# Experimental Study of Disc Fertilizer Spreader Performance

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Theoretical Considerations

_{e}that ranges between 15–50 m·s

^{−1}with a maximum value that, in some case, can reach 70 m·s

^{−1}with higher speeds related to wider working widths [25]. The fertilizer particle eject speed is directly related (Figure 1) to the angular speed of the disc w

_{d}and to specific design factors of the spreader itself such as: (i) the disc radius r

_{d}; (ii) the fertilizer feed point radius r

_{0}; (iii) the angle between each vane and the corresponding radius (pitch angle β

_{0}) and (iv) the cone angle of the rotating disc.

_{e}and a smaller eject angle θ [25].

#### 2.2. Esperimental Tests

^{2}, consisted of an array of 176 collection trays, each measuring 0.5 m × 0.5 m × 0.15 m (length × width × height), arranged in 11 rows and 16 columns, separated from each other by 0.5 m (2 in Figure 2). The spreader (Sipma RN 410-Antek, Lublin, Poland) was located almost in the middle of the first row, 0.7 m from the right lower edge of the first tray in Column 9 (1 in Figure 2). The center of the rotating disc was taken as the origin from which the fertilizer range was measured.

^{3}) with a dosing outlet and a stirrer, a disc (diameter 0.43 m, concavity angle 6°) mounted 0.67 m from the ground, two electric motors (to drive the disc and the stirrer) and controls. The design allowed the parameters, such as the fertilizer feed point on the disc, the angular velocity of the disc and the pitch of the vanes, to be readily modified.

- n: number of testing field rows;
- m: number of testing field columns;
- ${m}_{ij}$: mass of fertilizer collected by tray at row i column j of testing field, kg;
- ${r}_{ij}$: distance between center of tray at row i column j of the testing field and center of disc, m.

^{2}was used to explain the variability of the dependent variable in the model. A multiple regression analysis with R version 4.0.2 software (R Foundation for Statistical Computing) was used to assess the relationships between the different variables.

- ${\left(\overline{R}\right)}_{ijklm}$: m-th result of calculations of the mean fertilizer spread radius for the i-th fertilizer, the j-th angular velocity of disc, the k-th point of fertilizer feed onto the disc and the l-th vane configuration, m;
- μ: general average of the population of fertilizer spread radius measurements, m;
- FT: main effect of the i-th fertilizer;
- DS: main effect of the j-th angular velocity of the disc;
- FP: main effect of the k-th fertilizer feed point on the disc;
- VC: main effect of the l-th vane configuration on the disc;
- Ij: interaction effect of the i-th fertilizer with the j-th angular velocity of the disc;
- ik: interaction effect of the i-th fertilizer with the k-th fertilizer feed point;
- il: interaction effect of the i-th fertilizer with the l-th vane configuration;
- jk: interaction effect of the j-th angular velocity of the disc with the k-th fertilizer feed point;
- jl: interaction effect of the j-th angular velocity of the disc with the l-th vane configuration;
- kl: interaction effect of the k-th fertilizer feed point with the l-th vane configuration;
- ${e}_{ijklm}$: random experimental error, m.

^{2}was used to explain the variability of the dependent variables by a constant model; T-Tukey confidence intervals were used to assess the significance of the differences in individual parameters. The relationships between the dependent variables (parameters of the average fertilizer distribution field) and independent variables were described by first-degree multiple regression equations. Model parameters were estimated using the least squares method [27]. Statistical verification of the model was carried out by the Fisher–Snedecor F test.

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Sobczak, P.; Mazur, J.; Zawiślak, K.; Panasiewicz, M.; Żukiewicz-Sobczak, W.; Królczyk, J.; Lechowski, J. Evaluation of dust concentration during grinding grain in sustainable agriculture. Sustainability
**2019**, 11, 4572. [Google Scholar] [CrossRef][Green Version] - Żukiewicz-Sobczak, W.; Sobczak, P.; Rogóż, A.; Wojtyła-Buciora, P.; Kozak, M.; Zagórski, J. Evaluation of the content of selected elements in herbs cultivated in organic farms in the Lublin region. In Proceedings of the Farm Machinery and Processes Management in Sustainable Agriculture, Lublin, Poland, 22–24 November 2017; pp. 461–464. [Google Scholar] [CrossRef]
- Kachel-Jakubowska, M.; Matwijczuk, A.; Gagoś, M. Analysis of the physicochemical properties of post-manufacturing waste derived from production of methyl esters from rapeseed oil. Int. Agrophys.
**2017**, 31, 175–182. [Google Scholar] [CrossRef] - Kachel, M.; Matwijczuk, A.; Sujak, A.; Czernel, G.; Niemczynowicz, A.; Nowicka, A. The influence of copper and silver nanocolloids on the quality of pressed spring rapeseed oil. Agronomy
**2019**, 9, 643. [Google Scholar] [CrossRef][Green Version] - Blicharz-Kania, A.; Pecyna, A.; Krajewska, M.; Andrejko, D.; Szmigielski, M.; Zawiślak, K.; Sobczak, P.; Berbec, A. Chemical properties of tobacco seed oil. Przem. Chem.
**2018**, 97, 1906–1909. [Google Scholar] [CrossRef] - Kozak-Kalita, M.; Sobczak, P.; Zawiślak, K.; Mazur, J.; Panasiewicz, M.; Żukiewicz-Sobczak, W. Influence of UV-C radiation on the microbiological purity in selected species of herbs. Health Probl. Civiliz.
**2018**, 12, 285–290. [Google Scholar] [CrossRef] - Przywara, A.; Kachel, M.; Koszel, M.; Leszczyński, N.; Kraszkiewicz, A.; Anifantis, A.S. The influence of digestate on the static strength of spring rapeseeds (Brassica napus var. arvensis). Sustainability
**2019**, 11, 2133. [Google Scholar] [CrossRef][Green Version] - Guerrieri, A.S.; Anifantis, A.S.; Santoro, F.; Pascuzzi, S. Study of a large square baler with innovative technological systems that optimize the baling effectiveness. Agriculture
**2019**, 9, 86. [Google Scholar] [CrossRef][Green Version] - Kraszkiewicz, A.; Kachel, M.; Parafiniuk, S.; Zając, G.; Niedziółka, I.; Sprawka, M. Assessment of the possibility of using hemp biomass (Cannabis sativa L.) for energy purposes: A case study. Appl. Sci. Basel
**2019**, 9, 4437. [Google Scholar] [CrossRef][Green Version] - Rajabi Hamedani, S.; Villarini, M.; Colantoni, A.; Carlini, M.; Cecchini, M.; Santoro, F.; Pantaleo, A. Environmental and economic analysis of an anaerobic co-digestion power plant integrated with a compost plant. Energies
**2020**, 13, 2724. [Google Scholar] [CrossRef] - Pantaleo, A.; Villarini, M.; Colantoni, A.; Carlini, M.; Santoro, F.; Rajabi Hamedani, S. Techno-economic modeling of biomass pellet routes: Feasibility in Italy. Energies
**2020**, 13, 1636. [Google Scholar] [CrossRef][Green Version] - Bulgakov, V.; Pascuzzi, S.; Anifantis, A.S.; Santoro, F. Oscillations analysis of front-mounted beet topper machine for biomass harvesting. Energies
**2019**, 12, 2774. [Google Scholar] [CrossRef][Green Version] - Bulgakov, V.; Pascuzzi, S.; Ivanovs, S.; Santoro, F.; Anifantis, A.S.; Ihnatiev, I. Performance assessment of front-mounted beet topper machine for biomass harvesting. Energies
**2020**, 3, 3524. [Google Scholar] [CrossRef] - Pascuzzi, S.; Bulgakov, V.; Santoro, F.; Anifantis, A.S.; Ivanovs, S.; Holovach, I. A study on the drift of spray droplets dipped in airflows with different directions. Sustainability
**2020**, 12, 4644. [Google Scholar] [CrossRef] - Pascuzzi, S.; Santoro, F.; Manetto, G.; Cerruto, E. Study of the correlation between foliar and patternator deposits in a “Tendone” vineyard. Agric. Eng. Int. CIGR J.
**2018**, 20, 97–107. [Google Scholar] - Santoro, F.; Anifantis, A.S.; Ruggiero, G.; Zavadskiy, V.; Pascuzzi, S. Lightning protection systems suitable for stables: a case study. Agriculture
**2019**, 9, 72. [Google Scholar] [CrossRef][Green Version] - Przywara, A. The impact of structural and operational parameters of the centrifugal disc spreader on the spatial distribution of fertilizer. Agric. Agric. Sci. Procedia
**2015**, 7, 215–222. [Google Scholar] [CrossRef][Green Version] - Dintwa, E.; Tijskens, E.; Olieslagers, R.; De Baerdemaeker, J.; Ramon, H. Calibration of a spinning disc spreader simulation model for accurate site-specific fertiliser Application. Biosyst. Eng.
**2004**, 88, 49–62. [Google Scholar] [CrossRef] - Anifantis, A.S.; Camposeo, S.; Vivaldi, G.A.; Santoro, F.; Pascuzzi, S. Comparison of UAV photogrammetry and 3D modeling techniques with other currently used methods for estimation of the tree row volume of a super-high-density olive orchard. Agriculture
**2019**, 9, 233. [Google Scholar] [CrossRef][Green Version] - Bulgakov, V.; Pascuzzi, S.; Santoro, F.; Anifantis, A.S. Mathematical model of the plane-parallel movement of the self-propelled root-harvesting machine. Sustainability
**2018**, 10, 3614. [Google Scholar] [CrossRef][Green Version] - Bulgakov, V.; Pascuzzi, S.; Nadykto, V.; Ivanovs, S. A mathematical model of the plane-parallel movement of an asymmetric machine-and-tractor aggregate. Agriculture
**2018**, 8, 151. [Google Scholar] [CrossRef][Green Version] - Abbou-ou-Cherif, E.M.; Piron, E.; Chateauneuf, A.; Vilette, S. On-the-field simulation of fertilizer spreading: Part 3—Control of disk inclination for uniform application on undulating fields. Comput. Electron. Agric.
**2019**, 158, 150–158. [Google Scholar] [CrossRef] - Grift, T.E.; Kweon, G. Development of a Uniformity Controlled Granular Fertilizer Spreader; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2006; pp. 1–14. [Google Scholar]
- Koko, J.; Virin, T. Optimization of a fertilizer spreading process. Math. Comput. Simul.
**2009**, 79, 3099–3109. [Google Scholar] [CrossRef] - Hofstee, J.W.; Speelman, L.; Scheufler, B. 1.4-Fertilizer Distributors. In CIGR Handbook of Agricultural Engineering; The International Commission of Agricultural Engineering, Stout, B.A., Cheze, B., Eds.; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1999; Volume III, pp. 240–268. [Google Scholar]
- EN 13739-2:2011 European Standard. Agricultural Machinery—Solid Fertilizer Broadcasters and Full Width Distributors—Environmental Protection—Part 2: Test Methods; CEN: Bruxselles, Belgium, 2011. [Google Scholar]
- Kleinman, K.; Horton, N.J. SAS and R. Data Management, Statistical Analysis, and Graphics; CRR Press-Taylor & Francis Group: Boca Raton, FL, USA, 2010. [Google Scholar]
- Hofstee, J.W.; Huisman, W. Handling and spreading of fertilizers: Part 1, Physical properties of fertilizer in relation to particle motion. J. Agric. Eng. Res.
**1990**, 62, 9–24. [Google Scholar] [CrossRef]

**Figure 4.**Spreading disc showing the location of the fertilizer feed points A and B: (

**a**) the L3 vane configuration; (

**b**) the L0 vane configuration.

Property | Fertilizer | ||
---|---|---|---|

Urea | CAN | AS | |

Bulk density (loose), $\mathrm{kg}\xb7{\mathrm{m}}^{3}$ | 758 | 1029 | 1018 |

Bulk density (sieved), $\mathrm{kg}\xb7{\mathrm{m}}^{3}$ | 789 | 1062 | 1104 |

Specific density, $\mathrm{kg}\xb7{\mathrm{m}}^{3}$ | 1340 | 1800 | 1780 |

Mass powdery fraction $\left(<1\xb7{10}^{-3}\text{}\mathrm{m}\right)$, % | 10.350 | 0.030 | 52.500 |

Median diameter ${d}_{50}$, ${10}^{-3}\text{}\mathrm{m}$ | 0.830 | 2.100 | 0.490 |

Variation | DoF | Sum of Squares | Mean of Squares | F Function Value | Pr > F |
---|---|---|---|---|---|

Model | 14 | 123.82 | 8.84 | 783.26 | <0.0001 |

Error | 57 | 0.64 | 0.01 | ||

Total | 71 | 124.46 | |||

${R}^{2}=0.9948$ | |||||

Average mean radius of fertilizer spread = 4.10 m | |||||

Standard Estimation Error = 0.103 m | |||||

Coefficient of Variation = 0.0248 | |||||

FT | 2 | 63.44 | 31.72 | 2809.03 | <0.0001 |

DS | 1 | 34.24 | 34.24 | 3032.2 | <0.0001 |

FP | 1 | 0.01 | 0.01 | 0.94 | 0.337 |

VC | 1 | 15.92 | 15.92 | 1409.65 | <0.0001 |

FT × DS | 2 | 6.16 | 3.08 | 272.55 | <0.0001 |

FT × FP | 2 | 0.05 | 0.025 | 2.16 | 0.1241 |

FT × VC | 2 | 3.02 | 1.51 | 133.76 | <0.0001 |

DS × FP | 1 | 0.05 | 0.05 | 4.21 | 0.0448 |

DS × VC | 1 | 0.89 | 0.89 | 79.54 | <0.0001 |

FP × VC | 1 | 0.05 | 0.05 | 4.12 | 0.0471 |

**Table 3.**T-Tukey’s multiple confidence intervals comparing the average mean radius of fertilizer spread.

Compared Averages for | Average Value | Number of Observations | Mean Square Error | Limit Value (α = 0.05) | Least Significant Difference |
---|---|---|---|---|---|

Fertilizer type (FT): Urea | 4.23 | 24 | 0.011 | 3.40 | 0.074 |

Fertilizer type (FT): CAN | 5.45 | 24 | 0.011 | 3.40 | |

Fertilizer type (FT): AS | 3.15 | 24 | 0.011 | 3.40 | |

angular velocity of disc (DS): 42 $\mathrm{rad}\xb7{\mathrm{s}}^{-1}$ | 3.59 | 36 | 0.011 | 2.83 | 0.05 |

angular velocity of disc (DS): 63 $\mathrm{rad}\xb7{\mathrm{s}}^{-1}$ | 4.97 | 36 | 0.011 | 2.83 | |

Fertilizer feed point (FP): A | 4.26 | 36 | 0.011 | 2.83 | 0.05 |

Fertilizer feed point (FP): B | 4.29 | 36 | 0.011 | 2.83 | |

Vane configuration (VC): L0 | 3.81 | 36 | 0.011 | 2.83 | 1.86 |

Vane configuration (VC): L3 | 4.75 | 36 | 0.011 | 2.83 |

**Table 4.**Model parameter assessment of the linear multiple regression of the mean radius of fertilizer spread.

Variation | Parameter | SE | F Function Value | Pr > F | Partial Correlations |
---|---|---|---|---|---|

Constant | 0.80798 | 0.47985 | 2.84 | 0.0969 | - |

VC | −0.03483 | 0.00352 | 98.1 | <0.0001 | 0.12789 |

DS | 0.00690 | 0.00047 | 211.01 | <0.0001 | 0.31543 |

SD | 1.65821 | 0.23382 | 50.29 | <0.0001 | 0.00421 |

DF | −0.04357 | 0.00221 | 389.04 | <0.0001 | 0.85308 |

**Table 5.**Analysis of variance for the linear multiple regression model of the relationship between the mean radius of fertilizer spread and the considered parameters.

Variation | DoF | Sum of Squares | Mean of Squares | F Function Value | Pr > F |
---|---|---|---|---|---|

Model | 4 | 113.59512 | 28.39878 | 175.02 | <0.0001 |

Error | 67 | 10.87144 | 0.16226 | ||

Total | 71 | 124.46656 | |||

${R}^{2}=0.9127$ | |||||

Coefficient of Variation = 0.0942 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Przywara, A.; Santoro, F.; Kraszkiewicz, A.; Pecyna, A.; Pascuzzi, S.
Experimental Study of Disc Fertilizer Spreader Performance. *Agriculture* **2020**, *10*, 467.
https://doi.org/10.3390/agriculture10100467

**AMA Style**

Przywara A, Santoro F, Kraszkiewicz A, Pecyna A, Pascuzzi S.
Experimental Study of Disc Fertilizer Spreader Performance. *Agriculture*. 2020; 10(10):467.
https://doi.org/10.3390/agriculture10100467

**Chicago/Turabian Style**

Przywara, Artur, Francesco Santoro, Artur Kraszkiewicz, Anna Pecyna, and Simone Pascuzzi.
2020. "Experimental Study of Disc Fertilizer Spreader Performance" *Agriculture* 10, no. 10: 467.
https://doi.org/10.3390/agriculture10100467