so
far, diminished the appeal of this fungal source [118,119]; however, new products from
these classes have been characterized from marine-derived strains of T. islandicus [93],
T. stipitatus [83], and Talaromyces sp. [74].
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Also widespread among fungi, meroterpenoids are inclusive of very diverse com-
pounds with complex structures of mixed biogenic origin [120]. As such, it is not surprising
that the chemosynthetically versatile Talaromyces spp. may be able to produce a wide
array of these compounds, with a variety of novel structural models. This is the case of
talaromyolides A and D (Figure 2 (11,12)), which present two novel carbon skeletons [58].
Taladrimanin A (Figure 2 (13)) represents the first drimane-type meroterpenoid, with a C10
polyketide unit bearing an 8R configuration [78]. The above-mentioned chrodrimanins
include chlorinated (chrodrimanins K and L) and trichlorinated (chrodrimanin O) versions
(Figure 2 (14–16)), with the latter displaying a unique dichlorine functionality [21,101]. The
related amestolkolides A–D (Figure 2 (17,18)) present a congested pentacyclic skeleton [100],
while talaromynoids A, G, H, and I (Figure 2 (19–22)) possess unprecedented 5/7/6/5/6/6,
6/7/6/6/6/5, 6/7/6/5/6/5/4, and 7/6/5/6/5/4 polycyclic systems, respectively [59].
Other peculiar compounds have been identified among terpenoids, such as talascortene
A (Figure 2 (23)), a cleistanthane-type diterpenoid possessing a chlorine atom in a pecu-
liar position [64]; moreover, diolhinokiic acid (Figure 2 (24)) is the first thujopsene-type
sesquiterpenoid containing a 9,10-diol moiety, while roussoellol C (Figure 2 (25)) pos-
sesses a novel tetracyclic fusicoccane framework with an unexpected hydroxyl at C-4 [109].
Finally, talasteroid (Figure 2 (26)) is a new withanolide with a 4-substituted 2,3-dimethyl-2-
butenolide ring in its side chain [84].

Structural elucidation has also disclosed some rare or unique molecular scaffolds in
other classes. Talaropeptins A and B (Figure 3 (27,28)) are two new tripeptides that have
been identified as products of a non-ribosomal peptide synthase gene cluster, presenting
an unusual heterocyclic scaffold and N-trans-cinnamoyl moiety [108]. The new penix-
anthones C–D (Figure 3 (29,30)) also display an unprecedented polycyclic scaffold [90].
Talarodrides A–D (Figure 3 (31–34)) share a rare caged bicyclo-decadiene with a bridgehead
olefin and maleic anhydride core skeleton, while the first case of a naturally occurring
5/7/6 methanocyclononafuran skeleton can be observed in talarodrides E–F (Figure 3
(35,36)) [72]. The oxidized tricyclic system of talaramide A (Figure 3 (37)) has been found
for the second time in alkaloids [91]. From a strain of T. mangshanicus, talaromanloid A
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(Figure 3 (38)), talaromydene (Figure 3 (39)), and ditalaromylectones A–B (Figure 3 (40,41))
show novel carbon scaffolds; in particular, ditalaromylectone A is a dimeric molecule of
10-hydroxy-8-demethyltalaromydine and dioxo-propanylidene-pyrrolidinyl acrylic acid,
while ditalaromylectone B is a cyclized dimer of hydroxydemethyltalaromydines [51].
Talabenzofurans A–B (Figure 3 (42,43)) possess a peculiar thioester moiety derived from
benzofuran and 2-hydroxy-3-mercaptopropionic acid, which is rarely observed in natural
products [76]. Novel structural features have also been reported in the typical classes of
funicones, with pinophilones A–B (Figure 3 (44,45)) showing a dihydrofuran moiety for
the first time in these compounds [26], and oxaphenalenones. Among the latter, talaromy-
oxaones A–B (Figure 3 (46,47)) present a hemiacetal frame and an unprecedented spiro-
isobenzofuran-pyranone unit showing biosynthetic enantiodivergence [60]. Finally, the
new polyketides, penitalarins A–C (Figure 3 (48–50)), with a 3,6-dioxabicyclo(3.1.0)hexane
ring, are likely a result of synergistic biosynthesis; in fact, they were identified from co-
cultures of two strains of T. aculeatus and T. variabile, while none of them was found when
the two strains were cultured independently [24].
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Other compounds have proved to be analogs of known products, bringing to their
structural revision. For instance, NMR data indicated that talaromyacin A (Figure 3
(51)) [95] is identical to sequoiamonascin A, which was originally reported from an endo-
phytic strain of Aspergillus parasiticus [121]. Likewise, talacyanol C (Figure 3 (52)), from
a strain of T. cyanescens [38], corresponds to a diastereoisomer of pinophol A, a polyene
previously identified as a product of a strain of T. pinophilus endophytic in Salvia miltior-
rhiza [122].

Probably the best example of the chemodiversity in Talaromyces is represented by strain
G59 of T. purpureogenus (generally referred to in the literature as Penicillium purpurogenum).
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In fact, its biosynthetic potential has been explored through the induction of mutants
and the activation of silent biosynthetic pathways, by means of neomycin and diethylsul-
phate, which led to the identification of a long series of compounds. With reference to
products identified after 2015, this list includes five cyclic dipeptides, including the novel
penicimutide [18]; a novel oxaphenalenone, penicimutalidine, along with the known SF226,
bacillisporin C, and corymbiferan lactone A [104]; the novel cyclopentachromone sulfide
chromosulfine [102]; the rare carbamate-containing prenylated indole alkaloids penicimu-
tamides A–E [105,106]; the new diketopiperazine derivatives penicimutanolones A–B,
penicimutanolone A methyl ether, penicimumide [56], penicimutanin C, and the known
penicimutanin A, fructigenines A–B, and rugulosuvine A [107]; the known azaphilones
(-)-mitorubrin and (-)-mitorubrinol, isolated along with the new polyketide purpurogenic
acid [99]; two new polyketides, purpurofuranone and purpuropyranone, and the known
cillifuranone and taiwapyrone [98].

3.1. Biogenesis and Structure-Activity Relationships

Some clues on the biogenic origins of secondary metabolites have been gathered
by the research activity on marine-derived Talaromyces. For instance, 6-hydroxymellein
was identified as a possible precursor in the synthesis of meroterpenoids, such as tal-
adrimanin A [78], talaromytin, and the talaromyolides [58]. Other meroterpenoids are
presumed to be derived from aromatic polyketide 3,5-dimethylorsellinic acid, such as the
talaromynoids [59], amestolkolides, and their related compounds [100], while orsellinic
acid is considered to be the biogenic precursor of talabenzofurans and eurothiocins [76], as
well as compounds in the funicone series [112,113]. A biosynthetic pathway was proposed
for the alkaloid talaramide A, which involves acetyl, malonic acid, and L-leucine as possible
precursors [91]. Finally, the joint isolation of benzophenones and xanthones as products of
a strain of T. islandicus is considered to support the hypothetic biogenesis of xanthones via
a benzophenone intermediate [49].

The finding of series of analog compounds differing in certain molecular substitutions
has allowed comparative hypotheses concerning bioactivities. Questinol, citreorosein, and
fallacinol (Figure 4 (53–55)) are structurally similar anthraquinones, in which hydroxyl
groups have been determined to be essential for their reported anti-obesity activities. In fact,
a replacement of the hydroxyls at C-1 (as in questinol) or C-3 (as in fallacinol) by a methoxy
group diminishes or completely removes this kind of bioactivity [83]. Moreover, the
increasing molecular polarity and hydroxylation of the non-aromatic carbons in structures
of anthraquinones was found to strengthen their antibacterial effects, but to weaken their
antioxidant activity [93]. The hydroxy group on the benzene ring is also essential for the
antioxidant properties of talamins A and D (Figure 4 (56,57)) [52]. The methylation of the
carboxylic group of peniphenone (Figure 4 (58)) reduces its immunosuppressive activity;
moreover, the immunosuppressive properties of sydowinin A and pinselin are, respectively,
higher than those of sydowinin B and hydroxy-methyl-oxo-xanthene-carboxylate (Figure 4
(59–62)), indicating that the hydroxyl group at C-2 is relevant for this activity [17]. The
antibacterial activity of trihydroxy-methoxy-methylbenzophenone (Figure 4 (63)) was
found to be weakened by methoxylation at C-3 [49]. Conversely, the methylation of 14-OH
likely enhances the antibacterial activity of talascortenes (Figure 2 (23)) [64]. Likewise,
among talarodrides, the higher antibacterial performance of talarodride B (Figure 3 (32))
is indicative of the key role played by its methoxy group [72]. Among isocoumarins
(Figure 4 (64)), aspergillumarin B (Figure 4 (65)), with a hydroxy group at C-13, shows no
antibacterial activity, unlike other members of this class, such as aspergillumarin A (Figure 4
(66)), peniciisocoumarin D, and penicilloxalone B, presenting a keto group in this position;
this is indicative of a relevant role of the latter in the bioactivity of these compounds [70].
Again, the presence of two keto carbonyl groups at C-10 and C-13 in amestolkolide B
(Figure 4 (67)) is thought to enhance its anti-inflammatory effects, in addition to the role of
its epoxy group as an active function, which is known to easily react with nucleophiles by
ring opening [100].
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In another case, the strong α-glucosidase inhibitory effect of eurothiocin D (Figure 4
(68)) is presumed to be derived from α-D-glucopyranosyl unit substitution, which likely
supports its interaction with the enzyme. Moreover, a hydrophilic terminal of the isopen-
tenyl group plays an important role in α-glucosidase inhibition [48]. The presence of a
lactone ring and hydroxyl at C-10 is crucial for the antimicrobial activity of the depsidone
derivatives talaronins A–E (Figure 4 (69–73)), which are considered as promising leads
against Helicobacter pylori [77]. The dimethylcyclobutanol subunit has been proposed as
relevant for the antiviral activity of talaromyolide D (Figure 2 (12)), making it a valuable
target for biosynthetic studies [58]. Furthermore, the dimeric oxyphenalenone scaffold has
proved to be essential for the antibacterial and antibiofilm activities of bacillisporins; more-
over, the acetoxy group in bacillisporin A has been determined to potentiate bioactivity
in comparison with bacillisporin B (Figure 1 (3)), bearing a hydroxyl at this position [54].
Finally, comparative assessments concerning mangrovamide A (Figure 4 (74)) and its 11,17-
epi-isomer have indicated a higher antibacterial activity when both C-11 and C-17 are in R
configuration [45].
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3.2. Other Biological Sources of the Known Compounds

The data presented in the previous section are indicative of the quite original biosyn-
thetic capacities of Talaromyces species/strains, to such an extent that even a good proportion
of the known secondary metabolites (Table 3) were first identified from these fungi. Be-
sides the previously mentioned funicones, vermistatins, oxaphenalenones, chrodrimanins,
verruculides, mitorubrins, and related azaphilones, this share includes compounds such
as deoxyrubralactone, the mangrovamides, miniolutelide C, penicillide and its related
products, hydroxypentacecilide, penicifuran, the purpuresters, purpurogenolide E, pur-
purquinone, the talaromycins, thailandolide B, and wortmin [8,11]. Moreover, the coculnols,
which are structurally related to penicillic acid, were originally found in co-cultures of
a strain of Talaromyces sp. and a strain of Fusarium solani [123]. Penicillide appears to
be the most common of the above products; in fact, it was identified from five isolates
of different species, besides being previously reported from a few more marine-derived
strains [11] and being quite frequent among terrestrial Talaromyces, too [10,124]. Whether
or not this product has implications in the biosynthesis of other secondary metabolites
deserves circumstantial studies.

Several products in Table 3 are of a general occurrence among fungi and have been
reported to represent biosynthetic intermediates or perform a structural role. This is the
case of tyrosol, melleins, benzaldehyde, benzoic, mevalonic and orsellinic acid derivatives,
and ergosterols.

Many secondary metabolites were first identified from the phylogenetically related
Penicillium and Aspergillus, which is indicative of a partly common genetic background. In
fact, compounds such as alantrypinone, berkedrimane B, the berkeleyacetals, cillifuranone,
corymbiferan lactone A, the expansols, the fructigenines, penicilloxalone B, penicillquei A,
penioxalicin, pinselin, questin, questinol, rugulosin, rugulosuvine, and the secalonic acids
have been previously reported from Penicillium species [11,125], while aspergilactone B,
the aspergillumarins, asperitaconic acid, the austins, azaspirofuran A, the carnemycins,
dihydroaspyrone, diorcinol, eurothiocin A, flavuside B, fonsecinone A, nafuredin, the
pseurotins, sequoiamonascin C, similanpyrone B, the sydowinins, terrein, and territrem
B are primarily known as Aspergillus secondary metabolites [7,126]. In particular, a long
series of compounds were first identified from A. fumigatus, including fumigaclavine, the
fumiquinazolines, fumiquinone B, fumigatin oxide, helvolic acid, trypacidin, the trypto-
quivalines, and tryprostatin derivatives, in connection with the thorough investigational
activity carried out around this human pathogenic species [127].

Other products are well known or were first identified from other fungi. Some of
these are more commonly reported as secondary metabolites of important genera, such
as Fusarium, known as producer of naphthoquinones [128,129], along with the decalin
polyketide fusarielin M [130] and trichothecene solaniol [131], while altenusin and alter-
naphenol are quite commonly reported among Alternaria mycotoxins [132]. On the other
hand, many compounds are apparently less renowned since they are reported from fungi
of a lower ecological or economic impact. This is the case of chaetominine and rheoemodin
from Chaetomium spp. [133]; ramulosins from Pestalotia ramulosa (currently Truncatella an-
gustata) [134]; xylapyrone E from an endophytic Xylaria sp. [135]; leptosphaerin G, which is
structurally related to secalonic acids, from a strain of Leptosphaeria sp. [136]; sclerotinins,
characterized as plant growth promoters from Sclerotinia sclerotiorum [137]; the alkaloid
premalbrancheamide from Premalbranchea aurantiaca [138]; sordarin, which is better known
as an antifungal product from Podospora (=Sordaria) araneosa [139]; taiwapyrone from Cer-
cospora taiwanensis [140]; and piniterpenoid D from the fruit bodies of the basidiomycete
Phellinus pini [141]. Moreover, ethyl everninate was originally identified from the lichen
Evernia prunastri [142], while nodulisporipyrone A and scirpyrone H were characterized
from endolichenic strains of Nodulisporium sp. [143] and an unknown species belonging to
the Sarcosomataceae [144], respectively.

Interestingly, some products were first identified from marine strains of uncommon
fungal species; this is the case of the remisporines, from the typical marine fungus Remispora
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maritima [145], monodictyphenone and pestalotiorin, respectively, from algal endophytic
strains of Monodictys putredinis [146] and Pestalotiopsis sp. [147]. Moreover, phomaligol A
was previously identified as a product of several fungi of marine origin [148], while the
more common tenellic acids were first obtained from the freshwater fungus Dendrospora
tenella [149].

This brief overview on the occurrence of the secondary metabolites of marine-derived
Talaromyces as products of other fungal species underlines a remarkable biochemical affin-
ity with both Penicillium and Aspergillus, which can be easily explained in terms of the
phylogenetic proximity among these genera. However, their ability to synthesize many
products, which are known in more phylogenetically distant fungi, is also quite evident.
Although secondary metabolites can be synthesized through various and diverse biochemi-
cal pathways in different organisms, the hypothesis of a horizontal transfer of gene clusters
encoding for the synthesis of the bioactive secondary metabolites among fungi, which
was advanced at the end of the past millennium [150,151], has recently become more and
more credited as a process driving the evolution in these organisms. It is also thought
to involve their symbiotic associates [152,153], which provides an additional account on
the extent of the chemodiversity in fungi characterized by a propensity toward an endo-
phytic/endozoic lifestyle, such as Talaromyces [3,4]. In this respect, it is quite amazing to
find that the incisterols, reported as products of T. versatilis [89], were first identified as
a new sterol class from marine sponges [154]. The identification of the new withanolide
compound talasteroid [84] is also meaningful, since it follows the finding of withanolide as
a secondary metabolite of a strain of T. pinophilus endophytic in Withania somnifera [155];
notably, withanolides were previously known from plants only, with some products having
been reported to possess antifungal activity [156].

4. Biological Properties

The research instances supporting the biological characterization of marine-derived
Talaromyces strains are various. Some strains have shown effectiveness as biocontrol agents
against plant pathogens [71,157]; others have been considered as a source of enzymes, such
as phytase [62], chitinases, cellulases, and β-glucosidases [66,158], or have been investigated
in preliminary assays as a source of pigments [35] and bioactive peptides [159].

In some cases, bioactivity assessments have been carried out at a preliminary stage
by using organic extracts without performing product purification, with reference to
antioxidant, antitumor, antifungal, antibacterial, acetylcholinesterase, and α-glucosidase
inhibitory properties [39,41,43,55,69,85,160]. However, most of the reports in the literature
concern the biological properties of purified compounds, as summarized in Table 4. Overall,
the available data are indicative of quite variable effects in both qualitative and quantitative
terms; however, for the time being, the preliminary nature of many of these studies does
not allow for a determination of the applicative relevance of these findings. Indeed,
the definition of exhaustive protocols, considering the most accurate assays and most
responsive microbial/cell line panels, would help in obtaining a more reliable appreciation
of the real potential of these products.

Table 4. Bioactivities of secondary metabolites produced by marine-derived Talaromyces strains.

Compound Name Reported Bioactivities 1 References

Acetonyl-methyl-hydroxy-methoxy-naphthazarin,
acetyloxyethyl-hydroxy-dimethoxy-naphthalenedione anti-inflammatory, cytotoxic (RAW 264.7) [68]

Alantrypinone α-glucosidase inhibitor [28]

Altenusin antioxidant, cytotoxic (B16, MCF-7, HepG2)
antibacterial (S. aureus), antifungal (C. albicans)

[73]
[51]

Amestolkolides A–B anti-inflammatory [100]

Amestolkines A–B anti-inflammatory [33]
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Table 4. Cont.

Compound Name Reported Bioactivities 1 References

Anhydrofusarubin, anhydrojavanicin anti-inflammatory [68]

Anserinone C antibacterial (S. aureus), cytotoxic (MKN1) [79]

Aspergillumarin A
α-glucosidase inhibitor
antibacterial (E. coli, MRSA), antifungal (C. albicans)
antioxidant

[32]
[70]
[30]

Aspergillumarin B α-glucosidase inhibitor [32]

Asperitaconic acid B anti-inflammatory [34]

Austin, austinol, austinolide, dehydroaustin,
dehydroaustinol antioxidant [84]

Azaspirofuran A anti-inflammatory [47]

Bacillisporin A α-glucosidase inhibitor, antibacterial (B. subtilis)
antibacterial (S. aureus, MRSA)

[20]
[54]

Bacillisporin B
α-glucosidase inhibitor, antibacterial (B. subtilis)
antibacterial (E. faecalis, S.aureus, MRSA)
antibacterial (S. aureus)

[20]
[54]
[74]

Bacillisporin C antiproliferative (K562, HL-60, BGC-823, HeLa) [104]

Bacillisporin F protein tyrosine phosphatase inhibitor [87]

Bacillisporins K–L antibacterial (S. aureus) [74]

Bromothiobenzoic acid antibacterial (E. coli, K. pneumoniae, S. aureus), cytotoxic (HCT 116,
HepG2 MCF-7) [29]

Chrodrimanins A, C antioxidant [84]

Chrodrimanin B protein tyrosine phosphatase inhibitor
antioxidant

[101]
[84]

Chrodrimanins K, N antiviral (H1N1) [21]

Chrodrimanins O, R–S protein tyrosine phosphatase inhibitor [101]

Chromosulfine antiproliferative-proapoptotic (MCF-7, K562, HL-60, HeLa,
BGC-823) [102]

Citrorosein, questinol lipid lowering [83]

Conioxanthone A immunosuppressive [17]

Corymbiferan lactone A antiproliferative (HL-60, BGC-823, HeLa) [104]

Cyclosecosteroid A acetylcholineterase inhibitor [75]

Cyclotryprostatin B anti-inflammatory [47]

Dankasterone antiproliferative (HL-60, A549, MCF-7, SW480) [109]

Dehydroisopenicillide anticholesterol, lipid lowering [19]

Dihydro-hydroxy-hydroxymethyl-methoxy-methyl-
naphthofurandione anti-inflammatory [68]

Dihydroxyconiothyrinone B antibacterial (E. coli, E. tarda, S. aureus), antioxidant [93]

Dihydroxy-dimethyl-dibenzofuran antibacterial (E. coli, E. faecalis, MRSA, S. aureus), antifouling (B.
neritina) [89]

Dihydroxyfumitremorgin C anti-inflammatory [47]

Dihydroxy-hydroxybenzylidene-methylbutenyl-
indane-carboxylic acid
methyl ester

antibacterial (B. cereus, S. albus, S. aureus) [28]

Dihydroxy-hydroxypentyl-isochromanone α-glucosidase inhibitor
α-glucosidase inhibitor, antioxidant

[32]
[40]

Dihydroxy-hydroxypropyl-methyl-isochromenone,
hydroxy-hydroxypropyl-methoxyisochromanone,
hydroxypropyl-hydroxy-dihydroisocoumarin

antioxidant [40]

Dihydroxyisocupressic acid antibacterial (V. parahemolyticus) [72]
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Table 4. Cont.

Compound Name Reported Bioactivities 1 References

Dihydroxy-methoxy-methylisochromenone,
dihydroxy-pentyl-hydroxy-isochromanone,
dimethyl-dihydroxyisocoumarin,
hydroxy-hydroxyethyl-methoxyisocoumarin, hydroxy-
hydroxymethyl-methoxy-methylisocoumarin,
hydroxy-methoxy-dimethylisocoumarin

α-glucosidase inhibitors [32]

Dihydroxy-methyldendryol E antibacterial (S. aureus), antioxidant [93]

Dihydroxy-methyl-hydroxymethyl-xanthone antibacterial (A. hydrophila) [45]

Diolhinokiic acid antiproliferative (HL-60, A549) [109]

Diorcinol, methoxycarbonyldiorcinol antibacterial (E. coli, E. faecalis, MRSA, S. aureus), antifouling (B.
neritina) [89]

Ditalaromylectone A antifungal (C. albicans) [51]

Epoxyberkeleydione lipid lowering [59]

Ergosta-trienol cytotoxic (HepG2, MCF-7) [29]

Ethyl-dimethoxyjuglone anti-inflammatory [68]

Eurothiocin A α-glucosidase inhibitor
anti-inflammatory

[76]
[38]

Eurothiocins D, F, G α-glucosidase inhibitors [48]

Expansols E–F antifouling (B. neritina) [89]

Fructigenines A–B antiproliferative (K562, HeLa, HL-60, BGC-823, MCF-7) [107]

Fumigaclavine C, fumigatin oxide, fumiquinazoline F,
fumiquinone B anti-inflammatory [47]

Funicone, deoxyfunicone, 3-O-methylfunicone,
hydroxyvermistatin, methoxyvermistatin anticholesterol, lipid lowering [19]

Fusarielins M, O, P cytotoxic (B16) [73]

Hydroxyconiothyrinone B antibacterial (S. aureus), antioxidant [93]

Hydroxy-ergosta-trienone antioxidant [84]

Hydroxy-hydroxyethyl-dimethoxy-naphthalenedione anti-inflammatory, cytotoxic (RAW 264.7) [68]

Hydroxy-hydroxy-hydroxymethyl-methylphenoxy-
benzoic acid protein tyrosine phosphatase inhibitor [22]

Hydroxy-methoxy-benzofuranyl-ethanone,
hydroxy-methoxy- methylbenzofuran-carboxylic acid antibacterial (B. subtilis, E. coli, S. aureus, S. epidermidis) [32]

Hydroxy-methyl-dimethoxycoumarin antibacterial (MRSA), antifungal (C. albicans) [70]

Hydroxypentacecilide A antiviral (H1N1) [21]

Hydroxypropyl-methyl-dihydroxychromone antibacterial (Salmonella) [20]

Isobutyric acid
dihydroxy-methyl-oxo-dihydro-naphththalenyl
methyl ester

α-glucosidase inhibitor [32]

Isocyclopaldic acid antibacterial (A. hydrophila, E. coli, M. luteus, P. aeruginosa, V.
anguillarum, V. harveyi, V. parahemolyticus) [45]

Isotryptoquivaline F anti-inflammatory [47]

Javanicin anti-inflammatory, cytotoxic (RAW 264.7) [68]

Macrosporusone D antibacterial (S. aureus) [74]

epi-Mangrovamide A antibacterial (V. harveyi. V. parahaemolyticus) [45]

Mangrovamide I antibacterial (A. hydrophila, E. coli, M. luteus, P. aeruginosa, V.
anguillarum, V. harveyi, V. parahemolyticus) [45]

Methoxy-methyl-biphenyl-triol antibacterial (S. aureus) [51]

Methylhexahydrofuro-furanylethanol cytotoxic (SF-268, MCF-7, HepG2, A549) [96]

Methylincisterol, dimethylincisterol A3 antifouling (B. neritina) [89]

Methylpseurotin A, norpseurotin A anti-inflammatory [47]
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Table 4. Cont.

Compound Name Reported Bioactivities 1 References

Methyltenellate lipid lowering [19]

Monodictyphenone protein tyrosine phosphatase inhibitor [22]

Nafuredin B cytotoxic (HeLa, MCF-7, K562, HCT 116, HL-60, A549) [24]

Penicidone C α-glucosidase inhibitor [26]

Penicifuran A antibacterial (E. coli, MRSA), antifungal (C. albicans) [70]

Peniciisocoumarins C, F, G antioxidant [40]

Peniciisocoumarin D α-glucosidase inhibitor, antioxidant
antibacterial (E. coli, MRSA), antifungal (C. albicans)

[40]
[70]

Peniciisocoumarin E antioxidant [30]

Peniciisocoumarin H antibacterial (E. coli, MRSA), antifungal (C. albicans) [27]

Penicillide α-glucosidase inhibitor
cytotoxic (H1975, HL7702, K562, MCF-7)

[26]
[23]

Penicilloxalone B antibacterial (E. coli, MRSA)
antioxidant

[70]
[30]

Penicimarins B–C α-glucosidase inhibitor [32]

Penicimarin G antibacterial (B. cereus, E. coli, S. aureus), antioxidant
α-glucosidase inhibitor, antioxidant

[92]
[30]

Penicimarin H antioxidant
α-glucosidase inhibitor, antioxidant

[40]
[30]

Penicimarin I α-glucosidase inhibitor [30]

Penicimarins L–M antioxidant [30]

Penicimarin N α-glucosidase inhibitor, antioxidant [40]

Penicimumide antiproliferative (A549, HeLa, MCF-7, HepG2, NCI-H1975, HL-60,
K562, LS180, SW480, HT29, BXPC-3, PANC-1) [56]

Penicimutalidine antiproliferative (K562, HL-60, BGC-823, HeLa) [104]

Penicimutamides A–F antiproliferative (K562, HL-60, BGC-823, HeLa) [105,106]

Penicimutanines A, C antiproliferative (K562, HeLa, HL-60, BGC-823, MCF-7) [107]

Penicimutanolones A–B, penicimutanolone A
methyl ether

antiproliferative (A549, HeLa, MCF-7, HCT 116, HepG2,
NCI-H1975, HL-60, K562, LS180, SW480, HT29, PC-3, BXPC-3,
PANC-1)

[56]

Penicimutide antiproliferative (HeLa) [18]

Penioxalicin antibacterial (MRSA) [80]

Peniphenone, pinselin immunosuppressive [17]

Penixanthones A–B antiallergic
cytotoxic (H1975, HL7702, K562, MCF-7)

[25]
[23]

Penixanthones C–D cytotoxic (K562, MCF-7, Huh7) [90]

Pensulfonamide antibacterial (E. coli, K. pneumoniae, S. aureus), antifungal (A. niger
and C. albicans), cytotoxic (MCF-7, HCT 116, HepG2) [29]

Pensulfonoxy antibacterial (E. coli, K. pneumoniae, S. aureus), antifungal (A. niger),
cytotoxic (HCT 116, HepG2) [29]

Pestalotiorin α-glucosidase inhibitor [40]

Propenyl-octene-triol cytotoxic (SF-268, MCF-7, HepG2, A549) [96]

Purpactin A antibacterial (H. pylori)
α-glucosidase inhibitor

[77]
[82]

Purpurides E–F antibacterial (E. coli, MRSA), antifungal (C. albicans) [27]

Purpuride G antibacterial (E. coli, MRSA), antifungal (C. albicans),
antiproliferative (U251, U87MG) [27]

Purpurogenic acid antiproliferative (K562, HL-60, HeLa, BGC-823) [99]

Roussoellol C antiproliferative (HL-60, A549, MCF-7, SW480) [109]

Rugulosin A antibacterial (S. aureus) [74]



Biomolecules 2023, 13, 1021 23 of 31

Table 4. Cont.

Compound Name Reported Bioactivities 1 References

Rugulosuvine antiproliferative (K562, HeLa, HL-60, BGC-823, MCF-7) [107]

Sch1385568 antibacterial (MRSA, S. aureus) [54]

Sch725680 α-glucosidase inhibitor, antibacterial (M. smegmatis, S. aureus) [26]

Secalonic acid D antibacterial (H. pylori), cytotoxic (Bel-7402, HCT 116) [77]

Secopenicillide A lipid lowering [19]

Secopenicillide B antibacterial (H. pylori) [77]

Sequoiamonascin C cytotoxic (B16, MCF-7) [73]

Sescandelin α-glucosidase inhibitor
antibacterial (E. coli, MRSA), antifungal (C. albicans)

[32]
[70]

Sescandelin B α-glucosidase inhibitor [32]

SF226 antiproliferative (K562, HL-60, BGC-823, HeLa) [104]

Solaniol anti-inflammatory, cytotoxic (RAW 264.7) [68]

Sydowinin A immunosuppressive [17]

Talabenzofuran C α-glucosidase inhibitor [76]

Talacyanol A anti-inflammatory, cytotoxic (HCT-15, NUGC-3, MDA-MB-231,
PC-3, NCI-H23, ACHN) [38]

Taladrimanin A antibacterial (S. aureus), antiproliferative-proapoptotic (MGC803,
MKN28) [78]

Talamin A antibacterial (V. vulnificus), antioxidant [52]

Talamin B antibacterial (MRSA, V. vulnificus) [52]

Talamin D antioxidant [52]

Talanaphthoquinone A anti-inflammatory, cytotoxic (RAW 264.7) [68]

Talaramide mycobacterial PknG kinase inhibitor [91]

Talarocyclopenta A antibacterial (E. coli, S. aureus), anti-inflammatory [34]

Talarocyclopenta B antibacterial (B. cereus, B. subtilis, E. coli, M. tetragenus, S. albus, S.
aureus), anti-inflammatory [34]

Talarocyclopenta C anti-inflammatory [34]

Talarodilactones A–B cytotoxic (L5178Y) [63]

Talarodrides A–B antibacterial (P. mirabilis, V. parahemolyticus) [72]

Talaroisocoumarin A antibacterial (E. coli, MRSA), antifungal (C. albicans) [70]

Talaromarin F antioxidant [40]

Talarominine A antibacterial (MRSA, M. luteus, P. aeruginosa, V. harveyi, V. vulnificus),
antioxidant [52]

Talaromynoid E protein tyrosine phosphatase inhibitor [59]

Talaromynoids G–I lipid lowering [59]

Talaromyolides D, I, K antiviral (PRV) [58,103]

Talaromyone A antibacterial (H. pylori) [77]

Talaromyone B antibacterial (B. subtilis), α-glucosidase inhibitor [82]

Talaromyoxaones A–B protein tyrosine phosphatase inhibitors [60]

Talaronin E antibacterial (H. pylori) [77]

Talaropeptins A–B antifungal (F. oxysporum) [108]

Talascortenes
antibacterial (A. hydrophila, E. coli, E. tarda, M. luteus, P. aeruginosa, V.
harveyi, V. parahemolyticus), antifungal (C. gloeosporioides, F.
oxysporum, G. graminis, R. cerealis)

[64]

Talasteroid antioxidant [84]

Talaverrucin A Wnt/β-catenin pathway inhibitor [81]

Tenellic acid A α-glucosidase inhibitor [82]
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Compound Name Reported Bioactivities 1 References

Tetrahydroxymethylbenzophenone,
trihydroxymethylxanthone

antibacterial (E. coli, P. aeruginosa, S. aureus, V. alginolyticus, V.
harveyi, V. parahaemolyticus), antioxidant [49]

Trihydroxybutyl-hydroxy-hydroxy-methylphenoxy-
methylphenylacetate antibacterial (E. coli, E. faecalis, MRSA, S. aureus) [89]

Trihydroxy-hydroxyethyl-isocoumarin α-glucosidase inhibitor [32]

Trihydroxy-methoxymethylbenzophenone antioxidant [49]

Vermistatin anticholesterol, lipid lowering
cytotoxic (B16)

[19]
[73]

Verruculide B2 antibacterial (S. aureus) [21]

Verruculosin A, xenoclauxin protein tyrosine phosphatase inhibitor [87]

1 Microbial species and cell types used in bioassays are indicated in brackets.

Most of the assays concerning these new compounds were carried out on the inhibitory
effects against microbes and cancer cell lines, representing only preliminary indications
of their antibiotic and/or antitumor properties. Indeed, more accurate assessments and
an elucidation of the mechanisms of action are required for the aim of bringing the best
products to the attention of pharmacologists. However, there are some exceptions where
bioactivity has been explored with reference to specific targets. This is the case of talaver-
rucin A, which has been characterized as an inhibitor of the Wnt/β-catenin pathway acting
upstream of the β-catenin level [81]. This pathway is known to play a pivotal role in the
embryonic development and homeostasis maintenance in vertebrates, and its dysregulation
is associated with various diseases, such as congenital malformations and several kinds of
cancers [161].

Besides the new findings reported in the recent literature, the biological properties
of many of these compounds have been investigated in previous studies, with some
of them being characterized as candidate pharmaceutical products. This is the case of
bacillisporins, duclauxins, and other oxaphenalenone analogs, with reference to their
notable antibacterial and antitumor properties [114]. Antitumor activity has been also
documented for 3-O-methylfunicone, on account of its multiple concurrent antiproliferative,
proapoptotic, and gene-modulatory effects in several tumor cell lines [162–167], along with
its recently disclosed anticholesterolemic [19] and antiviral properties [168,169]. More
generally, these valuable bioactivities have been found to characterize other funicone and
vermistatin compounds [112,113]. Many other products deserve consideration for their
valuable antitumor and antimicrobial properties, such as depsidones, naphthoquinones,
cyclopeptides, and other bioactive peptides, which are quite commonly reported from
marine-derived fungi [170–172].

The biotechnological exploitation of marine-derived Talaromyces products may go well
beyond the pharmaceutical field. In fact, besides the antiviral and tyrosine phosphatase
inhibitory properties reported in Table 4, chrodrimanins were previously characterized
as potent and selective blockers of the γ-aminobutyric acid-gated chloride channels in
silkworms (Bombyx mori), introducing them as a lead for the development of safer pesti-
cides [173]. In this respect, the many isocoumarins have disclosed anti-acetylcholinesterase
properties, making them credited for this application, in addition to their possible employ-
ment in the treatment of Alzheimer’s disease, as well as other medical disorders, based on
their anti-inflammatory and α-glucosidase inhibitory properties [174].

5. Conclusions

This overview, considering papers published in the last seven years, resulted in
the impressive number of 514 secondary metabolites being extracted from cultures of
marine-derived Talaromyces strains, depicting the outstanding chemodiversity of these fungi.
This conspicuous biochemical booty was derived from investigations on the biosynthetic
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capacities concerning just 54 strains out of a total of 95 reported from marine sources in
this period. Since about 45% of the products were originally identified from these strains,
it is reasonable to expect an increase in this number of new compounds as long as the
exploration of such a valuable trove is carried on by the scientific community in the future.
At the same time, the remarkable proportion of products displaying various kinds of
bioactivity introduces perspectives for the identification and possible exploitation of new
drug prospects. The extent to which this expectation will materialize is largely dependent
on the set up of conventional guidelines for defining effective screening protocols that may
enable the performance of more exhaustive assessments of these bioactive properties.
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