Colloidal Aqueous Dispersions of Methyl (meth)Acrylate-Grafted Polyvinyl Alcohol Designed for Thin Film Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Copolymer Aqueous Dispersions
2.3. Methods
2.3.1. Fourier Transformed Infrared Spectroscopy
2.3.2. Nuclear Magnetic Resonance
2.3.3. Dynamic Light Scattering
2.3.4. Transmission Electron Microscopy
2.3.5. Differential Scanning Calorimetry
2.3.6. Thin Film Deposition and Optical Characterization Methods
2.3.7. Sensing Experiments
3. Results and Discussion
3.1. In Situ Synthesis of Colloidal Dispersions and Characterization of the Corresponding Amphiphilic Graft Copolymers
3.2. Properties of Obtained Colloidal Aqueous Dispersions
3.3. Thin Films of PVA-g-PMA—Preparation and Optical Characterization
3.4. Sensing Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Priestley, R.D.; Prud’homme, R.K. Polymer Colloids: Formation, Characterization and Applications; Soft Matter Series No. 9; The Royal Society of Chemistry: Croydon, UK, 2020. [Google Scholar]
- Lovell, P.A.; Schork, F.J. Fundamentals of Emulsion Polymerization. Biomacromolecules 2020, 21, 4396–4441. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, D. Structured, Composite Nanoparticles from Emulsion Polymerization—Morphological Possibilities. Biomacromolecules 2020, 21, 4388–4395. [Google Scholar] [CrossRef] [PubMed]
- Klier, J.; Bohling, J.; Keefe, M. Evolution of functional polymer colloids for coatings and other applications. AIChE J. 2016, 62, 2238–2247. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Wasan, D.; Nikolov, A.; Moudgil, B. Colloidal dispersions: Structure, stability and geometric confinement. Powder Technol. 2005, 153, 135–141. [Google Scholar] [CrossRef]
- Xu, P.; Mujumdar, A.S.; Yu, B. Drying-Induced Cracks in Thin Film Fabricated from Colloidal Dispersions. Dry. Technol. 2009, 27, 636–652. [Google Scholar] [CrossRef]
- Larson, R.G.; Rehg, T.J. Spin Coating. In Liquid Film Coating; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Rahman, K.; Phung, T.H.; Oh, S.; Kim, S.H.; Ng, T.N.; Kwon, K.-S. High-Efficiency Electrospray Deposition Method for Nonconductive Substrates: Applications of Superhydrophobic Coatings. ACS Appl. Mater. Interfaces 2021, 13, 18227–18236. [Google Scholar] [CrossRef]
- Usman, F.; Dennis, J.; Ahmed, A.; Meriaudeau, F.; Ayodele, O.; Rabih, A. A Review of Biosensors for Non-Invasive Diabetes Monitoring and Screening in Human Exhaled Breath. IEEE Access 2019, 7, 5963–5974. [Google Scholar] [CrossRef]
- Thévenot, D.; Toth, K.; Durst, R.; Wilson, G. Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef][Green Version]
- Dey, D.; Goswami, T. Optical biosensors: A revolution towards quantum nanoscale electronics device fabrication. J Biomed. Biotechnol. 2011, 348218. [Google Scholar] [CrossRef]
- Ünlü, M.; Chiari, M.; Özcan, A. Introduction to the special issue of optical biosensors. Nanophotonics 2017, 6, 623–625. [Google Scholar] [CrossRef]
- Borisov, S.; Wolfbeis, O. Optical Biosensors. Chem. Rev. 2008, 108, 423–461. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-S.; Landry, J.; Zhu, X. Evaluation of Kinetics Using Label-Free Optical Biosensors. Instrum. Sci. Technol. 2017, 45, 486–505. [Google Scholar] [CrossRef] [PubMed]
- Ligler, F.; Taitt, C. Optical Biosensors: Present & Future; Gulf Professional Publishing: Houston, TX, USA, 2002. [Google Scholar]
- Righettoni, M.; Tricoli, A. Toward portable breath acetone analysis for diabetes detection. J. Breath Res. 2011, 5, 037109. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bhowmik, B.; Manjuladevi, V.; Gupta, R.K.; Bhattacharyya, P. Highly Selective Low-Temperature Acetone Sensor Based on Hierarchical 3-D TiO2 Nanoflowers. IEEE Sens. J. 2016, 16, 3488–3495. [Google Scholar] [CrossRef]
- Nooke, A. Gas Detection by Means of Surface Plasmon Resonance Enhanced Ellipsometry; Federal Institute for Materials Research and Testing, BAM: Berlin, Germany, 2012.
- Lakard, B.; Carquigny, S.; Segut, O.; Patois, T.; Lakard, S. Gas Sensors Based on Electrodeposited Polymers. Metals 2015, 5, 1371–1386. [Google Scholar] [CrossRef][Green Version]
- Karthikeyan, S.; Pandya, H.; Sharma, M.; Gopal, K. Gas Sensors—A Review. J. Environ. Nanotechnol. 2015, 4, 1–14. [Google Scholar]
- Oueiny, C.; Berlioz, S.; Perrin, F. Carbon nanotube-polyaniline composites. Prog. Polym. Sci. 2014, 39, 707–748. [Google Scholar] [CrossRef]
- Marini, M.; Pilati, F.; Pourabbas, B. Smooth Surface Polypyrrole-Silica Core-Shell Nanoparticles: Preparation, Characterization and Properties. Macromol. Chem. 2008, 209, 1374–1380. [Google Scholar] [CrossRef]
- Chithra Iekha, P.; Subramanian, E.; Padiyan, D. Electrodeposition of polyaniline thin films doped with dodeca tungstophosphoric acid: Effect on annealing and vapor sensing. Sens. Actuators B 2007, 122, 274–281. [Google Scholar]
- Chowdhurya, P.; Pal, C.M. Graft copolymerization of methyl acrylate onto polyvinyl alcohol using Ce(IV) initiator. Eur. Polym. J. 1999, 35, 2207–2213. [Google Scholar] [CrossRef]
- Lazarova, K.; Vasileva, M.; Ivanova, S.; Novakov, C.; Christova, D.; Babeva, T. Influence of Macromolecular Architecture on the Optical and Humidity-Sensing Properties of Poly(N,N-Dimethylacrylamide)-Based Block Copolymers. Polymers 2018, 10, 769. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lazarova, K.; Vasileva, M.; Marinov, G.; Babeva, T. Optical characterization of sol–gel derived Nb2O5 thin films. Opt. Laser Technol. 2014, 58, 114–118. [Google Scholar] [CrossRef]
- Lazarova, K.; Awala, H.; Thomas, S.; Vasileva, M.; Mintova, S.; Babeva, T. Vapor Responsive One-Dimensional Photonic Crystals from Zeolite Nanoparticles and Metal Oxide Films for Optical Sensing. Sensors 2014, 14, 12207–12218. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Corsaro, C.; Neri, G.; Santoro, A.; Fazio, E. Acrylate and Methacrylate Polymers’ Applications: Second Life with Inexpensive and Sustainable Recycling Approaches. Materials 2022, 15, 282. [Google Scholar] [CrossRef] [PubMed]
- Bodurov, I.; Vlaeva, I.; Viraneva, A.; Yovcheva, T.; Sainov, S. Modified design of a laser refractometer. Nanosci. Nanotechnol. 2016, 16, 31–33. [Google Scholar]
- Lazarova, K.; Bozhilova, S.; Ivanova, S.; Christova, D.; Babeva, T. Optical Characterization of Acetone-Sensitive Thin Films of poly(vinyl alcohol)-g-poly(methyl acrylate). Chem. Proc. 2021, 5, 41. [Google Scholar]
Sample Code | Reaction Conditions (a) | Yield [%] | Grafted Monomer Mole Fraction in Copolymer Composition (b) | Particle Size and Size Distribution (c) | ||||
---|---|---|---|---|---|---|---|---|
Grafted Monomer | Concentration [mol/L] | Mole Fraction | CAN [mol/L] × 103 | DH [nm] | Dispersity | |||
CP1 | MA | 0.35 | 0.50 | 3.0 | 92.6 | 0.60 | 69 | 0.067 |
CP2 | MA | 0.35 | 0.50 | 4.5 | 81.8 | 0.61 | 70 | 0.077 |
CP3 | MA | 0.70 | 0.67 | 4.5 | 89.1 | 0.74 | 86 | 0.069 |
CP4 | MA | 0.35 | 0.50 | 9.0 | 95.4 | 0.61 | 73 | 0.067 |
CP5 | MMA | 0.35 | 0.50 | 9.0 | 75.1 | 0.52 | 2693 (d) | 0.91 (d) |
CP6 | MMA | 0.18 | 0.25 | 9.0 | 80.3 | 0.37 | 6783 (d) | 0.86 (d) |
Sample Code | Mole Fraction of MA | Concentration [g/L] | DH [nm] | Dispersity |
---|---|---|---|---|
CP1 | 0.60 | 5.0 | 70 | 0.043 |
1.0 | 69 | 0.067 | ||
0.5 | 66 | 0.086 | ||
CP2 | 0.61 | 5.0 | 71 | 0.103 |
1.0 | 70 | 0.077 | ||
0.5 | 68 | 0.109 | ||
CP3 | 0.74 | 5.0 | 82 | 0.117 |
1.0 | 86 | 0.069 | ||
0.5 | 83 | 0.075 | ||
CP4 | 0.61 | 5.0 | 72 | 0.101 |
1.0 | 73 | 0.067 | ||
0.5 | 66 | 0.132 |
Sample | d (nm) | n at 600 nm | k at 600 nm | ΔR (%) | dac (nm) | SD (%) | Δn |
---|---|---|---|---|---|---|---|
CP2 | 71 | 1.34 | 0.018 | 3.5 | 77.6 | 9.3 | −0.01 |
CP4 | 73 | 1.35 | 0.017 | 6 | 83.6 | 14.5 | −0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozhilova, S.; Lazarova, K.; Ivanova, S.; Karashanova, D.; Babeva, T.; Christova, D. Colloidal Aqueous Dispersions of Methyl (meth)Acrylate-Grafted Polyvinyl Alcohol Designed for Thin Film Applications. Coatings 2022, 12, 1882. https://doi.org/10.3390/coatings12121882
Bozhilova S, Lazarova K, Ivanova S, Karashanova D, Babeva T, Christova D. Colloidal Aqueous Dispersions of Methyl (meth)Acrylate-Grafted Polyvinyl Alcohol Designed for Thin Film Applications. Coatings. 2022; 12(12):1882. https://doi.org/10.3390/coatings12121882
Chicago/Turabian StyleBozhilova, Silvia, Katerina Lazarova, Sijka Ivanova, Daniela Karashanova, Tsvetanka Babeva, and Darinka Christova. 2022. "Colloidal Aqueous Dispersions of Methyl (meth)Acrylate-Grafted Polyvinyl Alcohol Designed for Thin Film Applications" Coatings 12, no. 12: 1882. https://doi.org/10.3390/coatings12121882