Next Issue
Volume 14, April
Previous Issue
Volume 14, February
 
 

Membranes, Volume 14, Issue 3 (March 2024) – 17 articles

Cover Story (view full-size image): This study describes the experimental results of the permeation behaviour of two single condensable gases in thin-film composite membranes (TFCMs). The gas transport properties of TFCMs with selective layers of PolyActive™, polydimethylsiloxane (PDMS), and polyoctylmethylsiloxane were investigated over a range of temperatures and pressures up to the point of gas condensation. The investigation of all membranes with continuous defect-free layers of rubbery polymers shows the presence of a permeance peak occurring during different condensable gas activities. The peak position varies depending on selective layer material, its thickness, and the temperature of the experiment. The authors thank Clarissa Abetz for the SEM image. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
8 pages, 1540 KiB  
Communication
Development of Structure–Property Relationships for Ammonium Transport through Charged Organogels
by Adam L. Bachmann, Brock Hunter and Bryan S. Beckingham
Membranes 2024, 14(3), 71; https://doi.org/10.3390/membranes14030071 - 21 Mar 2024
Viewed by 791
Abstract
Ammonia is a promising carbon-free fuel, but current methods to produce ammonia are energy intensive. New methods are thereby needed, with one promising method being electrochemical nitrogen reduction cells. Efficient cell operation requires robust catalysts but also efficient membrane separators that permit the [...] Read more.
Ammonia is a promising carbon-free fuel, but current methods to produce ammonia are energy intensive. New methods are thereby needed, with one promising method being electrochemical nitrogen reduction cells. Efficient cell operation requires robust catalysts but also efficient membrane separators that permit the selective transport of ions while minimizing the transport of the products across the cell. Commercial membranes have an unknown morphology which makes designing improved cells challenging. To address this problem, we synthesized a series of membranes with controlled crosslinking density and chemical composition to understand their impact on ammonium transport. Higher crosslinking density led to lower ammonium permeability. At the highest crosslinking density, similar ammonium permeability was observed independent of the water volume fraction and hydrophobicity of the monomers. These results suggest new directions to develop membranes with reduced ammonium crossover to improve the efficiency of these electrochemical cells. Full article
(This article belongs to the Section Polymeric Membranes)
Show Figures

Figure 1

16 pages, 2817 KiB  
Article
An Untargeted Metabolomics Strategy to Identify Substrates of Known and Orphan E. coli Transporters
by Mohammad S. Radi, Lachlan J. Munro, Daniela Rago and Douglas B. Kell
Membranes 2024, 14(3), 70; https://doi.org/10.3390/membranes14030070 - 20 Mar 2024
Viewed by 742
Abstract
Transport systems play a pivotal role in bacterial physiology and represent potential targets for medical and biotechnological applications. However, even in well-studied organisms like Escherichia coli, a notable proportion of transporters, exceeding as many as 30%, remain classified as orphans due to [...] Read more.
Transport systems play a pivotal role in bacterial physiology and represent potential targets for medical and biotechnological applications. However, even in well-studied organisms like Escherichia coli, a notable proportion of transporters, exceeding as many as 30%, remain classified as orphans due to their lack of known substrates. This study leveraged high-resolution LC-MS-based untargeted metabolomics to identify candidate substrates for these orphan transporters. Human serum, including a diverse array of biologically relevant molecules, served as an unbiased source for substrate exposure. The analysis encompassed 26 paired transporter mutant contrasts (i.e., knockout vs. overexpression), compared with the wild type, revealing distinct patterns of substrate uptake and excretion across various mutants. The convergence of candidate substrates across mutant scenarios provided robust validation, shedding light on novel transporter-substrate relationships, including those involving yeaV, hsrA, ydjE, and yddA. Furthermore, several substrates were contingent upon the specific mutants employed. This investigation underscores the utility of untargeted metabolomics for substrate identification in the absence of prior knowledge and lays the groundwork for subsequent validation experiments, holding significant implications for both medical and biotechnological advancements. Full article
(This article belongs to the Collection Feature Papers in Biological Membrane Functions)
Show Figures

Figure 1

22 pages, 659 KiB  
Article
Coupling a Simple and Generic Membrane Fouling Model with Biological Dynamics: Application to the Modeling of an Anaerobic Membrane BioReactor (AnMBR)
by Boumediene Benyahia, Amine Charfi, Geoffroy Lesage, Marc Heran, Brahim Cherki and Jérôme Harmand
Membranes 2024, 14(3), 69; https://doi.org/10.3390/membranes14030069 - 20 Mar 2024
Cited by 1 | Viewed by 629
Abstract
A simple model is developed for membrane fouling, taking into account two main fouling phenomena: cake formation, due to attached solids on the membrane surface, and pore clogging, due to retained compounds inside the pores. The model is coupled with a simple anaerobic [...] Read more.
A simple model is developed for membrane fouling, taking into account two main fouling phenomena: cake formation, due to attached solids on the membrane surface, and pore clogging, due to retained compounds inside the pores. The model is coupled with a simple anaerobic digestion model for describing the dynamics of an anaerobic membrane bioreactor (AnMBR). In simulations, we investigate its qualitative behavior: it is shown that the model exhibits satisfying properties in terms of a flux decrease due to membrane fouling. Comparing simulation and experimental data, the model is shown to predict quite well the dynamics of an AnMBR. The simulated flux best fits the experimental flux with a correlation coefficient r2=0.968 for the calibration data set and r2=0.938 for the validation data set. General discussions are given on possible control strategies to limit fouling and optimize the flux production. We show in simulations that these strategies allow one to increase the mean production flux to 33 L/(h·m2),whereas without control, it was 18 L/(h·m2). Full article
(This article belongs to the Special Issue Advanced Membrane Bioreactors for Wastewater Treatment 2nd Edition)
Show Figures

Figure 1

11 pages, 2945 KiB  
Article
Has Extracorporeal Gas Exchange Performance Reached Its Peak?
by Foivos Leonidas Mouzakis, Ali Kashefi, Flutura Hima, Khosrow Mottaghy and Jan Spillner
Membranes 2024, 14(3), 68; https://doi.org/10.3390/membranes14030068 - 17 Mar 2024
Viewed by 708
Abstract
Extracorporeal gas exchange therapies evolved considerably within the first three–four decades of their appearance, and have since reached a mature stage, where minor alterations and discrete fine-tuning might offer some incremental improvement. A different approach is introduced here, making use of modern, purely [...] Read more.
Extracorporeal gas exchange therapies evolved considerably within the first three–four decades of their appearance, and have since reached a mature stage, where minor alterations and discrete fine-tuning might offer some incremental improvement. A different approach is introduced here, making use of modern, purely diffusive membrane materials, and taking advantage of the elevated concentration gradient ensuing from gas pressure buildup in the gas chamber of the oxygenator. An assortment of silicone membrane gas exchangers were tested in vitro as per a modified protocol in pursuance of assessing their gas exchange efficiency under both regular and high-pressure aeration conditions. The findings point to a stark performance gain when pressurization of the gas compartment is involved; a 40% rise above atmospheric pressure elevates oxygen transfer rate (OTR) by nearly 30%. Carbon dioxide transfer rate (CTR) does not benefit as much from this principle, yet it retains a competitive edge when higher gas flow/blood flow ratios are employed. Moreover, implementation of purely diffusive membranes warrants a bubble-free circulation. Further optimization of the introduced method ought to pave the way for in vivo animal trials, which in turn may potentially unveil new realms of gas exchange performance for therapies associated with extracorporeal circulation. Full article
(This article belongs to the Topic Extracorporeal Membrane Oxygenation (ECMO))
Show Figures

Figure 1

25 pages, 46872 KiB  
Article
Numerical Simulation of Mass Transfer in Hollow Fiber Membrane Module for Membrane-Based Artificial Organs
by Ziheng Wang, Shaofeng Xu, Yifan Yu, Wei Zhang and Xuechang Zhang
Membranes 2024, 14(3), 67; https://doi.org/10.3390/membranes14030067 - 10 Mar 2024
Viewed by 1083
Abstract
The mass transfer behavior in a hollow fiber membrane module of membrane-based artificial organs (such as artificial liver or artificial kidney) were studied by numerical simulation. A new computational fluid dynamics (CFD) method coupled with K-K equation and the tortuous capillary pore diffusion [...] Read more.
The mass transfer behavior in a hollow fiber membrane module of membrane-based artificial organs (such as artificial liver or artificial kidney) were studied by numerical simulation. A new computational fluid dynamics (CFD) method coupled with K-K equation and the tortuous capillary pore diffusion model (TCPDM) was proposed for the simulations. The urea clearance rate predicted by the use of the numerical model agrees well with the experimental data, which verifies the validity of our numerical model. The distributions of concentration, pressure, and velocity in the hollow fiber membrane module were obtained to analyze the mass transfer behaviors of bilirubin and bovine serum albumin (BSA), and the effects of tube-side flow rate, shell-side flow rate, and fiber tube length on the bilirubin or BSA clearance rate were studied. The results show that the solute transport mainly occurred in the near inlet regions in the hollow fiber membrane module. Increasing the tube-side flow rate and the fiber tube length can effectively enhance the solute clearance rate, while the shell-side flow rate has less influence on the BSA clearance. The clearance of macromolecule BSA is dominated by convective solute transport, while the clearance of small molecule bilirubin is significantly affected by both convective and diffusive solute transport. Full article
Show Figures

Figure 1

22 pages, 2096 KiB  
Article
Permeance of Condensable Gases in Rubbery Polymer Membranes at High Pressure
by Karina Schuldt, Jelena Lillepärg, Jan Pohlmann, Torsten Brinkmann and Sergey Shishatskiy
Membranes 2024, 14(3), 66; https://doi.org/10.3390/membranes14030066 - 06 Mar 2024
Viewed by 884
Abstract
The gas transport properties of thin film composite membranes (TFCMs) with selective layers of PolyActive™, polydimethylsiloxane (PDMS), and polyoctylmethylsiloxane (POMS) were investigated over a range of temperatures (10–34 °C; temperature increments of 2 °C) and pressures (1–65 bar abs; 38 pressure increments). The [...] Read more.
The gas transport properties of thin film composite membranes (TFCMs) with selective layers of PolyActive™, polydimethylsiloxane (PDMS), and polyoctylmethylsiloxane (POMS) were investigated over a range of temperatures (10–34 °C; temperature increments of 2 °C) and pressures (1–65 bar abs; 38 pressure increments). The variation in the feed pressure of condensable gases CO2 and C2H6 enabled the observation of peaks of permeance in dependence on the feed pressure and temperature. For PDMS and POMS, the permeance peak was reproduced at the same feed gas activity as when the feed temperature was changed. PolyActive™ TFCM showed a more complex behaviour, most probably due to a higher CO2 affinity towards the poly(ethylene glycol) domains of this block copolymer. A significant decrease in the permeate temperature associated with the Joule–Thomson effect was observed for all TFCMs. The stepwise permeance drop was observed at a feed gas activity of p/po ≥ 1, clearly indicating that a penetrant transfer through the selective layer occurs only according to the conditions on the feed side of the membrane. The permeate side gas temperature has no influence on the state of the selective layer or penetrant diffusing through it. The most likely cause of the observed TFCM behaviour is capillary condensation of the penetrant in the swollen selective layer material, which can be provoked by the clustering of penetrant molecules. Full article
(This article belongs to the Special Issue Advanced Membrane Materials for CO2 Capture and Separation)
Show Figures

Figure 1

22 pages, 14129 KiB  
Article
Joint Modeling and Operational Optimization of a Reverse Osmosis–Mechanical Vapor Recompression System for Coal-Fired Power Plant Wastewater
by Fengling Xie, Yan Zhao, Aipeng Jiang, Rui Zhao, Chuang Li and Jian Wang
Membranes 2024, 14(3), 65; https://doi.org/10.3390/membranes14030065 - 04 Mar 2024
Viewed by 963
Abstract
The operation of coal-fired power plants generates a large amount of wastewater. With the issuance of increasingly strict drainage standards, the cost of wastewater treatment is increasing, and the need to reduce the cost of wastewater treatment is becoming increasingly urgent. Thus, based [...] Read more.
The operation of coal-fired power plants generates a large amount of wastewater. With the issuance of increasingly strict drainage standards, the cost of wastewater treatment is increasing, and the need to reduce the cost of wastewater treatment is becoming increasingly urgent. Thus, based on the principles of reverse osmosis (RO) and mechanical vapor recompression (MVR) in wastewater treatment, the operational optimization of an RO-MVR joint system was studied in this work with the consideration of reducing the operating costs of wastewater treatment under given operational conditions. Firstly, based on the basic principles of RO and MVR, corresponding mechanism models were established and their accuracy was verified. Then, an economic model of the RO-MVR joint system was established, with the goal of minimizing the water production unit price and daily operating costs of the joint system for optimization analysis. Finally, we analyzed the cost and water production performance of the RO-MVR joint system before and after optimization under different operating conditions. The results show that this optimization based on the RO-MVR joint system will reduce the unit price of water production to 3.16 CNY/m3, with the daily operating costs being decreased by 22% compared to before optimization. This result helps to reduce the cost of zero-discharge wastewater treatment in coal-fired power plants. Full article
(This article belongs to the Special Issue Recent Advances in Desalination Based on Membrane Technology)
Show Figures

Figure 1

9 pages, 953 KiB  
Communication
Membranes and Synaptosomes Used to Investigate Synaptic GABAergic Currents in Epileptic Patients
by Alessandro Gaeta, Lilian Juliana Lissner, Veronica Alfano, Pierangelo Cifelli, Alessandra Morano, Cristina Roseti, Angela Di Iacovo, Eleonora Aronica, Eleonora Palma and Gabriele Ruffolo
Membranes 2024, 14(3), 64; https://doi.org/10.3390/membranes14030064 - 02 Mar 2024
Viewed by 891
Abstract
Among the most prevalent neurological disorders, epilepsy affects about 1% of the population worldwide. We previously found, using human epileptic tissues, that GABAergic neurotransmission impairment is a key mechanism that drives the pathological phenomena that ultimately lead to generation and recurrence of seizures. [...] Read more.
Among the most prevalent neurological disorders, epilepsy affects about 1% of the population worldwide. We previously found, using human epileptic tissues, that GABAergic neurotransmission impairment is a key mechanism that drives the pathological phenomena that ultimately lead to generation and recurrence of seizures. Using both a “microtransplantation technique” and synaptosomes preparations from drug-resistant temporal lobe epilepsies (TLEs), we used the technique of two-electrode voltage clamp to record GABA-evoked currents, focusing selectively on the synaptic “fast inhibition” mediated by low-affinity GABAA receptors. Here, we report that the use-dependent GABA current desensitization (i.e., GABA rundown, which is evoked by applying to the cells consecutive pulses of GABA, at high concentration), which is a distinguishing mark of TLE, is mainly dependent on a dysfunction that affects synaptic GABAA receptors. In addition, using the same approaches, we recorded a depolarized GABA reversal potential in synaptosomes samples from the human epileptic subicula of TLE patients. These results, which confirm previous experiments using total membranes, suggest an altered chloride homeostasis in the synaptic area. Finally, the lack of a Zn2+ block of GABA-evoked currents using the synaptosomes supports the enrichment of “synaptic fast inhibitory” GABAA receptors in this preparation. Altogether, our findings suggest a pathophysiological role of low-affinity GABAA receptors at the synapse, especially during the fast and repetitive GABA release underlying recurrent seizures. Full article
(This article belongs to the Special Issue The Xenopus Oocyte: A Tool for Membrane Biology, Second Edition)
Show Figures

Figure 1

9 pages, 3323 KiB  
Communication
Preparation and Gas Separation of Amorphous Silicon Oxycarbide Membrane Supported on Silicon Nitride Membrane
by Hengguo Jin and Xin Xu
Membranes 2024, 14(3), 63; https://doi.org/10.3390/membranes14030063 - 02 Mar 2024
Viewed by 823
Abstract
An amorphous silicon oxycarbide membrane supported on a silicon nitride membrane substrate was prepared. A starting suspension containing polyhydromethylsiloxane (PHMS), tetramethyltetravinyl-cyclotetrasiloxane (TMTVS) and a platinum catalyst was first prepared and spin-coated on a silicon nitride membrane, and then the suspension was cross-linked and [...] Read more.
An amorphous silicon oxycarbide membrane supported on a silicon nitride membrane substrate was prepared. A starting suspension containing polyhydromethylsiloxane (PHMS), tetramethyltetravinyl-cyclotetrasiloxane (TMTVS) and a platinum catalyst was first prepared and spin-coated on a silicon nitride membrane, and then the suspension was cross-linked and cured, followed by pyrolyzing at 1000 °C under a flowing Ar atmosphere. A dense amorphous silicon oxycarbon ceramic membrane with a thickness of about 1.8 µm was strongly bonded to the Si3N4 membrane substrate. The single gas permeation of H2 and CO2 indicated that the ideal permeation selectivity of H2/CO2 was up to 20 at 25 °C and 0.5 MPa with good long-term stability, indicating the potential application of the obtained membrane for hydrogen purification. Full article
Show Figures

Figure 1

19 pages, 2099 KiB  
Article
The Interaction between Anesthetic Isoflurane and Model-Biomembrane Monolayer Using Simultaneous Quartz Crystal Microbalance (QCM) and Quartz Crystal Impedance (QCI) Methods
by Yasushi Yamamoto, Daiki Ito, Honoka Akatsuka, Hiroki Noguchi, Arisa Matsushita, Hyuga Kinekawa, Hirotaka Nagano, Akihiro Yoshino, Keijiro Taga, Zameer Shervani and Masato Yamamoto
Membranes 2024, 14(3), 62; https://doi.org/10.3390/membranes14030062 - 27 Feb 2024
Viewed by 1003
Abstract
The interaction between anesthetic Isoflurane (Iso) and model-biomembrane on the water surface has been investigated using quartz crystal microbalance (QCM) and quartz crystal impedance (QCI) methods. The model-biomembranes used were dipalmitoyl phosphatidyl choline (DPPC), DPPC-palmitic acid (PA) mixture (DPPC:PA = 8:2), DPPC-Alamethicin (Al) [...] Read more.
The interaction between anesthetic Isoflurane (Iso) and model-biomembrane on the water surface has been investigated using quartz crystal microbalance (QCM) and quartz crystal impedance (QCI) methods. The model-biomembranes used were dipalmitoyl phosphatidyl choline (DPPC), DPPC-palmitic acid (PA) mixture (DPPC:PA = 8:2), DPPC-Alamethicin (Al) mixture (DPPC:Al = 39:1), and DPPC-β-Lactoglobulin (βLG) mixture (DPPC:βLG = 139:1) monolayers, respectively. The quartz crystal oscillator (QCO) was attached horizontally to each monolayer, and QCM and QCI measurements were performed simultaneously. It was found that Iso hydrate physisorbed on each monolayer/water interface from QCM and changed those interfacial viscosities from QCI. With an increase in Iso concentration, pure DPPC, DPPC-PA mixed, and DPPC-Al mixed monolayers showed a two-step process of Iso hydrate on both physisorption and viscosity, whereas it was a one-step for the DPPC-βLG mixed monolayer. The viscosity change in the DPPC-βLG mixed monolayer with the physisorption of Iso hydrate was much larger than that of other monolayers, in spite of the one-step process. From these results, the action mechanism of anesthetics and their relevance to the expression of anesthesia were discussed, based on the “release of interfacial hydrated water” hypothesis on the membrane/water interface. Full article
Show Figures

Figure 1

17 pages, 4188 KiB  
Article
Effect of NiO Addition on the Sintering and Electrochemical Properties of BaCe0.55Zr0.35Y0.1O3-δ Proton-Conducting Ceramic Electrolyte
by Chengxin Peng, Bingxiang Zhao, Xie Meng, Xiaofeng Ye, Ting Luo, Xianshuang Xin and Zhaoyin Wen
Membranes 2024, 14(3), 61; https://doi.org/10.3390/membranes14030061 - 27 Feb 2024
Viewed by 1105
Abstract
Proton ceramic fuel cells offer numerous advantages compared with conventional fuel cells. However, the practical implementation of these cells is hindered by the poor sintering activity of the electrolyte. Despite extensive research efforts to improve the sintering activity of BCZY, the systematic exploration [...] Read more.
Proton ceramic fuel cells offer numerous advantages compared with conventional fuel cells. However, the practical implementation of these cells is hindered by the poor sintering activity of the electrolyte. Despite extensive research efforts to improve the sintering activity of BCZY, the systematic exploration of the utilization of NiO as a sintering additive remains insufficient. In this study, we developed a novel BaCe0.55Zr0.35Y0.1O3-δ (BCZY) electrolyte and systematically investigated the impact of adding different amounts of NiO on the sintering activity and electrochemical performance of BCZY. XRD results demonstrate that pure-phase BCZY can be obtained by sintering the material synthesized via solid-state reaction at 1400 °C for 10 h. SEM analysis revealed that the addition of NiO has positive effects on the densification and grain growth of BCZY, while significantly reducing the sintering temperature required for densification. Nearly fully densified BCZY ceramics can be obtained by adding 0.5 wt.% NiO and annealing at 1350 °C for 5 h. The addition of NiO exhibits positive effects on the densification and grain growth of BCZY, significantly reducing the sintering temperature required for densification. An anode-supported full cell using BCZY with 0.5 wt.% NiO as the electrolyte reveals a maximum power density of 690 mW cm−2 and an ohmic resistance of 0.189 Ω cm2 at 650 °C. Within 100 h of long-term testing, the recorded current density remained relatively stable, demonstrating excellent electrochemical performance. Full article
(This article belongs to the Special Issue Membrane-Related Materials for Fuel Cell and/or Battery Applications)
Show Figures

Figure 1

18 pages, 3960 KiB  
Article
In Vivo Validation of a Nanostructured Electrospun Polycaprolactone Membrane Loaded with Gentamicin and Nano-Hydroxyapatite for the Treatment of Periodontitis
by Patricia Ondine Lucaciu, Călin Cosmin Repciuc, Ioana A. Matei, Nicodim I. Fiț, Sanda Andrei, Raluca Marica, Bianca Nausica Petrescu, Bogdan Crișan, Ovidiu Aghiorghiesei, Ioana Codruța Mirică, Dragoș Apostu, Codruța Saroși, Florin Onișor, Evelyn Vanea, Simina Angela Lăcrimioara Iușan, Giorgiana Corina Mureșan, Ana-Maria Condor, Emilia Oprița and Luciana-Mădălina Gherman
Membranes 2024, 14(3), 60; https://doi.org/10.3390/membranes14030060 - 26 Feb 2024
Viewed by 1015
Abstract
The aim of this research was to validate the use of a gentamicin (GEN) and nano-hydroxiapatite (nHAP)-loaded polycaprolactone nanostructured membrane (NM) as an innovative, highly efficient, low-cost treatment for periodontitis. We conducted an in vivo study on Wistar rats, in which we induced [...] Read more.
The aim of this research was to validate the use of a gentamicin (GEN) and nano-hydroxiapatite (nHAP)-loaded polycaprolactone nanostructured membrane (NM) as an innovative, highly efficient, low-cost treatment for periodontitis. We conducted an in vivo study on Wistar rats, in which we induced periodontitis by placing silk ligatures around the first right and left upper molars. The subjects were divided into three groups; the first group received no periodontal treatment, the second group received open flap debridement, and the third group received open flap debridement, together with the positioning of the GEN and nHAP-loaded nanostructured membrane as a treatment. The extent of periodontal regeneration was assessed by the periodontal pocket depth, bleeding on probing, tooth mobility, dental plaque, microbiological analysis, concentration of MMP-8 in saliva, plasma levels of CRP, and histological analysis. The results showed that using open flap debridement with the NM is more efficient, and it significantly reduces the probing depth, extent of bleeding on probing, dental mobility, bacterial plaque, and pathogenic flora. The concentrations of MMP-8 and CRP decrease. The histological analysis demonstrated that NM leads to bone regeneration. Our study indicates that gentamicin and nano-hydroxyapatite embedded in the fiber of the biodegradable membranes might be a promising therapeutic option for periodontitis treatment. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

13 pages, 8218 KiB  
Article
Hydrogen Flux Inhibition of Pd-Ru Membranes under Exposure to NH3
by Lingsu Chen, Shuai Li, Zhaohui Yin, Zhanbing Yang, Zihui Chen, Li Han, Qinghe Yu and Miao Du
Membranes 2024, 14(3), 59; https://doi.org/10.3390/membranes14030059 - 25 Feb 2024
Viewed by 870
Abstract
The hydrogen flux inhibition of Pd-Ru membranes under exposure to 1–10% NH3 at 673–773 K was investigated. The Pd-Ru membranes were characterized by XRD, SEM, XPS, and hydrogen permeation tests. The results show that when exposed to 1–10% NH3 at 723 [...] Read more.
The hydrogen flux inhibition of Pd-Ru membranes under exposure to 1–10% NH3 at 673–773 K was investigated. The Pd-Ru membranes were characterized by XRD, SEM, XPS, and hydrogen permeation tests. The results show that when exposed to 1–10% NH3 at 723 K for 6 h, the hydrogen flux of Pd-Ru membranes sharply decreases by 15–33%, and the decline in hydrogen flux becomes more significant with increasing temperatures. After the removal of 1–10% NH3, 100% recovery of hydrogen flux is observed. XPS results show that nitrogenous species appear on the membrane surface after NH3 exposure, and the hydrogen flux inhibition may be related to the competitive adsorption of nitrogenous species. By comparing the hydrogen flux of Pd-Ru membranes exposed to 10% NH3 with 10% N2, it is indicated that the rapid decrease in hydrogen flux is due to the concentration polarization and competitive adsorption of nitrogenous species. The competitive adsorption effect is attenuated, while the concentration polarization effect becomes more pronounced with increasing temperature. Full article
Show Figures

Figure 1

18 pages, 3692 KiB  
Article
Optimizing Air Scouring Energy for Sustainable Membrane Bioreactor Operation by Characterizing the Combination of Factors Leading to Threshold Limiting Conditions
by Changyoon Jun, Kimia Aghasadeghi and Glen T. Daigger
Membranes 2024, 14(3), 58; https://doi.org/10.3390/membranes14030058 - 23 Feb 2024
Viewed by 1120
Abstract
Key operating variables to predict the necessary scour air flowrate in full-scale Membrane Bioreactor (MBR) systems are identified, aiming to optimize energy consumption while avoiding the limiting condition (i.e., rapid increasing total resistance). The resulting metric, referred to here as the K value, [...] Read more.
Key operating variables to predict the necessary scour air flowrate in full-scale Membrane Bioreactor (MBR) systems are identified, aiming to optimize energy consumption while avoiding the limiting condition (i.e., rapid increasing total resistance). The resulting metric, referred to here as the K value, was derived by balancing hydrodynamic conditions between the particle deposit rate imposed by permeate flux normalized by fouling condition and its removal by shear stress induced from air scouring. The metric includes air scouring flow, permeate flow, Mixed Liquor Suspended Solids (MLSS) concentration, Mixed Liquor (ML) viscosity, membrane packing density, and total resistance. Long-term (year-long) data from two full-scale MBR plants were analyzed. The value of K corresponding to limiting operational operation and referred to as the limiting K value, KLim, is estimated by detecting the occurrence of threshold limiting flux from the data stream and calculating the resulting value for K. Then, using KLim, the minimum required specific air demand per permeate (SADp,Crit) is calculated, indicating a potential reduction of over half the air scouring energy in typical operational conditions. The results from this data driven analysis suggest the feasibility of employing KLim to predict the adequate scour air flowrate in terms of dynamically varying operational conditions. This approach will lead to the development of energy-efficient algorithms, significantly reducing scour air energy consumption in the full-scale MBR system. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

15 pages, 3288 KiB  
Article
Pretreatment of Glucose–Fructose Syrup with Ceramic Membrane Ultrafiltration Coupled with Activated Carbon
by Fangxue Hang, Hongmei Xu, Caifeng Xie, Kai Li, Tao Wen and Lidan Meng
Membranes 2024, 14(3), 57; https://doi.org/10.3390/membranes14030057 - 23 Feb 2024
Viewed by 1174
Abstract
Ceramic membranes are applied to remove non-sugar impurities, including proteins, colloids and starch, from glucose–fructose syrup that is dissolved from raw sugar using acid. The performance of ceramic membranes with 0.05 μm pores in clarifying high-fructose syrup was investigated under various operating conditions. [...] Read more.
Ceramic membranes are applied to remove non-sugar impurities, including proteins, colloids and starch, from glucose–fructose syrup that is dissolved from raw sugar using acid. The performance of ceramic membranes with 0.05 μm pores in clarifying high-fructose syrup was investigated under various operating conditions. The flux decreased rapidly at the start of the experiment and then tended to stabilize at a temperature of 90 °C, a transmembrane pressure of 2.5 bar, and cross-flow velocity of 5 m/s under total reflux operation. Moreover, the steady-state flux was measured at 181.65 Lm−2 h−1, and the turbidity of glucose–fructose syrup was reduced from 92.15 NTU to 0.70 NTU. Although membrane fouling is inevitable, it can be effectively controlled by developing a practical approach to regenerating membranes. Mathematical model predictions, scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy revealed that foulants primarily responsible for fouling are composed of polysaccharides, proteins, sucrose, phenols, and some metal elements, such as calcium, aluminum, and potassium. Due to the removal of suspended colloidal solids, the membrane-filtered glucose–fructose syrup was decolorized using activated carbon; the filtration rate was effectively improved. A linear relationship between volume increase in syrup and time was observed. A decolorization rate of 90% can be obtained by adding 0.6 (w/w) % of activated carbon. The pretreatment of glucose–fructose syrup using a ceramic membrane coupled with activated carbon results in low turbidity and color value. This information is essential for advancing glucose–fructose syrup and crystalline fructose production technology. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

12 pages, 6277 KiB  
Article
Enhanced Salt Removal of Fresh Water by Recovery-Reduced Ion Concentration Polarization Desalination
by Myeonghyeon Cho, Seokhee Han, Seohyun Lee, Joong Bae Kim and Bumjoo Kim
Membranes 2024, 14(3), 56; https://doi.org/10.3390/membranes14030056 - 21 Feb 2024
Viewed by 1231
Abstract
Here, we examine electromembrane systems for low-concentration desalination applicable to ultrapure water production. In addition to electrodialysis and ion concentration polarization (ICP) desalination, we propose a recovery-reduced ICP strategy for reducing the width of the desalted outlet for a higher salt removal ratio [...] Read more.
Here, we examine electromembrane systems for low-concentration desalination applicable to ultrapure water production. In addition to electrodialysis and ion concentration polarization (ICP) desalination, we propose a recovery-reduced ICP strategy for reducing the width of the desalted outlet for a higher salt removal ratio (SRR). The correlation between conductivity changes and thickness of the ion depletion zone is identified for electrodialysis, ICPH (1:1), and ICPQ (3:1) with a low-concentration feed solution (10 mM, 1 mM, 0.1 mM NaCl). Based on the experimental results, the scaling law and SRR for the electroconvection zone are summarized, and current efficiency (CE) and energy per ion removal (EPIR) depending on SRR are also discussed. As a result, the SRR of electrodialysis is mostly around 50%, but that of recovery-reduced ICP desalination is observed up to 99% under similar operating conditions. Moreover, at the same SRR, the CE of recovery-reduced ICP is similar to that of electrodialysis, but the EPIR is calculated to be lower than that of electrodialysis. Considering that forming an ion depletion zone up to half the channel width in the electromembrane system typically requires much power consumption, an ICP strategy that can adjust the width of the desalted outlet for high SRR can be preferable. Full article
Show Figures

Figure 1

8 pages, 890 KiB  
Brief Report
Establishment of a Novel Miniature Double-Lumen Catheter Single-Cannulation Venovenous Extracorporeal Membrane Oxygenation Model in the Rat
by Yutaka Fujii and Takuya Abe
Membranes 2024, 14(3), 55; https://doi.org/10.3390/membranes14030055 - 20 Feb 2024
Viewed by 1054
Abstract
In recent years, venovenous extracorporeal membrane oxygenation (VV ECMO) has been used to support patients with severe lung disease. Active use of VV ECMO was also recommended for severe respiratory failure due to COVID-19. However, VV ECMO is also known to cause various [...] Read more.
In recent years, venovenous extracorporeal membrane oxygenation (VV ECMO) has been used to support patients with severe lung disease. Active use of VV ECMO was also recommended for severe respiratory failure due to COVID-19. However, VV ECMO is also known to cause various complications due to extracorporeal circulation. Although we conducted ECMO research using rats, we have not been able to establish whether double-lumen single-cannulation VV ECMO models in rats have been described previously. The purpose of this study was to establish a simple, stable, and maintainable miniature double-lumen single-canulation VV ECMO model in rats. A double-lumen catheter used as a plain central venous catheter (SMAC plus Seldinger type; Covidien Japan Co., Tokyo, Japan) was passed through the right external jugular vein and advanced into the right atrium as a conduit for venous uptake. The VV ECMO system comprised a roller pump, miniature membrane oxygenator, and polyvinyl chloride tubing line. During VV ECMO, blood pressure and hemodilution rate were maintained at around 80 mmHg and 30%, respectively. Hemoglobin was kept at >9 g/dL, no serious hemolysis was observed, and VV ECMO was maintained without blood transfusion. Oxygenation and removal of carbon dioxide from the blood were confirmed and pH was adequately maintained. This miniature VV ECMO model appears very useful for studying the mechanisms of biological reactions during VV ECMO. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop