Effects of Ewe’s Diet Supplementation with Polyunsaturated Fatty Acids on Meat Lipid Profile of Suckling Lambs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sampling and Analytical Procedures
2.3. Statistical Analysis
3. Results
3.1. n-3 Polyunsaturated Fatty Acids (n-3 PUFA)
3.1.1. Alpha-Linolenic Acid (ALA)
3.1.2. Eicosapentaenoic Acid (EPA)
3.1.3. Docosahexaenoic Acid (DHA)
3.2. n-6 Polyunsaturated Fatty Acids (n-6 PUFA)
3.2.1. Linoleic Acid (LA)
3.2.2. Arachidonic Acid (AA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gallardo García, B. Utilización de Diferentes Fuentes Lipídicas en la Ración de Ovejas Churras en Lactación: Efecto Sobre los Rendimientos y Calidad de los Productos. [Use of Different Sources of Fat in Lactating Churra Ewe Diets: Effects on Animal Performance and Product Quality]. Ph.D. Thesis, Universidad de Valladolid, Valladolid, Spain, 2013. Available online: https://uvadoc.uva.es/bitstream/10324/4162/1/TESIS428-140113.pdf (accessed on 20 August 2018).
- Martínez Marín, A.L. Influencia de la nutrición sobre el contenido y tipo de ácidos grasos en la carne de los rumiantes. Effects of nutrition on type and content of fatty acids in meat from ruminant animals. Arch. Zootec. 2007, 56, 45–66. [Google Scholar]
- Ponnampalam, E.N.; Sinclair, A.J.; Egan, A.R.; Ferrier, G.R.; Leury, B.J. Dietary manipulation of muscle long-chain omega-3 and omega-6 fatty acids and sensory properties of lamb meat. Meat Sci. 2002, 60, 125–132. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diet, nutrition and the prevention of chronic diseases. World Health Organ. Tech. Rep. Ser. 2003, 916, 1–149. [Google Scholar]
- Harper, C.R.; Jacobson, T.A. The fats of life: The role of omega-3 fatty acids in the prevention of coronary heart disease. Arch. Intern. Med. 2001, 161, 2185–2192. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nordøy, A.; Marchioli, R.; Arnesen, H.; Videbæk, J. n−3 Polyunsaturated fatty acids and cardiovascular diseases: To whom, how much, preparations. Lipids 2001, 36, 127–129. [Google Scholar] [CrossRef]
- Fernández Navarro, J.R. Suplementación de la dieta con aceite de pescado rico en ácidos grasos poliinsaturados n-3. Estrategias a practicar para potenciar su consumo. Ph.D. Thesis, Universidad de Granada, Granada, Spain, 2007. Available online: https://digibug.ugr.es/handle/10481/1606 (accessed on 22 August 2018).
- Lavie, C.J.; Milani, R.V.; Mehra, M.R.; Ventura, H.O. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. JACC 2009, 54, 585–594. [Google Scholar] [CrossRef][Green Version]
- Givens, D.I.; Cottrill, B.R.; Davies, M.; Lee, P.A.; Mansbridge, R.J.; Moss, A.R. Sources of n-3 polyunsaturated fatty acids additional to fish oil for livestock diets—A review. Nutr. Abstr. Rev. Ser B Livest. Feeds Feed. 2000, 70, 1–19. [Google Scholar]
- Chikunya, S.; Demiral, G.; Enser, M.; Wood, J.D.; Wilkinson, R.G.; Sinclair, L.A. Biohydrogenation of dietary n-3 PUFA and stability of ingested vitamin E in the rumen, and their effects on microbial activity in sheep. Br. J. Nutr. 2004, 91, 539–550. [Google Scholar] [CrossRef][Green Version]
- Sinclair, L.A.; Cooper, S.L.; Chikunya, S.; Wilkinson, R.G.; Hallett, K.G.; Enser, M.; Wood, J.D. Biohydrogenation of n-3 polyunsaturated fatty acids in the rumen and their effects on microbial metabolism and plasma fatty acid concentrations in sheep. Anim. Sci. 2005, 81, 239–248. [Google Scholar] [CrossRef]
- Cooper, S.L.; Sinclair, L.A.; Wilkinson, R.G.; Hallett, K.G.; Enser, M.; Wood, J.D. Manipulation of the n-3 polyunsaturated fatty acid content of muscle and adipose tissue in lambs 1. J. Anim. Sci. 2004, 82, 1461–1470. [Google Scholar] [CrossRef][Green Version]
- Wachira, A.M.; Sinclair, L.A.; Wilkinson, R.G.; Enser, M.; Wood, J.D.; Fisher, A.V. Effects of dietary fat source and breed on the carcass composition, n-3 polyunsaturated fatty acid and conjugated linoleic acid content of sheep meat and adipose tissue. Br. J. Nutr. 2002, 88, 697–709. [Google Scholar] [CrossRef][Green Version]
- Manso, T.; Bodas, R.; Vieira, C.; Castro, T.; Mantecón, A.R. Fatty acid composition of lambs suckling ewes fed with different vegetable oils. Opt. Méditerr. Sér. A Mediterr. Semin. 2011, 99, 361–364. Available online: http://om.ciheam.org/om/pdf/a99/00801580.pdf (accessed on 1 February 2023).
- Manso, T.; Bodas, R.; Vieira, C.; Mantecón, A.R.; Castro, T. Feeding vegetable oils to lactating ewes modifies the fatty acid profile of suckling lambs. Animal 2011, 10, 1659–1667. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gallardo, B.; Manca, M.G.; Mantecón, A.R.; Nudda, A.; Manso, T. Effects of linseed oil and natural or synthetic vitamin E supplementation in lactating ewes’ diets on meat fatty acid profile and lipid oxidation from their milk fed lambs. Meat Sci. 2015, 102, 79–89. [Google Scholar] [CrossRef]
- Raes, K.; De Smet, S.; Balcaen, A.; Claeys, E.; Demeyer, D. Effect of diets rich in n-3 polyunsaturated fatty acids on muscle lipids and fatty acids in Belgian Blue double-muscled young bulls. Reprod. Nutr. Dev. 2003, 43, 331–345. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Pewan, S.B.; Otto, J.R.; Kinobe, R.T.; Adegboye, O.A.; Malau-Aduli, A.E.O. Nutritional enhancement of health beneficial omega-3 long-chain polyunsaturated fatty acids in the muscle, liver, kidney, and heart of Tattykeel Australian White MARGRA lambs fed pellets fortified with omega-3 oil in a feedlot system. Biology 2021, 10, 912. [Google Scholar] [CrossRef] [PubMed]
- Martínez Marín, A.L. Nutrición y calidad de la carne de los rumiantes—Nutrition and quality of meat from ruminant animals. Rev. Electron. Vet. 2008, 9, 1–21. [Google Scholar]
- Vieira, C.; Fernández-Diez, A.; Mateo, J.; Bodas, R.; Soto, S.; Manso, T. Effects of addition of different vegetable oils to lactating dairy ewes’ diet on meat quality characteristics of suckling lambs reared on the ewes’ milk. Meat Sci. 2012, 91, 277–283. [Google Scholar] [CrossRef]
- Trabalza, M.; Mughetti, L.; Ranucci, D.; Acuti, G.; Olivieri, O.; Miraglia, D.; Branciari, R. Influence of maternal and postweaning linseed dietary supplementation on growth rate, lipid profile, and meat quality traits of light Sarda lambs. Sci. World J. 2016, 2016, 391682. [Google Scholar]
- Montossi, F.; Font-i-Furnols, M.; Campo, M.; San Julián, R.; Brito, G.; Sañudo, C. Producción sostenible de carne ovina y las tendencias en las preferencias de los consumidores: Compatibilidades, contradicciones y dilemas sin resolver. In Seminario de Actualización Técnica: Producción de Carne Ovina de Calidad; Serie Técnica 221, INIA; Saravia, H., Ayala, W., Barrios, B., Eds.; Montevideo, Uruguay. 2014, pp. 1–44. Available online: http://www.ainfo.inia.uy/digital/bitstream/item/4191/1/st-221-2014.pdf (accessed on 9 February 2023).
- ANZFA (Australia New Zeland Food Authority). DHA-Rich Dried Marine Micro Algae (Schizochytrium sp.) and DHA-Rich Oil Derived from Schizochytrium sp. as Novel Food Ingredients. 2001; 8p. Available online: https://www.foodstandards.gov.au/code/applications/documents/A428PA.pdf (accessed on 20 August 2011).
- FEDNA-Fundación Española para el Desarrollo de la Nutrición. Tablas FEDNA de Composición y Valor Nutritivo de Alimentos para la Fabricación de Piensos Compuestos, 2nd ed.; de Blas-Beorlegui, C., Mateos, G.G., García-Rebollar, P., Eds.; FENDA: Madrid, Spain, 2003. [Google Scholar]
- Pratoomyot, J.; Srivilas, P.; Noiraksar, T. Fatty acids composition of 10 microalgal species. Songklanakarin J. Sci. Technol. 2005, 27, 1179–1187. [Google Scholar]
- Mateos, G.G.; Rebollar, P.G.; Medel, P. Utilización de Grasas y Productos Lipídicos en Alimentación Animal: Grasas Puras y Mezclas; XII Curso de Especialización FEDNA: Madrid, Spain, 1996; Available online: http://fundacionfedna.org/sites/default/files/96CAP_I.pdf (accessed on 10 January 2023).
- Enser, M.; Scollan, N.D.; Choi, N.J.; Kurt, E.; Hallet, K.; Wood, J.D. Effect of dietary lipid on the content of conjugated linoleic acid (CLA) in beef muscle. Anim. Sci. 1999, 69, 143–146. [Google Scholar] [CrossRef]
- Sanz Sampelayo, M.R.; Chilliard, Y.; Schmidely, P.; Boza, J. Influence of type of diet on the fat constituents of goat and sheep milk. Small Rumin. Res. 2007, 68, 42–63. [Google Scholar] [CrossRef]
- Brito, G. Diferenciación y Valorización de las Carnes Bovinas y Ovinas del Uruguay a Partir de su Caracterización Nutricional y su Influencia en la Salud Humana y la Conservación del Producto. 2005. Available online: https://www.yumpu.com/es/document/read/38503822/diferenciacion-y-valorizacion-de-las-carnes-bovinas-y-ovinas-del- (accessed on 21 September 2016).
- Ponnampalam, E.N.; Sinclair, A.J.; Holman, B.W.B. The sources, synthesis and biological actions of omega-3 and omega-6 fatty acids in red meat: An overview. Foods 2021, 10, 1358. [Google Scholar] [CrossRef]
- Polidori, P.; Pucciarelli, S.; Cammertoni, N.; Polzonetti, V.; Vincenzetti, S. The effects of slaughter age on carcass and meat quality of Fabrianese lambs. Small Rumin. Res. 2017, 155, 12–15. [Google Scholar] [CrossRef]
Item. | Unit | Commercial Ration * | PUFA-Rich Ration * |
---|---|---|---|
Dry matter intake | kg | 0.62 | 0.62 |
Maximum humidity | % | 12.5 | 13.0 |
Minimum crude protein | G | 86.8 | 99.2 |
Minimum ethereal extract | G | 18.6 | 18.6 |
Maximum crude fiber | G | 62.0 | 62.0 |
Maximum ash | G | 43.4 | 43.4 |
Calcium | G | 25.8 | 25.8 |
Phosphorus | G | 9.4 | 9.4 |
Chlorine | G | 4.4 | 4.4 |
Sodium | G | 8.1 | 8.1 |
Vitamin A | IU | 3000 | 10,000 |
Vitamin D3 | IU | 1600 | 2000 |
Vitamin E | mg | 27.5 | 27.5 |
Cobalt | mg | 0.6 | 0.6 |
Iron | mg | 108.0 | 108.0 |
Zinc | mg | 168.0 | 168.0 |
Iodin | mg | 1.7 | 1.7 |
Manganese | mg | 120.0 | 120.0 |
Metabolizable energy | kcal/kg | 2500 | 2550 |
Item | Commercial Ration | PUFA-Rich Ration | Fish Oil Supplement |
---|---|---|---|
Lipids | 2.76 | 7.11 | |
Humidity | 30.0 | 27.8 | |
LA; 18:2 n-6 | 25.73 | 42.84 | 8.87 |
ALA; 18:3 n-3 | 3.33 | 18.1 | 1.11 |
AA; 20:4 n-6 | 0.07 | 0.06 | 0.55 |
EPA; 20:5 n-3 | 0.52 | 0.7 | 6.41 |
DHA; 22:6 n-3 | 0.05 | 0.1 | 13.63 |
Fatty Acid | Group A | Group B | Group C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group A1 | Group A2 | Group B1 | Group B2 | Group C1 | Group C2 | |||||||
S-1 | S-2 | S-1 | S-2 | S-1 | S-2 | S-1 | S-2 | S-1 | S-2 | S-1 | S-2 | |
n-3 PUFA | 7.13 ± 1.23 1 | 2.94 ± 0.17 2 | 4.61 ± 0.51 3 | 4.15 ± 0.80 4 | 7.11 ± 1.36 5 | 3.73 ± 0.41 6 | 4.75 ± 0.63 7 | 4.61 ± 0.59 8 | 2.98 ± 0.93 9 | 2.88 ± 0.47 10 | 4.10 ± 0.85 | 3.76 ± 0.72 11 |
ALA | 2.39 ± 0.44 13 | 1.69 ± 0.11 14 | 1.66 ± 0.35 15 | 1.59 ± 0.33 | 2.45 ± 0.48 16 | 1.96 ± 0.05 17 | 2.10 ± 0.20 18 | 1.92 ± 0.22 | 1.42 ± 0.27 19 | 1.35 ± 0.35 20 | 1.44 ± 0.57 21 | 1.36 ± 0.65 |
EPA | 1.06 ± 0.48 22 | 0.33 ± 0.08 23 | 0.79 ± 0.20 | 0.74 ± 0.36 | 1.52 ± 0.57 24 | 0.43 ± 0.12 25 | 0.85 ± 0.34 26 | 0.89 ± 0.60 | 0.53 ± 0.29 27 | 0.29 ± 0.13 | 0.61 ± 0.2 | 0.61 ± 0.33 |
DHA | 0.78 ± 0.66 | 0.20 ± 0.02 28 | 0.41 ± 0.35 | 0.35 ± 0.10 29 | 0.81 ± 0.56 | 0.39 ± 0.07 30 | 0.57 ± 0.23 | 0.44 ± 0.10 | 0.42 ± 0.26 | 0.24 ± 0.04 31 | 0.57 ± 0.3 | 0.41 ± 0.17 |
Fatty Acid | Group A | Group B | Group C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Group A1 | Group A2 | Group B1 | Group B2 | Group C1 | Group C2 | |||||||
S-1 | S-2 | S-1 | S-2 | S-1 | S-2 | S-1 | S-2 | S-1 | S-2 | S-1 | S-2 | |
n-6 PUFA | 9.86 ± 1.24 1 | 5.52 ± 0.73 2 | 6.21 ± 0.39 3 | 6.82 ± 1.61 4 | 5.91 ± 1.54 5 | 4.82 ± 0.65 | 5.86 ± 1.13 | 5.73 ± 0.79 6 | 4.10 ± 0.82 7 | 4.21 ± 0.75 8 | 4.75 ± 0.57 9 | 4.64 ± 0.51 10 |
LA | 5.6 ± 1.20 11 | 3.71 ± 0.11 12 | 3.95 ± 0.12 13 | 3.45 ± 0.51 14 | 3.94 ± 0.65 15 | 3.09 ± 0.82 | 3.03 ± 1.01 | 2.9 ± 0.97 | 2.72 ± 0.42 16 | 2.58 ± 0.79 17 | 3.09 ± 0.87 | 2.85 ± 0.96 |
AA | 2.24 ± 0.74 18 | 0.86 ± 0.29 19 | 1.35 ± 0.47 20 | 1.03 ± 0.32 | 1.59 ± 0.47 21 | 0.99 ± 0.59 | 1.14 ± 0.19 | 1.18 ± 0.26 | 0.89 ± 0.36 22 | 0.57 ± 0.12 23 | 1.21 ± 0.42 | 1.12 ± 0.25 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cal-Pereyra, L.; González-Montaña, J.R.; Neimaur Fernández, K.; Abreu-Palermo, M.C.; Martín Alonso, M.J.; Velázquez-Ordoñez, V.; Acosta-Dibarrat, J. Effects of Ewe’s Diet Supplementation with Polyunsaturated Fatty Acids on Meat Lipid Profile of Suckling Lambs. Agriculture 2023, 13, 710. https://doi.org/10.3390/agriculture13030710
Cal-Pereyra L, González-Montaña JR, Neimaur Fernández K, Abreu-Palermo MC, Martín Alonso MJ, Velázquez-Ordoñez V, Acosta-Dibarrat J. Effects of Ewe’s Diet Supplementation with Polyunsaturated Fatty Acids on Meat Lipid Profile of Suckling Lambs. Agriculture. 2023; 13(3):710. https://doi.org/10.3390/agriculture13030710
Chicago/Turabian StyleCal-Pereyra, Luis, José Ramiro González-Montaña, Karina Neimaur Fernández, Mayra Cecilia Abreu-Palermo, María José Martín Alonso, Valente Velázquez-Ordoñez, and Jorge Acosta-Dibarrat. 2023. "Effects of Ewe’s Diet Supplementation with Polyunsaturated Fatty Acids on Meat Lipid Profile of Suckling Lambs" Agriculture 13, no. 3: 710. https://doi.org/10.3390/agriculture13030710