# An Offshore Self-Stabilized System Based on Motion Prediction and Compensation Control

^{1}

^{2}

^{3}

^{4}

^{*}

**—**Volume II)

## Abstract

**:**

## 1. Introduction

## 2. Ship Motion Prediction

#### 2.1. Ship Motion Modelling

#### 2.2. Autoregression Model and Parameter Initialization

#### 2.3. Parameter Update and Motion Prediction

## 3. Self-Stabilized System Design

#### 3.1. Inverse Kinematics Modeling

#### 3.2. Motion Compensation Control

## 4. Experiments and Analysis

#### 4.1. Motion Prediction

#### 4.2. Compensation Control

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Chen, D.; Fan, T.; Yuan, H.; Yan, X. The Current Situation and Prospect of Inland River Shipping System Supervision Technology. Transp. Syst. Eng. Inf.
**2022**, 22, 1–14. [Google Scholar] - Qiao, D.; Liu, G.; Lv, T.; Li, W.; Zhang, J. Marine vision-based situational awareness using discriminative deep learning: A survey. J. Mar. Sci. Eng.
**2021**, 9, 397. [Google Scholar] [CrossRef] - Zhou, W.; Chen, W.; Liu, H.; Li, X. A New Forward Kinematic Algorithm for a General Stewart Platform. Mech. Mach. Theory.
**2015**, 87, 177–190. [Google Scholar] [CrossRef] - Liu, P.; Kouguchi, N.; Li, Y. Velocity Measurement of Coherent Doppler Sonar Assisted by Frequency Shift, Kalman Filter and Linear Prediction. J. Mar. Sci. Eng.
**2021**, 9, 109. [Google Scholar] [CrossRef] - Yuan, H.; Xiao, C.; Wang, Y.; Peng, X.; Wen, Y. Maritime Vessel Emission Monitoring by an UAV Gas Sensor System. Ocean Eng.
**2020**, 218, 108206. [Google Scholar] [CrossRef] - Che, Z.G.; Chiang, T.A.; Che, Z.H. Feed-forward neural networks training: A comparison between genetic algorithm and back-propagation learning algorithm. Int. J. Innov. Comput. Inf. Control
**2011**, 7, 5839–5850. [Google Scholar] - Tang, G.; Lei, J.; Du, H.; Yao, B.; Zhu, W.; Hu, X. Proportional-Integral-Derivative Controller Optimization by Particle Swarm Optimization and Back Propagation Neural Network for a Parallel Stabilized Platform in Marine Operations. J. Ocean Eng. Sci.
**2022**, in press. [Google Scholar] [CrossRef] - Zhu, L.; Li, T. Observer-Based Autopilot Heading Finite-Time Control Design for Intelligent Ship with Prescribed Performance. J. Mar. Sci. Eng.
**2021**, 9, 828. [Google Scholar] [CrossRef] - Qiang, H.; Jin, S.; Feng, X.; Xue, D.; Zhang, L. Model Predictive Control of a Shipborne Hydraulic Parallel Stabilized Platform based on Ship Motion Prediction. IEEE Access
**2020**, 8, 181880–181892. [Google Scholar] [CrossRef] - Skulstad, R.; Li, G.; Fossen, T.I.; Vik, B.; Zhang, H. A Hybrid Approach to Motion Prediction for Ship Docking—Integration of a Neural Network Model Into the Ship Dynamic Model. IEEE Trans. Instrum. Meas.
**2021**, 70, 2501311. [Google Scholar] [CrossRef] - Liu, X.; Yuan, H.; Xiao, C.; Wang, Y.; Yu, Q. Hybrid-driven Vessel Trajectory Prediction based on Uncertainty Fusion. Ocean Eng.
**2022**, 248, 110836. [Google Scholar] [CrossRef] - Chu, Y.; Li, G.; Zhang, H. Incorporation of Ship Motion Prediction into Active Heave Compensation for Offshore Crane Operation. In Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 November 2020; pp. 1444–1449. [Google Scholar]
- Zhang, T.; Zheng, X.; Liu, M. Multiscale Attention-based LSTM for Ship Motion Prediction. Ocean Eng.
**2021**, 230, 109066. [Google Scholar] [CrossRef] - Fu, H.; Gu, Z.; Wang, Y. Ship Pitch Prediction based on Bi–ConvLSTM–CA Model. J. Mar. Sci. Eng.
**2022**, 10, 840. [Google Scholar] [CrossRef] - Guo, X.; Zhang, X.; Lu, W.; Tian, X.; Li, X. Real-time Prediction of 6–DOF Motions of a Turret-moored FPSO in Harsh Sea State. Ocean Eng.
**2022**, 265, 112500. [Google Scholar] [CrossRef] - Ren, Z.; Han, X.; Yu, X.; Skjetne, R.; Leira, B.J.; Sævik, S.; Zhu, M. Data–driven Simultaneous Identification of the 6DOF Dynamic Model and Wave Load for a Ship in Waves. Mech. Syst. Signal Process.
**2023**, 184, 109422. [Google Scholar] [CrossRef] - Yang, X. Displacement Motion Prediction of a Landing Deck for Recovery Operations of Rotary UAVs. Int. J. Control Autom. Syst.
**2013**, 11, 58–64. [Google Scholar] [CrossRef] - Wei, Y.; Chen, Z.; Zhao, C.; Chen, X. Deterministic Ship Roll Forecasting Model based on Multi-objective Data Fusion and Multi-layer Error Correction. Appl. Soft Comput.
**2023**, 132, 109915. [Google Scholar] [CrossRef] - Zhao, X.; Zhao, T.; Wang, C.; Xin, T.; Yuhang, C. Type synthesis and analysis of parallel mechanisms with sub-closed-loops. Mech. Mach. Theory
**2018**, 120, 140–165. [Google Scholar] [CrossRef] - Tian, W.; Zhang, X.; Lv, D.; Wang, L.; Liu, Q. Sliding Mode Control Strategy of 3–UPS/S Shipborne Stable Platform with LSTM Neural Network Prediction. Ocean Eng.
**2022**, 265, 112497. [Google Scholar] [CrossRef] - Chu, Y.; Li, G.; Hatledal, L.I.; Holmeset, F.T.; Zhang, H. Coupling of Dynamic Reaction Forces of a Heavy Load Crane and Ship Motion Responses in Waves. Ships Offshore Struct.
**2021**, 16 (Suppl. S1), 58–67. [Google Scholar] [CrossRef] - Chen, H.; Xie, J.; Han, J.; Shi, W.; Charpentier, J.-F.; Benbouzid, M. Position Control of Heave Compensation for Offshore Cranes based on a Particle Swarm Optimized Model Predictive Trajectory Path Controller. J. Mar. Sci. Eng.
**2022**, 10, 1427. [Google Scholar] [CrossRef] - Bozkurt, B.; Ertogan, M. Heave and Horizontal Displacement and Anti–sway Control of Payload during Ship-to-ship Load Transfer with an Offshore Crane on Very Rough Sea Conditions. Ocean Eng.
**2023**, 267, 113309. [Google Scholar] [CrossRef] - Xiao, J. Ship Dynamic Positioning Control based on Nonlinear Fuzzy Algorithm for a Smart Port City. J. Test. Eval.
**2022**, 10, 865. [Google Scholar] [CrossRef] - Sumnu, A.; Guzelbey, I.H.; Cakir, M.V. Simulation and PID Control of a Stewart Platform with Linear Motor. J. Mech. Sci. Technol.
**2017**, 31, 345–356. [Google Scholar] [CrossRef] - Meng, J.; Humme, A.; Bucknall, R.; Englot, B.; Liu, Y. A Fully Autonomous Framework of Unmanned Surface Vehicles in Maritime Environments Using Gaussian Process Motion Planning. IEEE J. Ocean. Eng.
**2022**, 48, 59–79. [Google Scholar] [CrossRef] - Dong, Z.; Zhang, Z.; Qi, S.; Zhang, H.; Li, J.; Liu, Y. Autonomous Cooperative Formation Control of Underactuated USVs based on Improved MPC in complex ocean environment. Ocean Eng.
**2023**, 270, 113633. [Google Scholar] [CrossRef]

**Figure 1.**Parameter identification and multistep prediction based on the autoregression model of ship motion.

**Figure 4.**Motion prediction of a ship in class 3–5 sea conditions. (

**a**) Class 3 rolling; (

**b**) Class 3 pitching; (

**c**) Class 4 rolling; (

**d**) Class 4 pitching; (

**e**) Class 5 rolling; (

**f**) Class 5 pitching.

**Figure 5.**Self−stabilization in 1DOF sin motion condition. (

**a**) Roll angle $\approx $ 5 deg; (

**b**) Pitch angle $\approx $ 5 deg; (

**c**) Roll angle $\approx $ 10 deg; (

**d**) Pitch angle $\approx $ 10 deg.

**Figure 6.**Self-Stabilized control in 3–5 level sea conditions. (

**a**) Class 3 rolling; (

**b**) Class 3 pitching; (

**c**) Class 4 rolling; (

**d**) Class 4 pitching; (

**e**) Class 5 rolling; (

**f**) Class 5 pitching.

Class 3 | Class 4 | Class 5 | |
---|---|---|---|

Roll | 0.581 | 0.658 | 0.733 |

Pitch | 0.543 | 0.577 | 0.922 |

1-DOF Motion | Maximum Error (deg) | Mean Error (deg) |
---|---|---|

roll angle $\approx $ 5 deg | 0.50 | 0.19 |

roll angle $\approx $ 10 deg | 0.82 | 0.40 |

pitch angle $\approx $ 5 deg | 0.55 | 0.20 |

pitch angle $\approx $ 10 deg | 0.88 | 0.42 |

Sea Condition | Maximum Error (deg) | Mean Error (deg) |
---|---|---|

class 3 rolling | 0.61 | 0.25 |

class 3 pitching | 0.50 | 0.19 |

class 4 rolling | 0.85 | 0.40 |

class 4 pitching | 0.68 | 0.29 |

class 5 rolling | 1.60 | 0.66 |

class 5 pitching | 0.96 | 0.39 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, Y.; Yuan, H.; Xiao, Z.; Xiao, C. An Offshore Self-Stabilized System Based on Motion Prediction and Compensation Control. *J. Mar. Sci. Eng.* **2023**, *11*, 745.
https://doi.org/10.3390/jmse11040745

**AMA Style**

Liu Y, Yuan H, Xiao Z, Xiao C. An Offshore Self-Stabilized System Based on Motion Prediction and Compensation Control. *Journal of Marine Science and Engineering*. 2023; 11(4):745.
https://doi.org/10.3390/jmse11040745

**Chicago/Turabian Style**

Liu, Yanhua, Haiwen Yuan, Zeyu Xiao, and Changshi Xiao. 2023. "An Offshore Self-Stabilized System Based on Motion Prediction and Compensation Control" *Journal of Marine Science and Engineering* 11, no. 4: 745.
https://doi.org/10.3390/jmse11040745