A Matched Case-Control Study of Noncholesterol Sterols and Fatty Acids in Chronic Hemodialysis Patients
Abstract
:1. Introduction
2. Results
2.1. Biochemical and Anthropometric Parameters
2.2. Changes in Plasma Non-Cholesterol Sterols
2.3. Fatty Acid Profiles of the Major Plasma Lipid Classes
2.4. Correlations between Sterols and Fatty Acids
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shoji, T. Current focuses in serum lipid abnormalities in dialysis patients. Blood Purif. 2015, 40, 326–331. [Google Scholar] [CrossRef]
- Fukushima, M.; Miura, S.; Mitsutake, R.; Fukushima, T.; Fukushima, K.; Saku, K. Cholesterol metabolism in patients with hemodialysis in the presence or absence of coronary artery disease. Circ. J. 2012, 76, 1980–1986. [Google Scholar] [CrossRef][Green Version]
- Rogacev, K.S.; Pinsdorf, T.; Weingärtner, O.; Gerhart, M.K.; Welzel, E.; van Bentum, K.; Popp, J.; Menzner, A.; Lütjohann, D.; Heine, G.H. Cholesterol synthesis, cholesterol absorption, and mortality in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2012, 7, 943–948. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Igel-Korcagova, A.; Raab, P.; Brensing, K.A.; Poge, U.; Klehr, H.-U.; Igel, M.; von Bergmann, K.; Sudhop, T. Cholesterol metabolism in patients with chronic renal failure on hemodialysis. J. Nephrol. 2003, 16, 850–854. [Google Scholar] [PubMed]
- Fellström, B.C.; Jardine, A.G.; Schmieder, R.E.; Holdaas, H.; Bannister, K.; Beutler, J.; Chae, D.-W.; Chevaile, A.; Cobbe, S.M.; Grönhagen-Riska, C.; et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 2009, 360, 1395–1407. [Google Scholar] [CrossRef][Green Version]
- Wanner, C.; Krane, V.; März, W.; Olschewski, M.; Mann, J.F.E.; Ruf, G.; Ritz, E.; German Diabetes and Dialysis Study Investigators. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 2005, 353, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Baigent, C.; Landray, M.J.; Reith, C.; Emberson, J.; Wheeler, D.C.; Tomson, C.; Wanner, C.; Krane, V.; Cass, A.; Craig, J.; et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): A randomised placebo-controlled trial. Lancet 2011, 377, 2181–2192. [Google Scholar] [CrossRef][Green Version]
- Zanoni, P.; Velagapudi, S.; Yalcinkaya, M.; Rohrer, L.; von Eckardstein, A. Endocytosis of lipoproteins. Atherosclerosis 2018, 275, 273–295. [Google Scholar] [CrossRef]
- Mitsche, M.A.; McDonald, J.G.; Hobbs, H.H.; Cohen, J.C. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell type specific pathways. Elife 2015, 4, e07999. [Google Scholar] [CrossRef]
- Honzumi, S.; Takeuchi, M.; Kurihara, M.; Fujiyoshi, M.; Uchida, M.; Watanabe, K.; Suzuki, T.; Ishii, I. The effect of cholesterol overload on mouse kidney and kidney-derived cells. Ren. Fail. 2018, 40, 43–50. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kang, H.M.; Ahn, S.H.; Choi, P.; Ko, A.-I.; Han, S.H.; Chinga, F.; Park, A.S.D.; Tao, J.; Sharma, K.; Pullman, J.; et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 2015, 21, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.Z.; Varghese, Z.; Moorhead, J.F. An update on the lipid nephrotoxicity hypothesis. Nat. Rev. Nephrol. 2009, 5, 713–721. [Google Scholar] [CrossRef]
- Price, N.L.; Miguel, V.; Ding, W.; Singh, A.K.; Malik, S.; Rotlan, N.; Moshnikova, A.; Zeiss, C.; Sadeghi, M.M.; Arias, N.; et al. Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis. JCI Insight 2019, 4, e131102. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Daumerie, C.M.; Woollett, L.A.; Dietschy, J.M. Fatty acids regulate hepatic low density lipoprotein receptor activity through redistribution of intracellular cholesterol pools. Proc. Natl. Acad. Sci. USA 1992, 89, 10797–10801. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vaziri, N.D. Dyslipidemia of chronic renal failure: The nature, mechanisms, and potential consequences. Am. J. Physiol. Renal. Physiol. 2006, 290, F262–F272. [Google Scholar] [CrossRef]
- Chakrabarti, R.S.; Ingham, S.A.; Kozlitina, J.; Gay, A.; Cohen, J.C.; Radhakrishnan, A.; Hobbs, H.H. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. eLife 2017, 6, e23355. [Google Scholar] [CrossRef]
- Fukasawa, H.; Ischibuchi, K.; Kaneko, M.; Niwa, H.; Yasuda, H.; Kumagai, H.; Furuya, R. Red blood cell distribution width is associated with all-cause and cardiovascular mortality in hemodialysis patients. Ther. Apher. Dial. 2017, 21, 565–571. [Google Scholar] [CrossRef]
- Buoli, M.; Caldiroli, L.; Guenzani, D.; Carnevali, G.S.; Cesari, M.; Turolo, S.; Barkin, J.L.; Messa, P.; Agostoni, C.; Vettoretti, S. DREAM Project Group. Associations between cholesterol and fatty acid profile on the severity of depression in older persons with nondialysis chronic kidney disease. J. Ren. Nutr. 2021, 31, 537–540. [Google Scholar] [CrossRef]
- Dušejovská, M.; Staňková, B.; Vecka, M.; Rychlíková, J.; Mokrejsova, M.; Rychlík, I.; Zak, A. Lipid metabolism in patients with end-stage renal disease: A five-year follow-up study. Curr. Vasc. Pharmacol. 2017, 16, 298–305. [Google Scholar] [CrossRef]
- Dattilo, A.M.; Kris-Etherton, P.M. Effects of weight reduction on blood lipids and lipoproteins: A meta-analysis. Am. J. Clin. Nutr. 1992, 56, 320–328. [Google Scholar] [CrossRef]
- Liu, Y.; Coresh, J.; Eustace, J.A.; Longenecker, J.C.; Jaar, B.; Fink, N.E.; Tracy, R.P.; Powe, N.R.; Klag, M.J. Association between cholesterol level and mortality in dialysis patients: Role of inflammation and malnutrition. JAMA 2004, 291, 451–459. [Google Scholar] [CrossRef][Green Version]
- Phannajit, J.; Wonghakaeo, N.; Takkavatakarn, K.; Asawavichienjinda, T.; Praditpornsilpa, K.; Eiam-Ong, S.; Susantitaphong, P. The impact of phosphate lowering agents on clinical and laboratory outcomes in chronic kidney disease patients: A systematic review and meta-analysis of randomized controlled trials. J. Nephrol. 2021. article ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Simic-Ogrizovic, S.; Dopsaj, V.; Bogavac-Stanojevic, N.; Obradovic, I.; Stosovic, M.; Radovic, M. Serum amyloid A rather than C-reactive protein is a better predictor of mortality in hemodialysis patients. Tohoku J. Exp. Med. 2009, 219, 121–127. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kilpatrick, R.D.; McAllister, C.J.; Kovesdy, C.P.; Derose, S.F.; Kopple, J.D.; Kalantar-Zadeh, K. Association between Serum Lipids and Survival in Hemodialysis Patients and Impact of Race. J. Am. Soc. Nephrol. 2007, 18, 293–303. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Van Himbergen, T.M.; Matthan, N.R.; Resteghini, N.A.; Otokozawa, S.; Ai, M.; Stein, E.A.; Jones, P.H.; Schaefer, E.J. Comparison of the effects of maximal dose atorvastatin and rosuvastatin therapy on cholesterol synthesis and absorption markers. J. Lipid Res. 2009, 50, 730–739. [Google Scholar] [CrossRef][Green Version]
- Schroor, M.M.; Sennels, H.P.; Fahrenkrug, J.; Jørgensen, H.L.; Plat, J.; Mensink, R.P. Diurnal variations of markers for cholesterol synthesis, cholesterol absorption, and bile acid synthesis: A systematic review and the Bispebjerg Study of Diurnal Variations. Nutrients. 2019, 11, 1439. [Google Scholar] [CrossRef][Green Version]
- Gälman, C.; Angelin, B.; Rudling, M. Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis. Gastroenterology 2005, 129, 1445–1453. [Google Scholar] [CrossRef]
- Chmielewski, M.; Nieweglowski, T.; Swierczynski, J.; Rutkowski, B.; Boguslawski, W. Diurnal rhythm of cholesterol biosynthesis in experimental chronic renal failure. Mol. Cell Biochem. 2001, 228, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Tilvis, R.; Miettinen, T.A. Effects of weight reduction on squalene, methyl sterols and cholesterol and on their synthesis in human adipose tissue. Eur. J. Clin. Investig. 1979, 9 Pt 1, 155–160. [Google Scholar] [CrossRef]
- Simonen, P.P.; Gylling, H.K.; Miettinen, T.A. Diabetes contributes to cholesterol metabolism regardless of obesity. Diabetes Care 2002, 25, 1511–1515. [Google Scholar] [CrossRef][Green Version]
- Gertow, J.; Ng, C.Z.; Mamede Branca, R.M.; Werngren, O.; Du, L.; Kjellqvist, S.; Hemmingsson, P.; Bruchfeld, A.; MacLaughlin, H.; Eriksson, P.; et al. Altered protein composition of subcutaneous adipose tissue in chronic kidney disease. Kidney Int. Rep. 2017, 2, 1208–1218. [Google Scholar] [CrossRef]
- Scoppola, A.; de Paolis, P.; Menzinger, G.; Lala, A.; Di Giulio, S. Plasma mevalonate concentrations in uremic patients. Kidney Int. 1997, 51, 908–912. [Google Scholar] [CrossRef][Green Version]
- Sutherland, W.H.; Walker, R.J.; Ball, M.J.; Stapley, S.A.; Corboy, J.; Robertson, M.C. Cholesterol precursor concentration in plasma from patients with chronic renal failure or kidney grafts. Clin. Nephrol. 1995, 43, 392–398. [Google Scholar]
- Vaziri, N.D. Causes of dysregulation of lipid metabolism in chronic renal failure. Semin Dial. 2009, 22, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Nasu, K.; Terashima, M.; Habara, M.; Ko, E.; Ito, T.; Yokota, D.; Ishizuka, S.; Kurita, T.; Kimura, M.; Kinoshita, Y.; et al. Impact of cholesterol metabolism on coronary plaque vulnerability of target vessels: A combined analysis of virtual histology intravascular ultrasound and optical coherence tomography. JACC Cardiovasc. Interv. 2013, 6, 746–755. [Google Scholar] [CrossRef][Green Version]
- Miettinen, T.A.; Gylling, H.; Strandberg, T.; Sarna, S. Baseline serum cholestanol as predictor of recurrent coronary events in subgroup of Scandinavian simvastatin survival study. Finnish 4S Investigators. BMJ 1998, 316, 1127–1130. [Google Scholar] [CrossRef][Green Version]
- Mori, Y.; Hirano, T.; Nagashima, M.; Shiraishi, Y.; Fukui, T.; Adachi, M. Decreased peroxisome proliferator-activated receptor alpha gene expression is associated with dyslipidemia in a rat model of chronic renal failure. Metabolism 2007, 56, 1714–1718. [Google Scholar] [CrossRef]
- De Vogel-van den Bosch, H.M.; Bunger, M.; de Groot, P.J.; Bosch-Vermeulen, H.; Hooiveld, G.J.E.J.; Müller, M. PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression. BMC Genom. 2008, 9, 231. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Arca, M. Alterations of intestinal lipoprotein metabolism in diabetes mellitus and metabolic syndrome. Atheroscler. Suppl. 2015, 17, 12–16. [Google Scholar] [CrossRef][Green Version]
- Kim, H.J.; Moradi, H.; Yuan, J.; Norris, K.; Vaziri, N.D. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am. J. Physiol. Renal. Physiol. 2009, 296, F1297–F1306. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shoji, T.; Kakiya, R.; Hayashi, T.; Tsujimoto, Y.; Sonoda, M.; Shima, H.; Mori, K.; Fukumoto, S.; Tahara, H.; Shioi, A.; et al. Serum n-3 and n-6 polyunsaturated fatty acid profile as an independent predictor of cardiovascular events in hemodialysis patients. Am. J. Kidney Dis. 2013, 62, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Imamura, S.; Morioka, T.; Yamazaki, Y.; Numaguchi, R.; Urata, H.; Motoyama, K.; Mori, K.; Fukumoto, S.; Shoji, T.; Emoto, M.; et al. Plasma polyunsaturated fatty acid profile and delta-5 desaturase activity are altered in patients with type 2 diabetes. Metabolism 2014, 63, 1432–1438. [Google Scholar] [CrossRef]
- Baggio, B.; Musacchio, E.; Priante, G. Polyunsaturated fatty acids and renal fibrosis: Pathophysiologic link and potential clinical implications. J. Nephrol. 2005, 18, 362–367. [Google Scholar] [PubMed]
- Lauretani, F.; Semba, R.D.; Bandinelli, S.; Miller, E.R., 3rd; Ruggiero, C.; Cherunini, A.; Guralnik, J.M.; Ferrucci, L. Plasma polyunsaturated fatty acids and the decline of renal function. Clin. Chem. 2008, 54, 475–481. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sertoglu, E.; Kurt, I.; Tapan, S.; Uyanik, M.; Serdar, M.A.; Kayadibi, H.; El-Fawaeir, S. Comparison of plasma and erythrocyte membrane fatty acid compositions in patients with end-stage renal disease and type 2 diabetes mellitus. Chem. Phys. Lipids 2014, 178, 11–17. [Google Scholar] [CrossRef]
- Afshinnia, F.; Rajendiran, T.M.; Karnovsky, A.; Soni, T.; Wang, X.; Xie, D.; Yang, W.; Shafi, T.; Weir, M.R.; He, J.; et al. Lipidomic signature of progression of chronic kidney disease in the chronic renal insufficiency cohort. Kidney Int. Rep. 2016, 1, 256–268. [Google Scholar] [CrossRef][Green Version]
- Miyashita, K. Paradox of omega-3 PUFA oxidation. Eur. J. Lipid Sci. Technol. 2014, 116, 1268–1279. [Google Scholar] [CrossRef]
- Lapointe, A.; Couillard, C.; Lemieux, S. Effects of dietary factors on oxidation of low-density lipoprotein particles. J. Nutr. Biochem. 2006, 17, 645–658. [Google Scholar] [CrossRef]
- Vessby, B.; Gustafsson, I.B.; Tengblad, S.; Boberg, M.; Andersson, A. Desaturation and elongation of fatty acids and insulin action. Ann. N. Y. Acad. Sci. 2002, 967, 183–195. [Google Scholar] [CrossRef]
- Lennon, R.; Pons, D.; Sabin, M.A.; Wei, C.; Shield, J.P.; Coward, R.J.; Tavaré, J.M.; Mathieson, P.W.; Saleem, M.A.; Welsh, G.I. Saturated fatty acids induce insulin resistance in human podocytes: Implications for diabetic nephropathy. Nephrol. Dial. Transplant. 2009, 24, 3288–3296. [Google Scholar] [CrossRef][Green Version]
- Koorts, A.M.; Viljoen, M.; Kruger, M.C. Red blood cell fatty acid profile of chronic renal failure patients receiving maintenance hemodialysis treatment. Prostaglandins Leukot. Essent. Fat. Acids 2002, 67, 13–18. [Google Scholar] [CrossRef]
- Kröger, J.; Schulze, M.B. Recent insights into the relation of Δ5 desaturase and Δ6 desaturase activity to the development of type 2 diabetes. Curr. Opin. Lipidol. 2012, 23, 4–10. [Google Scholar] [CrossRef]
- Žák, A.; Burda, M.; Vecka, M.; Zeman, M.; Tvrzická, E.; Staňková, B. Fatty acid composition indicates two types of metabolic syndrome independent of clinical and laboratory parameters. Physiol. Res. 2014, 63 (Suppl. 3), S375–S385. [Google Scholar] [CrossRef] [PubMed]
- Zeman, M.; Macášek, J.; Burda, M.; Tvrzická, E.; Vecka, M.; Krechler, T.; Staňková, B.; Hrabák, P., Jr.; Žák, A. Chronic pancreatitis and the composition of plasma phosphatidylcholine fatty acids. Prostaglandins Leukot. Essent. Fat. Acids 2016, 108, 38–44. [Google Scholar] [CrossRef]
- Macášek, J.; Vecka, M.; Žák, A.; Urbánek, M.; Krechler, T.; Petruželka, L.; Staňková, B.; Zeman, M. Plasma fatty acid composition in patients with pancreatic cancer: Correlations to clinical parameters. Nutr. Cancer 2012, 64, 946–955. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, T.A.; Gylling, H. Effect of statins on noncholesterol sterol levels: Implications for use of plant stanols and sterols. Am. J. Cardiol. 2005, 96, 40D–46D. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Vecka, M.; Staňková, B.; Kutová, S.; Tomášová, P.; Tvrzická, E.; Žák, A. Comprehensive sterol and fatty acid analysis in nineteen nuts, seeds, and kernel. SN Appl. Sci. 2019, 1, 1531. [Google Scholar] [CrossRef][Green Version]
- Vecka, M.; Tvrzická, E.; Staňková, B.; Žák, A. Effect of column and software on gas chromatographic determination of fatty acids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 770, 91–99. [Google Scholar] [CrossRef]
- Leníček, M.; Vecka, M.; Žížalová, K.; Vítek, L. Comparison of simple extraction procedures in liquid chromatography-mass spectrometry based determination of serum 7α-hydroxy-4-cholesten-3-one, a surrogate marker of bile acid synthesis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016, 1033–1034, 317–320. [Google Scholar] [CrossRef]
Group | ||
---|---|---|
Parameter | CON (n = 26) | HV-HFD (n = 26) |
Age (years) | 61.3 ± 8.6 | 63.0 ± 12.9 1 |
Dialysis vintage (years) | NA | 3.9 [2.2–6.8] |
Body weight (kg) * | 87.7 ± 20.6 | 76.3 ± 22.2 |
BMI (kg/m2) | 29.3 ± 5.3 | 24.7 ± 6.1 |
Males/females | 17/9 | 17/9 |
Diabetes mellitus [n (%)] | 8(31) | 8(31) |
Hypertension [n (%)] | 21(81) | 23(88) |
Smoking [n (%)] | 2(8) | 7(27) |
Cardiovascular disease [n (%)] | 2(8) | 14(54) b *** |
eGFR (ml/s) | 1.41 ± 0.24 | 0.13 ± 0.04 a *** |
Total cholesterol (mmol/L) | 5.64 ± 1.26 | 4.95 ± 1.12 * |
HDL-C (mmol/L) | 1.48 ± 0.50 | 1.20 ± 0.34 *** |
nonHDL-C (mmol/L) | 4.17 ± 1.05 | 3.75 ± 1.10 |
VLDL (%C) | 24.6 ± 7.8 | 19.4 ± 4.6 |
Total LDL (%C) | 54.2 ± 7.7 | 60.0 ± 5.2 * |
IDL (IDLA-C) (%C) | 26.3 ± 6.6 | 31.0 ± 4.6 * |
Large LDL (LDL1–2) (%C) | 25.0 ± 7.1 | 26.2 ± 6.7 |
Small LDL (LDL3–7) (%C) | 1.2 [0.7–4.3] | 1.8 [1.1–3.3] |
Sum of HDL fractions (%C) | 20.9 ± 5.9 | 18.3 ± 6.0 * |
Large HDL (HDL1–3) (%C in HDL) | 22.3 ± 6.9 | 30.5 ± 11.8 |
Intermediate HDL (HDL4–7) (%C in HDL) | 43.8 ± 3.4 | 46.2 ± 5.3 * |
Small HDL (HDL8–10) (%C in HDL) | 33.9 ± 8.1 | 23.3 ± 10.9 ** |
Non-esterified fatty acids (mmol/L) | 0.49 [0.37–0.67] | 0.31 [0.15–0.64] * |
Triacylglycerols (mmol/L) | 1.20 [0.93–1.57] | 1.88 [1.03–2.53] ** |
Glucose (mmol/L) | 5.30 [4.90–5.60] | 6.12 [5.10–7.05] ** |
Insulin (mU/L) | 9.9 [6.1–16.9] | 14.4 [9.0–34.0] ** |
HOMA-IR index | 2.4 [1.4–4.0] | 4.0 [2.0–10.2] ** |
Apo A-I (g/L) | 1.50 ± 0.41 | 1.43 ± 0.94 |
Apo B (g/L) | 1.21 ± 0.28 | 1.06 ± 0.40 |
Apo B-48 (mg/L) | 7 [4–16] | 40 [30–54] *** |
Lp(a) (nmol/L) | 38 [10–68] | 48 [24–103] |
SAA (mg/mL) | 22 [14–32] | 40 [15–114] * |
C4 (ng/mL) | 17 [15–32] | 25 [14–48] |
Uric acid (μmol/L) | 342 ± 77 | 330 ± 74 |
Urea (mmol/L) | 5.3 ± 0.8 | 16.5 ± 5.5 *** |
hs-CRP (mg/L) | 3.4 [1.2–5.0] | 9.5 [5.0–13.4] *** |
Group | ||
---|---|---|
Non-Cholesterol Sterol | CON (n = 26) | HV-HFD (n = 26) |
Lathosterol (μmol/L) | 8.84 ± 5.33 | 8.83 ± 4.56 |
Campesterol (μmol/L) | 9.01 ± 3.42 | 11.06 ± 5.16 * |
β-sitosterol (μmol/L) | 6.83 ± 3.11 | 7.34 ± 3.21 |
Lathosterol/TC (μmol/mmol) | 1.55 ± 0.71 | 1.90 ± 1.10 |
Campesterol/TC (μmol/mmol) | 1.68 ± 0.75 | 2.26 ± 0.95 ** |
β-sitosterol/TC (μmol/mmol) | 1.26 ± 0.61 | 1.53 ± 0.63 + |
Fatty Acid | Phospholipids (PL) | Triacylglycerols (TAG) | Cholesteryl Esters (CE) | |||
---|---|---|---|---|---|---|
CON | HV-HFD | CON | HV-HFD | CON | HV-HFD | |
14:0 * | 0.24 ± 0.10 | 0.30 ± 0.07 + | 1.24 ± 0.46 | 2.67 ± 0.81 +++ | 0.34 ± 0.25 | 0.95 ± 0.25 +++ |
16:0 | 32.50 ± 4.57 | 33.85 ± 2.20 | 27.19 ± 3.87 | 27.50 ± 2.57 | 10.36 ± 1.86 | 14.29 ± 1.34 +++ |
16:1n-9 | 0.14 ± 0.03 | 0.14 ± 0.03 | 0.86 ± 0.23 | 0.79 ± 0.15 | 0.44 ± 0.15 | 0.57 ± 0.13 ++ |
16:1n-7 | 0.60 ± 0.25 | 0.53 ± 0.20 | 3.33 ± 0.86 | 3.37 ± 1.03 | 2.66 ± 1.05 | 3.05 ± 1.10 |
18:0 | 14.42 ± 1.67 | 13.11 ± 1.09 ++ | 4.00 ± 0.84 | 3.12 ± 0.56 +++ | 1.01 ± 0.31 | 0.86 ± 0.35 |
18:1n-9 | 10.94 ± 1.26 | 10.77 ± 1.42 | 40.44 ± 2.77 | 38.47 ± 4.04 + | 21.27 ± 1.90 | 19.85 ± 1.98 ++ |
18:1n-7 | 1.53 ± 0.13 | 1.78 ± 0.31 ++ | 2.50 ± 0.35 | 2.34 ± 0.42 | 1.29 ± 0.15 | 1.41 ± 0.26 |
18:2n-6 | 22.92 ± 2.05 | 20.35 ± 2.85 ++ | 15.96 ± 3.01 | 16.00 ± 3.75 | 55.23 ± 3.59 | 48.22 ± 4.41 +++ |
18:3n-6 | 0.10 ± 0.05 | 0.07 ± 0.03 | 0.28 ± 0.11 | 0.32 ± 0.15 | 0.82 ± 0.32 | 0.77 ± 0.32 |
18:3n-3 | 0.25 ± 0.12 | 0.23 ± 0.07 | 0.94 ± 0.33 | 1.44 ± 0.45 +++ | 0.71 ± 0.22 | 0.74 ± 0.14 |
20:2n-6 | 0.41 ± 0.13 | 0.50 ± 0.11 + | 0.31 ± 0.09 | 0.16 ± 0.04 +++ | 0.09 ± 0.04 | 0.11 ± 0.05 |
20:3n-6 | 2.70 ± 0.84 | 2.56 ± 0.53 | 0.34 ± 0.17 | 0.24 ± 0.07 + | 0.71 ± 0.20 | 0.63 ± 0.11 |
20:4n-6 | 8.77 ± 2.73 | 10.28 ± 1.54 + | 1.30 ± 0.52 | 1.31 ± 0.31 | 4.46 ± 1.69 | 6.40 ± 1.33 +++ |
20:5n-3 | 1.13 ± 0.62 | 1.23 ± 0.90 | 0.20 ± 0.11 | 0.30 ± 0.33 + | 0.31 ± 0.23 | 0.79 ± 0.39 +++ |
22:5n-6 | 0.12 ± 0.06 | 0.17 ± 0.05 ++ | 0.06 ± 0.03 | 0.08 ± 0.03 + | 0.02 ± 0.01 | 0.03 ± 0.02 ++ |
22:5n-3 | 0.58 ± 0.34 | 0.92 ± 0.27 +++ | 0.17 ± 0.10 | 0.33 ± 0.16 +++ | 0.02 ± 0.02 | 0.07 ± 0.04 +++ |
22:6n-3 | 2.24 ± 1.41 | 2.70 ± 1.04 | 0.38 ± 0.25 | 0.46 ± 0.51 | 0.08 ± 0.06 | 0.32 ± 0.12 +++ |
ΣSFA | 47.24 ± 3.91 | 47.32 ± 1.62 | 32.53 ± 4.41 | 33.82 ± 2.96 | 11.76 ± 2.12 | 16.20 ± 1.53 +++ |
ΣMFA | 13.36 ± 1.39 | 13.40 ± 1.79 | 47.45 ± 2.71 | 45.42 ± 4.20 + | 25.77 ± 2.58 | 25.68 ± 3.30 |
ΣPUFAn-6 | 35.21 ± 3.23 | 34.21 ± 2.27 | 18.34 ± 3.19 | 18.25 ± 3.61 | 61.35 ± 4.17 | 56.21 ± 4.07+++ |
ΣPUFAn-3 | 4.20 ± 2.14 | 5.07 ± 1.95 | 1.69 ± 0.45 | 2.52 ± 1.21 +++ | 1.12 ± 0.29 | 1.91 ± 0.69 +++ |
D9D16 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.12 ± 0. 03 | 0.12 ± 0.04 | 0.25 ± 0.08 | 0.21 ± 0.08 + |
D9D18 | 0.77 ± 0.13 | 0.83 ± 0.14 | 10.5 ± 2.2 | 12.7 ± 2.5 ++ | 22.9 ± 6.6 | 25.8 ± 8.3 |
D6D | 0.004 ± 0.002 | 0.004 ± 0.002 | 0.018 ± 0.008 | 0.021 ± 0.011 | 0.015 ± 0.006 | 0.016 ± 0.008 |
D5D | 3.36 ± 0.84 | 4.22 ± 1.27 + | 3.92 ± 0.62 | 5.69 ± 1.54 +++ | 6.3 ± 2.0 | 10.6 ± 3.3 +++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vecka, M.; Dušejovská, M.; Staňková, B.; Rychlík, I.; Žák, A. A Matched Case-Control Study of Noncholesterol Sterols and Fatty Acids in Chronic Hemodialysis Patients. Metabolites 2021, 11, 774. https://doi.org/10.3390/metabo11110774
Vecka M, Dušejovská M, Staňková B, Rychlík I, Žák A. A Matched Case-Control Study of Noncholesterol Sterols and Fatty Acids in Chronic Hemodialysis Patients. Metabolites. 2021; 11(11):774. https://doi.org/10.3390/metabo11110774
Chicago/Turabian StyleVecka, Marek, Magdalena Dušejovská, Barbora Staňková, Ivan Rychlík, and Aleš Žák. 2021. "A Matched Case-Control Study of Noncholesterol Sterols and Fatty Acids in Chronic Hemodialysis Patients" Metabolites 11, no. 11: 774. https://doi.org/10.3390/metabo11110774