Next Article in Journal
K2CdGe3S8: A New Infrared Nonlinear Optical Sulfide
Previous Article in Journal
Numerical Analysis of Fractional-Order Parabolic Equation Involving Atangana–Baleanu Derivative
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Lie Bialgebra Structures on the Lie Algebra L Related to the Virasoro Algebra

School of Mathematics and Statistics, Xiamen University of Technology, Xiamen 361024, China
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(1), 239; https://doi.org/10.3390/sym15010239
Submission received: 17 December 2022 / Revised: 10 January 2023 / Accepted: 11 January 2023 / Published: 15 January 2023
(This article belongs to the Section Mathematics)

Abstract

:
A Lie bialgebra is a vector space endowed simultaneously with the structure of a Lie algebra and the structure of a Lie coalgebra, and some compatibility condition. Moreover, Lie brackets have skew symmetry. Because of the close relation between Lie bialgebras and quantum groups, it is interesting to consider the Lie bialgebra structures on the Lie algebra L related to the Virasoro algebra. In this paper, the Lie bialgebras on L are investigated by computing Der ( L ,   L L ) . It is proved that all such Lie bialgebras are triangular coboundary, and the first cohomology group H 1 ( L ,   L L ) is trivial.

1. Introduction

It is well known that the Virasoro algebra plays an important role in string theory, conformal field theory, the representation theory of Kac–Moody algebras and the theory of vertex operator algebras, as well as extended affine Lie algebras (see, e.g., [1,2,3]). It is interesting to study various generalizations of the Virasoro algebra and other closely related algebras. The Lie algebra L is an infinite-dimensional Lie algebra with a -basis L m , E m , c 1 , c 2 m and the following Lie brackets:
L m , L n = ( m n ) L m + n + δ m + n , 0 m 3 m 12 c 1 ,
E m , E n = m n 2 L m + n + δ m + n , 0 m 3 m 24 c 1 ,
L m , E n = ( m n ) E m + n + δ m + n , 0 ( m 3 m ) c 2 ,
for any m , n . It is clear that L contains the Virasoro algebra as its subalgebra.
Generally, a Lie algebra has a one-dimensional center, but the interesting thing about this Lie algebra is that it has a two-dimensional center. Derivations and universal central extensions of the centerless Lie algebra L were studied in [4]. The automorphism group of the centerless Lie algebra L was characterized in [5]. However, Lie bialgebra structures on L are unknown.
In this paper, we investigate Lie bialgebra structures on L . The notion of Lie bialgebras was originally introduced by Drinfeld (see [6,7]) in order to search for the solutions of the Yang–Baxter quantum equation. Since then, Lie bialgebras have attracted wide attention (see, e.g., [8,9,10,11,12,13,14,15,16,17,18,19]). For instance, Lie bialgebra structures on the one-sided Witt algebra, the Witt algebra and the Virasoro algebra were proved in [8,10] to be triangular coboundary, while the generalized case was considered in [11]. Furthermore, Lie bialgebra structures in generalized Virasoro-like types were determined in [12]. Motivated by the works mentioned above, we study Lie bialgebra structures on L . The main result presented in the paper is Theorem 3.1, which states that every Lie bialgebra structure on L is triangular coboundary. This result makes sense since dualizing a triangular coboundary Lie bialgebra may produce new Lie algebras (see, e.g., [20]). This will be studied in a sequel.
Throughout the paper, the sets of the complex numbers, the integers, the nonzero integers, and the nonnegative integers are denoted by , , * , and , respectively.

2. Preliminaries

In this section, we recall the definitions of Lie algebras, Lie coalgebras, Lie bialgebras, and related results which will be used in Section 3.
Let g be a vector space over the complex field . Denote by σ the twist map of g g and ψ the cyclic map of g g g , namely, σ ( x 1 x 2 ) = x 2 x 1 , ψ ( x 1 x 2 x 3 ) = x 2 x 3 x 1 , for x 1 , x 2 , x 3 g .
Then the definitions of a Lie algebra and Lie coalgebra can be reformulated as follows. A Lie algebra is a pair ( g , θ ) of a vector space g and a linear map θ : g g g (called the bracket of g ) satisfying the following conditions:
Ker ( 1 1 σ ) Ker θ . ( skew symmetry ) ,
θ ( 1 θ ) ( 1 1 1 + ψ + ψ 2 ) = 0 ( Jacobi identity ) ,
where 1 denotes the identity map on g . A Lie coalgebra is a pair ( g , ϑ ) of a vector space g and a linear map ϑ : g g g (called the cobracket of g ) satisfying the following conditions:
Im ϑ Im ( 1 1 σ ) . ( anti-commutativity ) ,
( 1 1 1 + ψ + ψ 2 ) ( 1 ϑ ) ϑ = 0 . ( Jacobi identity ) ,
For a Lie algebra g , we shall use [ x , y ] = θ ( x , y ) to denote its Lie bracket and use the symbol “ ” to denote the diagonal adjoint action:
x ( i y i z i ) = i ( [ x , y i ] z i + y i [ x , z i ] ) ,   for   x , y i , z i g
Definition 2.1.
A Lie bialgebra is a triple ( g , θ , ϑ ) , where ( g , θ ) is a Lie algebra, ( g , ϑ ) is a Lie coalgebra and
ϑ θ ( x y ) = x ϑ ( y ) y ϑ ( x ) , for any   x , y g
Denote by U ( g ) the universal enveloping algebra of g and 1 the identity element of U ( g ) . For any r = i x i y i g g , define r i j , c ( r ) , i , j = 1 , 2 , 3 to be the elements of U ( g ) U ( g ) U ( g ) by
r 12 = i x i y i 1 ,   r 13 = i x i 1 y i ,   r 23 = i 1 x i y i
and
c ( r ) = [ r 12 , r 13 ] + [ r 12 , r 23 ] + [ r 13 , r 23 ]
= i , j [ x i , x j ] y i y j + i , j x i [ y i , x j ] y j + i , j x i x j [ y i , y j ]
Definition 2.2.
(1) A coboundary Lie bialgebra is a 4-tuple ( g , θ , ϑ , r ) , where ( g , θ , ϑ ) is a Lie bialgebra and r Im ( 1 1 σ ) g g , such that ϑ = ϑ r is a coboundary of r , where ϑ r is defined by
ϑ r ( x ) = x r ,   for   any   x g
(2) A coboundary Lie bialgebra ( g , θ , ϑ , r ) is called triangular if r satisfies the following classical Yang–Baxter Equation (CYBE):
c ( r ) = 0
(3) An element r Im ( 1 1 σ ) g g is said to satisfy the modified Yang–Baxter Equation (MYBE) if
x c ( r ) = 0 ,   for   all   x g
The following results come from [6,7,10].
Lemma 2.3.
Let g be a Lie algebra and r Im ( 1 1 σ ) g g .
(1) The triple ( g , [ , ] , ϑ r ) is a Lie bialgebra if, and only if, r satisfies MYBE.
(2) We have
( 1 1 1 + ψ + ψ 2 ) ( 1 ϑ ) ϑ ( x ) = x c ( r )   for   all   x g

3. Lie Bialgebra Structures on the Lie Algebra L Related to the Virasoro Algebra

In this section, the main result of this paper (Theorem 3.1) is first presented, then several lemmas and propositions are given to prove Theorem 3.1, finally Theorem 3.1 is proved.
Theorem 3.1.
Every Lie bialgebra structure on L is triangular coboundary.
We introduce the grading on L which will be used later. It is obvious that L = n L n is -graded with
L n = Span { L n , E n n } δ n , 0 ( c 1 c 2 )
Lemma 3.2.
Regard L L L (the tensor product of three copies of L ) as an L -module under the adjoint diagonal action of L . Suppose r L L L satisfying  a r = 0 for all a L . Then, r Z ( L ) Z ( L ) Z ( L ) , where Z ( L ) is the center of L .
Proof.
Write r = t r t as a finite sum with r t ( L L L ) t . From 0 = L 0 r = t t r t , we obtain r = r 0 ( L L L ) 0 . Now we may assume that
r m , n A , B , D { L , E } α m , n A , B , D A m B n D ( m + n ) + k , i { 1 , 2 } A , B { L , E } β k , i A , B A k B k c i + k , i { 1 , 2 } A , B { L , E } ξ k , i A , B A k c i B k + k , i { 1 , 2 } A , B { L , E } ρ k , i A , B c i A k B k + i , j { 1 , 2 } A { L , E } λ i , j A A 0 c i c j + i , j { 1 , 2 } A { L , E } μ i , j A c i A 0 c j + i , j { 1 , 2 } A { L , E } τ i , j A c i c j A 0 ( mod ( Z ( L ) Z ( L ) Z ( L ) ) )
where all the coefficients of the tensor products are complex numbers and the sums are all finite. Fix the normal total order on compatible with its additive group structure. Define the total order on × by
( m 1 , n 1 ) > ( m 2 , n 2 ) m 1 > m 2 , or m 1 = m 2 , n 1 > n 2
If α m , n A , B , D 0 for some m , n , A , B , D { L , E } , let
( m 0 , n 0 ) = max { ( m , n ) × α m , n A , B , D 0 } .
Choose any p > 0 such that p m 0 0 . Then,
0 ( p m 0 ) α m 0 , n 0 A , B , D A p + m 0 B n 0 D ( m 0 + n 0 )
is linearly independent with other terms of L p r , a contradiction to the fact that L p r = 0 . Thus, α m , n A , B , D = 0 for any m , n , A , B , D { L , E } . We can similarly prove that β k , i A , B = ξ k , i A , B = ρ k , i A , B = 0 for any k , i { 1 , 2 } , A , B { L , E } . Moreover, by
0 = L 1 r = i , j { 1 , 2 } A { L , E } λ i , j A A 1 c i c j + i , j { 1 , 2 } A { L , E } μ i , j A c i A 1 c j + i , j { 1 , 2 } A { L , E } τ i , j A c i c j A 1 ,
it follows that λ i , j A = μ i , j A = τ i , j A = 0 for any i , j { 1 , 2 } , A { L , E } . This completes the proof. □
Corollary 3.3.
An element r Im ( 1 1 σ ) L L satisfies CYBE in (4) if, and only if, it satisfies MYBE in (5).
Proof.
It follows immediately from Lemma 3.2 and (3). □
The tensor product V = L L is a -graded L -module under the adjoint diagonal action of L . The gradation is given by V = n V n , where V n = p , q p + q = n L p L q .
We shall discuss the derivation algebra Der ( L , V ) . First, let us recall some basic definitions.
Denote by Der ( L , V ) the set of derivations D : L V which are linear maps satisfying
D ( [ a , b ] ) = a D ( b ) b D ( a )   for   a , b L ,
and Inn ( L , V ) the set of inner derivations  u inn , u V , defined by
u inn : a a u   for   a L .
A derivation D Der ( L , V ) is homogeneous of degree ε if D ( L n ) V ε + n for all n . Denote by Der ( L , V ) ε = { D Der ( L , V ) deg D = ε } for ε . It is well known that
H 1 ( L , V ) Der ( L , V ) / Inn ( L , V )
where H 1 ( L , V ) is the first cohomology group of the Lie algebra L with coefficients in the L -module V .
Proposition 3.4.
Every derivation from L to V is inner, i.e., H 1 ( L , V ) = 0 .
Proof.
We shall divide the proof of the proposition into several claims.
Claim 1.
For every D Der ( L , V ) , we have
D = ε D ε , where D ε Der ( L , V ) ε ,
which holds in the sense that for every a L , only finitely many D ε ( a ) 0 , and D ( a ) = ε D ε ( a ) (we say that (7) is summable).
For any ε , we define a homogeneous linear map D ε : L V of degree ε as follows: for any p and a L p , we can write D ( a ) = m u m , where u m V m . Then, we define D ε ( a ) = u ε + p . Obviously D ε Der ( L , V ) ε and (7) hold.
Claim 2.
If ε * , then D ε Inn ( L , V ) .
Denote v = ε 1 D ε ( L 0 ) V ε . Then for any a n L n , applying D ε to [ L 0 , a n ] = n a n , since D ε ( a n ) V n + ε and the action of L 0 on V n + ε is the scalar ( n + ε ) , we have
( n + ε ) D ε ( a n ) a n D ε ( L 0 ) = n D ε ( a n ) ,
i.e., D ε ( a n ) = v inn ( a n ) . Then, D ε = v inn is inner.
For convenience, we shall use “ ” to denote equal modulo Z ( L ) Z ( L ) in the following.
Claim 3.
D 0 ( L 0 ) D 0 ( c 1 ) D 0 ( c 2 ) 0 .
For any n and a n L n , considering the action of D 0 on [ L 0 , a n ] = n a n and [ a n , c i ] = 0 ( i = 1 , 2 ) , respectively, we can deduce that a n D 0 ( L 0 ) = 0 and a n D 0 ( c i ) = 0 ( i = 1 , 2 ) . By Lemma 3.2, we have D 0 ( L 0 ) , D 0 ( c i ) Z ( L ) Z ( L ) for i = 1 , 2 . Thus Claim 3 is proved.
Claim 4.
By replacing D 0 by D 0 v inn for some v V 0 , we can suppose D 0 ( L ) 0 .
For any s * , t , under modulo Z ( L ) Z ( L ) , we can write D 0 ( L s ) and D 0 ( E t ) as follows.
D 0 ( L s ) i α s , i L i L s i + i β s , i L i E s i + j = 1 2 α s j L s c j + j = 1 2 β s j c j L s + i ξ s , i E i L s i + i ρ s , i E i E s i + j = 1 2 ξ s j E s c j + j = 1 2 ρ s j c j E s
D 0 ( E t ) i λ t , i L i L t i + i μ t , i L i E t i + j = 1 2 λ t j L t c j + j = 1 2 μ t j c j L t + i τ t , i E i L t i + i η t , i E i E t i + j = 1 2 τ t j E t c j + j = 1 2 η t j c j E t
where α s , i , β s , i , ξ s , i , ρ s , i , λ t , i , μ t , i , τ t , i , η t , i , α s j , β s j , ξ s j , ρ s j , λ t j , μ t j , τ t j η t j , s * , t , i , j { 1 , 2 } , { i α s , i 0 } , { i β s , i 0 } , { i ξ s , i 0 } , { i ρ s , i 0 } , { i λ t , i 0 } , { i μ t , i 0 } , { i τ t , i 0 } and { i η t , i 0 } are all finite sets. Note that for any i and j { 1 , 2 } , we have
( L i L i ) inn ( L 1 ) = ( 1 i ) L 1 + i L i + ( 1 + i ) L i L 1 i ,   ( L 0 c j ) inn ( L 1 ) = L 1 c j , ( L i E i ) inn ( L 1 ) = ( 1 i ) L 1 + i E i + ( 1 + i ) L i E 1 i ,   ( c j L 0 ) inn ( L 1 ) = c j L 1 , ( E i L i ) inn ( L 1 ) = ( 1 i ) E 1 + i L i + ( 1 + i ) E i L 1 i ,   ( E 0 c j ) inn ( L 1 ) = E 1 c j , ( E i E i ) inn ( L 1 ) = ( 1 i ) E 1 + i E i + ( 1 + i ) E i E 1 i ,   ( c j E 0 ) inn ( L 1 ) = c j E 1 .
Denote
N 1 = max { i α 1 , i 0 } ,   N 2 = max { i β 1 , i 0 } N 3 = max { i ξ 1 , i 0 } ,   N 4 = max { i ρ 1 , i 0 }
Applying the induction on j = 1 4 N j in the above equations, by replacing D 0 by D 0 v inn , where v is a combination of some L i L i , L i E i , E i L i , E i E i , L 0 c j , c j L 0 , E 0 c j , c j E 0 , we can suppose
α 1 j = β 1 j = ξ 1 j = ρ 1 j = 0 ,   for   j { 1 , 2 } ,   α 1 , i = β 1 , i = ξ 1 , i = ρ 1 , i = 0 ,   for   i 1 , 2
Thus we have
D 0 ( L 1 ) α 1 , 1 L 1 L 2 + α 1 , 2 L 2 L 1 + β 1 , 1 L 1 E 2 + β 1 , 2 L 2 E 1
+ ξ 1 , 1 E 1 L 2 + ξ 1 , 2 E 2 L 1 + ρ 1 , 1 E 1 E 2 + ρ 1 , 2 E 2 E 1
Considering the action of D 0 on [ L 1 , L 1 ] = 2 L 0 , under modulo Z ( L ) Z ( L ) , we deduce that
i [ ( 2 i ) α 1 , i 1 + ( 2 + i ) α 1 , i ] L i L i + 3 α 1 , 1 L 1 L 1 + 3 α 1 , 2 L 1 L 1 + i [ ( 2 i ) β 1 , i 1 + ( 2 + i ) β 1 , i ] L i E i + 3 β 1 , 1 L 1 E 1 + 3 β 1 , 2 L 1 E 1 + i [ ( 2 i ) ρ 1 , i 1 + ( 2 + i ) ρ 1 , i ] E i E i + 3 ρ 1 , 1 E 1 E 1 + 3 ρ 1 , 2 E 1 E 1 + j = 1 2 2 α 1 j L 0 c j + j = 1 2 2 β 1 j c j L 0 + j = 1 2 2 ξ 1 j E 0 c j + j = 1 2 2 ρ 1 j c j E 0 = 0
Comparing the coefficients of L 0 c j , c j L 0 , E 0 c j , c j E 0 , we obtain
α 1 j = β 1 j = ξ 1 j = ρ 1 j = 0 ,   j { 1 , 2 }
Comparing the coefficients of L i L i for i , we have
3 α 1 , 2 + α 1 , 1 + 3 α 1 , 1 = 0 ,   α 1 , 0 + 3 α 1 , 1 + 3 α 1 , 2 = 0 ,   ( 2 i ) α 1 , i 1 + ( 2 + i ) α 1 , i = 0 ,   for   i ,   i ± 1
Since { i α 1 , i 0 } is a finite set, we obtain
α 1 , 1 + α 1 , 0 = 0 ,   α 1 , i = 0 ,   for   i ,   i 2 , 1 , 0 , 1 ,
and we have the following relations:
α 1 , 1 = α 1 , 0 ,   α 1 , 1 = 1 3 α 1 , 0 α 1 , 2 ,   α 1 , 2 = ( 1 3 α 1 , 0 + α 1 , 1 ) .
Comparing the coefficients of L i E i for i , we obtain
3 β 1 , 2 + β 1 , 1 + 3 β 1 , 1 = 0 ,   β 1 , 0 + 3 β 1 , 1 + 3 β 1 , 2 = 0 ,   ( 2 i ) β 1 , i 1 + ( 2 + i ) β 1 , i = 0 ,   for   i ,   i ± 1
Since { i β 1 , i 0 } is a finite set, we have
β 1 , 1 = β 1 , 0 ,   β 1 , i = 0 ,   for   i ,   i 2 , 1 , 0 , 1 , β 1 , 1 = 1 3 β 1 , 0 β 1 , 2 ,   β 1 , 2 = ( 1 3 β 1 , 0 + β 1 , 1 )
Comparing the coefficients of E i L i for i , we deduce that
3 ξ 1 , 2 + ξ 1 , 1 + 3 ξ 1 , 1 = 0 ,   ξ 1 , 0 + 3 ξ 1 , 1 + 3 ξ 1 , 2 = 0 , ( 2 i ) ξ 1 , i 1 + ( 2 + i ) ξ 1 , i = 0 ,   for   i , . i ± 1 .
Since { i ξ 1 , i 0 } is a finite set, we have the following identities:
ξ 1 , 1 = ξ 1 , 0 ,   ξ 1 , i = 0 ,   for   i ,   i 2 , 1 , 0 , 1 , ξ 1 , 1 = 1 3 ξ 1 , 0 ξ 1 , 2 ,   ξ 1 , 2 = ( 1 3 ξ 1 , 0 + ξ 1 , 1 )
Comparing the coefficients of E i E i for i , we obtain
3 ρ 1 , 2 + ρ 1 , 1 + 3 ρ 1 , 1 = 0 ,   ρ 1 , 0 + 3 ρ 1 , 1 + 3 ρ 1 , 2 = 0 , ( 2 i ) ρ 1 , i 1 + ( 2 + i ) ρ 1 , i = 0 ,   for   i ,   i ± 1
Since { i ρ 1 , i 0 } is a finite set, we have
ρ 1 , 1 = ρ 1 , 0 ,   ρ 1 , i = 0 ,   for   i ,   i 2 , 1 , 0 , 1 , ρ 1 , 1 = 1 3 ρ 1 , 0 ρ 1 , 2 ,   ρ 1 , 2 = ( 1 3 ρ 1 , 0 + ρ 1 , 1 )
Consequently, we can rewrite
D 0 ( L 1 ) ( 1 3 α 1 , 0 α 1 , 2 ) L 1 L 2 ( 1 3 α 1 , 0 + α 1 , 1 ) L 2 L 1 + ( 1 3 β 1 , 0 β 1 , 2 ) L 1 E 2 ( 1 3 β 1 , 0 + β 1 , 1 ) L 2 E 1 + ( 1 3 ξ 1 , 0 ξ 1 , 2 ) E 1 L 2 ( 1 3 ξ 1 , 0 + ξ 1 , 1 ) E 2 L 1 + ( 1 3 ρ 1 , 0 ρ 1 , 2 ) E 1 E 2 ( 1 3 ρ 1 , 0 + ρ 1 , 1 ) E 2 E 1 D 0 ( L 1 ) α 1 , 2 L 2 L 1 α 1 , 0 L 1 L 0 + α 1 , 0 L 0 L 1 + α 1 , 1 L 1 L 2 + β 1 , 2 L 2 E 1 β 1 , 0 L 1 E 0 + β 1 , 0 L 0 E 1 + β 1 , 1 L 1 E 2 + ξ 1 , 2 E 2 L 1 ξ 1 , 0 E 1 L 0 + ξ 1 , 0 E 0 L 1 + ξ 1 , 1 E 1 L 2 + ρ 1 , 2 E 2 E 1 ρ 1 , 0 E 1 E 0 + ρ 1 , 0 E 0 E 1 + ρ 1 , 1 E 1 E 2
Considering the action of D 0 on [ L 2 , L 1 ] = 3 L 1 , under modulo Z ( L ) Z ( L ) , we obtain
α 1 , 2 ( 4 L 0 + 1 2 c 1 ) L 1 + α 1 , 2 L 2 L 3 3 α 1 , 0 L 1 L 0 2 α 1 , 0 L 1 L 2 + 2 α 1 , 0 L 2 L 1 + 3 α 1 , 0 L 0 L 1 + α 1 , 1 L 3 L 2 + α 1 , 1 L 1 ( 4 L 0 + 1 2 c 1 ) + β 1 , 2 ( 4 L 0 + 1 2 c 1 ) E 1 + β 1 , 2 L 2 E 3 3 β 1 , 0 L 1 E 0 2 β 1 , 0 L 1 E 2 + 2 β 1 , 0 L 2 E 1 + 3 β 1 , 0 L 0 E 1 + β 1 , 1 L 3 E 2 + β 1 , 1 L 1 ( 4 E 0 + 6 c 2 ) + ξ 1 , 2 ( 4 E 0 + 6 c 2 ) L 1 + ξ 1 , 2 E 2 L 3 3 ξ 1 , 0 E 1 L 0 2 ξ 1 , 0 E 1 L 2
+ 2 ξ 1 , 0 E 2 L 1 + 3 ξ 1 , 0 E 0 L 1 + ξ 1 , 1 E 3 L 2 + ξ 1 , 1 E 1 ( 4 L 0 + 1 2 c 1 ) + ρ 1 , 2 ( 4 E 0 + 6 c 2 ) E 1 + ρ 1 , 2 E 2 E 3 3 ρ 1 , 0 E 1 E 0 2 ρ 1 , 0 E 1 E 2 + 2 ρ 1 , 0 E 2 E 1 + 3 ρ 1 , 0 E 0 E 1 + ρ 1 , 1 E 3 E 2 + ρ 1 , 1 E 1 ( 4 E 0 + 6 c 2 ) + i ( 1 + i ) α 2 , i L i 1 L 2 i + i ( 3 i ) α 2 , i L i L 1 i + i ( 1 + i ) β 2 , i L i 1 E 2 i + i ( 3 i ) β 2 , i L i E 1 i + i ( 1 + i ) ξ 2 , i E i 1 L 2 i + i ( 3 i ) ξ 2 , i E i L 1 i + i ( 1 + i ) ρ 2 , i E i 1 E 2 i + i ( 3 i ) ρ 2 , i E i E 1 i + j = 1 2 3 α 2 j L 1 c j + j = 1 2 3 β 2 j c j L 1 + j = 1 2 3 ξ 2 j E 1 c j + j = 1 2 3 ρ 2 j c j E 1 ( α 1 , 0 3 α 1 , 2 ) L 1 L 2 + ( α 1 , 0 + 3 α 1 , 1 ) L 2 L 1 ( β 1 , 0 3 β 1 , 2 ) L 1 E 2 + ( β 1 , 0 + 3 β 1 , 1 ) L 2 E 1 ( ξ 1 , 0 3 ξ 1 , 2 ) E 1 L 2 + ( ξ 1 , 0 + 3 ξ 1 , 1 ) E 2 L 1 ( ρ 1 , 0 3 ρ 1 , 2 ) E 1 E 2 + ( ρ 1 , 0 + 3 ρ 1 , 1 ) E 2 E 1 = 0
For j { 1 , 2 } , comparing the coefficients of L 1 c j , c j L 1 , E 1 c j , c j E 1 in the above equation, we have
α 2 1 = 1 6 α 1 , 1 , α 2 2 = 2 β 1 , 1 , β 2 1 = 1 6 α 1 , 2 , β 2 2 = 2 ξ 1 , 2 , ξ 2 1 = 1 6 ξ 1 , 1 , ξ 2 2 = 2 ρ 1 , 1 , ρ 2 1 = 1 6 β 1 , 2 , ρ 2 2 = 2 ρ 1 , 2
For any i , comparing the coefficients of L i L 1 i , L i E 1 i , E i L 1 i and E i E 1 i , respectively, and noting that { i α 2 , i 0 } , { i β 2 , i 0 } , { i ξ 2 , i 0 } and { i ρ 2 , i 0 } are finite sets, we deduce that
α 1 , 2 + 5 α 2 , 2 = 0 ,   3 α 1 , 2 3 α 1 , 0 + α 2 , 0 + 4 α 2 , 1 = 0 ,   4 α 1 , 2 + 3 α 1 , 0 + 2 α 2 , 1 + 3 α 2 , 0 = 0 , 4 α 1 , 1 3 α 1 , 0 + 3 α 2 , 2 + 2 α 2 , 1 = 0 ,   3 α 1 , 0 + 3 α 1 , 1 + 4 α 2 , 3 + α 2 , 2 = 0 ,   α 1 , 1 + 5 α 2 , 4 = 0 ,   α 2 , i = 0 β 1 , 2 + 5 β 2 , 2 = 0 ,   3 β 1 , 2 3 β 1 , 0 + β 2 , 0 + 4 β 2 , 1 = 0 ,   4 β 1 , 2 + 3 β 1 , 0 + 2 β 2 , 1 + 3 β 2 , 0 = 0 , 4 β 1 , 1 3 β 1 , 0 + 3 β 2 , 2 + 2 β 2 , 1 = 0 ,   3 β 1 , 0 + 3 β 1 , 1 + 4 β 2 , 3 + β 2 , 2 = 0 ,   β 1 , 1 + 5 β 2 , 4 = 0 ,   β 2 , i = 0 ξ 1 , 2 + 5 ξ 2 , 2 = 0 ,   3 ξ 1 , 2 3 ξ 1 , 0 + ξ 2 , 0 + 4 ξ 2 , 1 = 0 ,   4 ξ 1 , 2 + 3 ξ 1 , 0 + 2 ξ 2 , 1 + 3 ξ 2 , 0 = 0 , 4 ξ 1 , 1 3 ξ 1 , 0 + 3 ξ 2 , 2 + 2 ξ 2 , 1 = 0 ,   3 ξ 1 , 0 + 3 ξ 1 , 1 + 4 ξ 2 , 3 + ξ 2 , 2 = 0 ,   ξ 1 , 1 + 5 ξ 2 , 4 = 0 ,   ξ 2 , i = 0 ρ 1 , 2 + 5 ρ 2 , 2 = 0 ,   3 ρ 1 , 2 3 ρ 1 , 0 + ρ 2 , 0 + 4 ρ 2 , 1 = 0 ,   4 ρ 1 , 2 + 3 ρ 1 , 0 + 2 ρ 2 , 1 + 3 ρ 2 , 0 = 0 , 4 ρ 1 , 1 3 ρ 1 , 0 + 3 ρ 2 , 2 + 2 ρ 2 , 1 = 0 ,   3 ρ 1 , 0 + 3 ρ 1 , 1 + 4 ρ 2 , 3 + ρ 2 , 2 = 0 ,   ρ 1 , 1 + 5 ρ 2 , 4 = 0 ,   ρ 2 , i = 0
for i 1 , 0 , 1 , 2 , 3 . Then, we have the following identities:
α 1 , 2 = 5 α 2 , 2 = 0 ,   α 1 , 1 = 5 α 2 , 4 = 0 ,   α 2 , 1 = 3 4 α 1 , 0 1 4 α 2 , 0 , α 2 , 1 = 3 2 α 1 , 0 3 2 α 2 , 0 ,   α 2 , 2 = 2 α 1 , 0 + α 2 , 0 ,   α 2 , 3 = 5 4 α 1 , 0 1 4 α 2 , 0 , β 1 , 2 = 5 β 2 , 2 = 0 ,   β 1 , 1 = 5 β 2 , 4 = 0 ,   β 2 , 1 = 3 4 β 1 , 0 1 4 β 2 , 0
β 2 , 1 = 3 2 β 1 , 0 3 2 β 2 , 0 ,   β 2 , 2 = 2 β 1 , 0 + β 2 , 0 ,   β 2 , 3 = 5 4 β 1 , 0 1 4 β 2 , 0 , ξ 1 , 2 = 5 ξ 2 , 2 = 0 ,   ξ 1 , 1 = 5 ξ 2 , 4 = 0 ,   ξ 2 , 1 = 3 4 ξ 1 , 0 1 4 ξ 2 , 0 ξ 2 , 1 = 3 2 ξ 1 , 0 3 2 ξ 2 , 0 ,   ξ 2 , 2 = 2 ξ 1 , 0 + ξ 2 , 0 ,   ξ 2 , 3 = 5 4 ξ 1 , 0 1 4 ξ 2 , 0 ρ 1 , 2 = 5 ρ 2 , 2 = 0 ,   ρ 1 , 1 = 5 ρ 2 , 4 = 0 ,   ρ 2 , 1 = 3 4 ρ 1 , 0 1 4 ρ 2 , 0 , ρ 2 , 1 = 3 2 ρ 1 , 0 3 2 ρ 2 , 0 ,   ρ 2 , 2 = 2 ρ 1 , 0 + ρ 2 , 0 ,   ρ 2 , 3 = 5 4 ρ 1 , 0 1 4 ρ 2 , 0 α 2 1 = α 2 2 = β 2 1 = β 2 2 = ξ 2 1 = ξ 2 2 = ρ 2 1 = ρ 2 2 = 0
Thus we can rewrite
D 0 ( L 1 ) 1 3 α 1 , 0 L 1 L 2 1 3 α 1 , 0 L 2 L 1 + 1 3 β 1 , 0 L 1 E 2 1 3 β 1 , 0 L 2 E 1 + 1 3 ξ 1 , 0 E 1 L 2 1 3 ξ 1 , 0 E 2 L 1 + 1 3 ρ 1 , 0 E 1 E 2 1 3 ρ 1 , 0 E 2 E 1 , D 0 ( L 1 ) α 1 , 0 L 1 L 0 + α 1 , 0 L 0 L 1 β 1 , 0 L 1 E 0 + β 1 , 0 L 0 E 1 ξ 1 , 0 E 1 L 0 + ξ 1 , 0 E 0 L 1 ρ 1 , 0 E 1 E 0 + ρ 1 , 0 E 0 E 1 , D 0 ( L 2 ) ( 3 4 α 1 , 0 1 4 α 2 , 0 ) L 1 L 3 + α 2 , 0 L 0 L 2 ( 3 2 α 1 , 0 + 3 2 α 2 , 0 ) L 1 L 1 + ( 2 α 1 , 0 + α 2 , 0 ) L 2 L 0 ( 5 4 α 1 , 0 + 1 4 α 2 , 0 ) L 3 L 1 + ( 3 4 β 1 , 0 1 4 β 2 , 0 ) L 1 E 3 + β 2 , 0 L 0 E 2 ( 3 2 β 1 , 0 + 3 2 β 2 , 0 ) L 1 E 1 + ( 2 β 1 , 0 + β 2 , 0 ) L 2 E 0 ( 5 4 β 1 , 0 + 1 4 β 2 , 0 ) L 3 E 1 + ( 3 4 ξ 1 , 0 1 4 ξ 2 , 0 ) E 1 L 3 + ξ 2 , 0 E 0 L 2 ( 3 2 ξ 1 , 0 + 3 2 ξ 2 , 0 ) E 1 L 1 + ( 2 ξ 1 , 0 + ξ 2 , 0 ) E 2 L 0 ( 5 4 ξ 1 , 0 + 1 4 ξ 2 , 0 ) E 3 L 1 + ( 3 4 ρ 1 , 0 1 4 ρ 2 , 0 ) E 1 E 3 + ρ 2 , 0 E 0 E 2 ( 3 2 ρ 1 , 0 + 3 2 ρ 2 , 0 ) E 1 E 1 + ( 2 ρ 1 , 0 + ρ 2 , 0 ) E 2 E 0 ( 5 4 ρ 1 , 0 + 1 4 ρ 2 , 0 ) E 3 E 1
Considering the action of D 0 on [ L 1 , L 2 ] = 3 L 1 , under modulo Z ( L ) Z ( L ) , we have
i ( 1 i ) α 2 , i L 1 + i L 2 i + i ( 3 + i ) α 2 , i L i L 1 i + i ( 1 i ) β 2 , i L 1 + i E 2 i + i ( 3 + i ) β 2 , i L i E 1 i + i ( 1 i ) ξ 2 , i E 1 + i L 2 i + i ( 3 + i ) ξ 2 , i E i L 1 i
+ i ( 1 i ) ρ 2 , i E 1 + i E 2 i + i ( 3 + i ) ρ 2 , i E i E 1 i + j = 1 2 3 α 2 j L 1 c j + j = 1 2 3 β 2 j c j L 1 + j = 1 2 3 ξ 2 j E 1 c j + j = 1 2 3 ρ 2 j c j E 1 + 1 3 α 1 , 0 L 3 L 2
+ 4 3 α 1 , 0 L 1 L 0 + 1 6 α 1 , 0 L 1 c 1 4 3 α 1 , 0 L 0 L 1 1 6 α 1 , 0 c 1 L 1 1 3 α 1 , 0 L 2 L 3 + 1 3 β 1 , 0 L 3 E 2 + 4 3 β 1 , 0 L 1 E 0 + 2 β 1 , 0 L 1 c 2 4 3 β 1 , 0 L 0 E 1 1 6 β 1 , 0 c 1 E 1 1 3 β 1 , 0 L 2 E 3 + 1 3 ξ 1 , 0 E 3 L 2 + 4 3 ξ 1 , 0 E 1 L 0 + 1 6 ξ 1 , 0 E 1 c 1 4 3 ξ 1 , 0 E 0 L 1 2 ξ 1 , 0 c 2 L 1 1 3 ξ 1 , 0 E 2 L 3 + 1 3 ρ 1 , 0 E 3 E 2 + 4 3 ρ 1 , 0 E 1 E 0 + 2 ρ 1 , 0 E 1 c 2 4 3 ρ 1 , 0 E 0 E 1 2 ρ 1 , 0 c 2 E 1 1 3 ρ 1 , 0 E 2 E 3 + 3 α 1 , 0 L 1 L 0 3 α 1 , 0 L 0 L 1 + 3 β 1 , 0 L 1 E 0 3 β 1 , 0 L 0 E 1 + 3 ξ 1 , 0 E 1 L 0 3 ξ 1 , 0 E 0 L 1 + 3 ρ 1 , 0 E 1 E 0 3 ρ 1 , 0 E 0 E 1 = 0
For any i and j { 1 , 2 } , comparing the coefficients of L i L 1 i , L i E 1 i , E i L 1 i , E i E 1 i , L 1 c j , c j L 1 , E 1 c j and c j E 1 in the above equation, and noting that { i α 2 , i 0 } , { i β 2 , i 0 } , { i ξ 2 , i 0 } and { i ρ 2 , i 0 } are finite sets, we obtain
α 1 , 0 = 0 ,   α 2 , 3 = 1 4 α 2 , 0 ,   α 2 , 2 = α 2 , 0 ,   α 2 , 1 = 3 2 α 2 , 0 ,   α 2 , 1 = 1 4 α 2 , 0 ,   α 2 , i = 0 , β 1 , 0 = 0 ,   β 2 , 3 = 1 4 β 2 , 0 ,   β 2 , 2 = β 2 , 0 ,   β 2 , 1 = 3 2 β 2 , 0 ,   β 2 , 1 = 1 4 β 2 , 0 ,   β 2 , i = 0 , ξ 1 , 0 = 0 ,   ξ 2 , 3 = 1 4 ξ 2 , 0 ,   ξ 2 , 2 = ξ 2 , 0 ,   ξ 2 , 1 = 3 2 ξ 2 , 0 ,   ξ 2 , 1 = 1 4 ξ 2 , 0 ,   ξ 2 , i = 0 ,   ρ 1 , 0 = 0 , ρ 2 , 3 = 1 4 ρ 2 , 0 ,   ρ 2 , 2 = ρ 2 , 0 ,   ρ 2 , 1 = 3 2 ρ 2 , 0 ,   ρ 2 , 1 = 1 4 ρ 2 , 0 ,   ρ 2 , i = 0 α 2 1 = 1 18 α 1 , 0 = 0 ,   α 2 2 = 2 3 β 1 , 0 = 0 ,   β 2 1 = 1 18 α 1 , 0 = 0 ,   β 2 2 = 2 3 ξ 1 , 0 = 0 ξ 2 1 = 1 18 ξ 1 , 0 = 0 ,   ξ 2 2 = 2 3 ρ 1 , 0 = 0 ,   ρ 2 1 = 1 18 β 1 , 0 = 0 , ρ 2 2 = 2 3 ρ 1 , 0 = 0
for i 3 , 2 , 1 , 0 , 1 . Consequently, we can rewrite
D 0 ( L 1 ) D 0 ( L 1 ) 0 , D 0 ( L 2 ) 1 4 α 2 , 0 L 1 L 3 + α 2 , 0 L 0 L 2 3 2 α 2 , 0 L 1 L 1 + α 2 , 0 L 2 L 0 1 4 α 2 , 0 L 3 L 1 1 4 β 2 , 0 L 1 E 3 + β 2 , 0 L 0 E 2 3 2 β 2 , 0 L 1 E 1 + β 2 , 0 L 2 E 0 1 4 β 2 , 0 L 3 E 1 1 4 ξ 2 , 0 E 1 L 3 + ξ 2 , 0 E 0 L 2 3 2 ξ 2 , 0 E 1 L 1 + ξ 2 , 0 E 2 L 0 1 4 ξ 2 , 0 E 3 L 1 1 4 ρ 2 , 0 E 1 E 3 + ρ 2 , 0 E 0 E 2 3 2 ρ 2 , 0 E 1 E 1 + ρ 2 , 0 E 2 E 0 1 4 ρ 2 , 0 E 3 E 1 , D 0 ( L 2 ) 1 4 α 2 , 0 L 3 L 1 + α 2 , 0 L 2 L 0 3 2 α 2 , 0 L 1 L 1 + α 2 , 0 L 0 L 2 1 4 α 2 , 0 L 1 L 3 1 4 β 2 , 0 L 3 E 1 + β 2 , 0 L 2 E 0 3 2 β 2 , 0 L 1 E 1 + β 2 , 0 L 0 E 2 1 4 β 2 , 0 L 1 E 3 1 4 ξ 2 , 0 E 3 L 1 + ξ 2 , 0 E 2 L 0 3 2 ξ 2 , 0 E 1 L 1 + ξ 2 , 0 E 0 L 2 1 4 ξ 2 , 0 E 1 L 3 1 4 ρ 2 , 0 E 3 E 1 + ρ 2 , 0 E 2 E 0 3 2 ρ 2 , 0 E 1 E 1 + ρ 2 , 0 E 0 E 2 1 4 ρ 2 , 0 E 1 E 3
Applying D 0 to [ L 2 , L 2 ] = 4 L 0 + 1 2 c 1 , we have
α 2 , 0 = α 2 , 0 ,   β 2 , 0 = β 2 , 0 ,   ξ 2 , 0 = ξ 2 , 0 ,   ρ 2 , 0 = ρ 2 , 0
Denote
v = 1 4 α 2 , 0 ( L 1 L 1 2 L 0 L 0 + L 1 L 1 )
1 4 β 2 , 0 ( L 1 E 1 2 L 0 E 0 + L 1 E 1 ) 1 4 ξ 2 , 0 ( E 1 L 1 2 E 0 L 0 + E 1 L 1 )
1 4 ρ 2 , 0 ( E 1 E 1 2 E 0 E 0 + E 1 E 1 )
Replacing D 0 by D 0 v inn , we obtain
D 0 ( L ± 1 ) D 0 ( L ± 2 ) 0
Since L has a Virasoro subalgebra L : = Span L m m , which can be generated by the set L 2 , L 1 , L 1 , L 2 , then we have
D 0 ( L m ) 0 ,   for   any   m
Considering the action of D 0 on [ L 1 , E 1 ] = 0 and [ L 1 , E 1 ] = 0 , respectively, under modulo Z ( L ) Z ( L ) , we obtain
λ 1 , i = μ 1 , i = τ 1 , i = η 1 , i = 0 ,   for   i 0 , 1 λ 1 , 0 + λ 1 , 1 = μ 1 , 0 + μ 1 , 1 = τ 1 , 0 + τ 1 , 1 = η 1 , 0 + η 1 , 1 = 0 , λ 1 , i = μ 1 , i = τ 1 , i = η 1 , i = 0 ,   for   i 0 , 1 , λ 1 , 0 + λ 1 , 1 = μ 1 , 0 + μ 1 , 1 = τ 1 , 0 + τ 1 , 1 = η 1 , 0 + η 1 , 1 = 0
Then, we can write
D 0 ( E 1 ) λ 1 , 0 L 0 L 1 λ 1 , 0 L 1 L 0 + μ 1 , 0 L 0 E 1 μ 1 , 0 L 1 E 0 + τ 1 , 0 E 0 L 1 τ 1 , 0 E 1 L 0 + η 1 , 0 E 0 E 1 η 1 , 0 E 1 E 0 + j = 1 2 λ 1 j L 1 c j + j = 1 2 μ 1 j c j L 1 + j = 1 2 τ 1 j E 1 c j + j = 1 2 η 1 j c j E 1 , D 0 ( E 1 ) λ 1 , 0 L 1 L 0 + λ 1 , 0 L 0 L 1 μ 1 , 0 L 1 E 0 + μ 1 , 0 L 0 E 1 τ 1 , 0 E 1 L 0 + τ 1 , 0 E 0 L 1 η 1 , 0 E 1 E 0 + η 1 , 0 E 0 E 1 + j = 1 2 λ 1 j L 1 c j + j = 1 2 μ 1 j c j L 1 + j = 1 2 τ 1 j E 1 c j + j = 1 2 η 1 j c j E 1
Applying D 0 to [ L 2 , E 1 ] = 3 E 1 , under modulo Z ( L ) Z ( L ) , we obtain
λ 1 , 0 = λ 1 , 0 = μ 1 , 0 = μ 1 , 0 = τ 1 , 0 = τ 1 , 0 = η 1 , 0 = η 1 , 0 = 0 , λ 1 j = λ 1 j ,   μ 1 j = μ 1 j ,   τ 1 j = τ 1 j ,   η 1 j = η 1 j ,   for   j { 1 , 2 }
Thus, we can rewrite
D 0 ( E 1 ) j = 1 2 λ 1 j L 1 c j + j = 1 2 μ 1 j c j L 1 + j = 1 2 τ 1 j E 1 c j + j = 1 2 η 1 j c j E 1 , D 0 ( E 1 ) j = 1 2 λ 1 j L 1 c j + j = 1 2 μ 1 j c j L 1 + j = 1 2 τ 1 j E 1 c j + j = 1 2 η 1 j c j E 1
Applying D 0 to [ E 1 , E 1 ] = L 0 , under modulo Z ( L ) Z ( L ) , we have
λ 1 j = μ 1 j = τ 1 j = η 1 j = 0 , for j { 1 , 2 } .
Then,
D 0 ( E 1 ) D 0 ( E 1 ) 0
Since the Lie algebra L is generated by the set L 2 , L 1 , L 1 , L 2 , E 1 , using (10) and (11), we obtain D 0 ( L ) 0 . Then, Claim 4 is proved.
Claim 5.
L is perfect, i.e., L , L = L .
By Lie brackets of L , we have
L m = 1 m L m , L 0 L , L   for   m 0 ,   L 0 = 1 2 L 1 , L 1 L , L , c 1 = 2 L 2 , L 2 8 L 0 L , L ,   E m = 1 m E m , L 0 L , L   for   m 0 , E 0 = 1 2 L 1 , E 1 L , L ,   c 2 = 1 6 L 2 , E 2 2 3 E 0 L , L
Note that L m , E m , c 1 , c 2 m is a -basis of the Lie algebra L . Thus L is perfect. Claim 5 is proved.
Claim 6.
D 0 = 0 .
It is proved that D 0 ( L ) Z ( L ) Z ( L ) in Claim 4. Because L = [ L , L ] by Claim 5, we have D 0 ( L ) L D 0 ( L ) = 0 . Then, Claim 6 is proved.
Claim 7.
For every  D Der ( L , V ) , D = ε D ε is a finite sum, where D ε Der ( L , V ) ε .
According to the above claims, for any ε , we can suppose D ε ( u ε ) inn for some u ε V ε . If { ε * u ε 0 } is an infinite set, then we have D ( L 0 ) = ε * ε u ε is an infinite sum, a contradiction with the fact that D Der ( L , V ) . This proves Claim 7 and Proposition 3.4. □
Lemma 3.5.
Suppose ω V such that a ω Im ( 1 1 σ ) for all a L . Then ω Im ( 1 1 σ ) .
Proof.
It is easy to see that L Im ( 1 1 σ ) Im ( 1 1 σ ) . After a few of steps in each of which ω is replaced by ω - γ for some γ Im ( 1 1 σ ) , we shall prove that ω = 0 and thus ω Im ( 1 1 σ ) . We can write ω = k ω k , where ω k V k . Clearly,
ω Im ( 1 1 σ ) ω k Im ( 1 1 σ )   for   all   k
Then, without loss of generality, we may assume that ω = ω k is homogeneous. For any k 0 , ω k = 1 k L 0 ω k Im ( 1 1 σ ) . Thus, we can suppose ω = ω 0 V 0 . Now ω can be written as
ω = i α i L i L i + i β i L i E i + i ξ i E i L i + i ρ i E i E i + j = 1 2 α 0 j L 0 c j + j = 1 2 β 0 j c j L 0 + j = 1 2 ξ 0 j E 0 c j + j = 1 2 ρ 0 j c j E 0
where α i , β i , ξ i , ρ i , α 0 j , β 0 j , ξ 0 j , ρ 0 j , for i , j { 1 , 2 } ; { i α i 0 } , { i β i 0 } , { i ξ i 0 } and { i ρ i 0 } are finite sets. For any i , since γ 1 , i : = L i L i L i L i , γ 2 , i : = L i E i E i L i , γ 3 , i : = E i E i E i E i , γ 1 : = L 0 c 1 c 1 L 0 , γ 2 : = L 0 c 2 c 2 L 0 , γ 3 : = E 0 c 1 c 1 E 0 , γ 4 : = E 0 c 2 c 2 E 0 are all in Im ( 1 1 σ ) , by replacing ω by ω γ , where γ is a combination of some γ 1 , i , γ 2 , i , γ 3 , i , γ 1 , γ 2 , γ 3 and γ 4 , one can suppose
ξ i = β 0 j = ρ 0 j = 0 ,   for   any   i ,   j { 1 , 2 }
α i , ρ i 0 i 0
Thus ω has the following form
ω = i α i L i L i + i β i L i E i + i ρ i E i E i + j = 1 2 α 0 j L 0 c j + j = 1 2 ξ 0 j E 0 c j
Suppose that there exists i > 0 such that α i 0 . Let j > 0 be such that j i . It is easy to see that the term L i + j L i appears in L j ω . However the term L i L i + j cannot appear in L j ω by (13), a contradiction with the fact that L j ω Im ( 1 1 σ ) . Thus, we can further suppose that α i = 0 for any i * . Similarly, we also can suppose that ρ i = 0 for any i * . Then, ω can be written as
ω = α 0 L 0 L 0 + i β i L i E i + ρ 0 E 0 E 0 + j = 1 2 α 0 j L 0 c j + j = 1 2 ξ 0 j E 0 c j
Noting that Im ( 1 1 σ ) Ker ( 1 1 + σ ) and using that L ω Im ( 1 1 σ ) , we have
0 = ( 1 1 + σ ) L 1 ω = 2 α 0 ( L 1 L 0 + L 0 L 1 ) + 2 ρ 0 ( E 1 E 0 + E 0 E 1 ) + j = 1 2 α 0 j ( L 1 c j + c j L 1 ) + j = 1 2 ξ 0 j ( E 1 c j + c j E 1 ) + i [ ( 2 i ) β i 1 + ( 1 + i ) β i ] L i E 1 i + i [ ( 2 i ) β i 1 + ( 1 + i ) β i ] E 1 i L i
Since { i β i 0 } is a finite set, comparing the coefficient of the tensor products in the above equation, it follows that
α 0 = ρ 0 = α 0 j = ξ 0 j = β i = 0 ,   for   j { 1 , 2 } , i , i 1 , 0 , 1 β 0 = 2 β 1 = 2 β 1
Thus ω has the following form
ω = β 1 ( L 1 E 1 2 L 0 E 0 + L 1 E 1 )
Considering the computation
0 = ( 1 1 + σ ) L 2 ω .
= β 1 ( 1 1 + σ ) [ 6 L 1 E 1 + L 1 E 3 4 L 2 E 0 4 L 0 E 2 + L 3 E 1 ]
it follows immediately that β 1 = 0 . Thus ω = 0 . This completes the proof. □
We are now in a position to prove Theorem 3.1.
Proof of Theorem 3.1.
Let ( L , [ , ] , ϑ ) be a Lie bialgebra structure on L . By (2) and (6), ϑ Der ( L , V ) . By Proposition 3.4, Der ( L , V ) = Inn ( L , V ) . Thus, there exists r V such that ϑ = ϑ r , where ϑ r is defined by (1) of Definition 2.2. Namely, ϑ ( a ) = a r for any a L . By (1), Im ϑ Im ( 1 1 σ ) . Hence, by Lemma 3.5, r Im ( 1 1 σ ) . By Lemma 2.3, a c ( r ) = 0 , for all a L . By Corollary 3.3, c ( r ) = 0 . Therefore, (1) and (2) of Definition 2.2 imply that ( L , [ , ] , ϑ ) is a triangular coboundary Lie bialgebra. □

Author Contributions

Conceptualization, methodology, X.C.; writing—original draft preparation, X.C., Y.S. and J.Z.; validation, Y.S.; writing—review and editing, X.C. and Y.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by National Natural Science Foundation of China (Grant no. 11801477); Natural Science Foundation of Fujian Province (Grant no. 2017J05016).

Data Availability Statement

The data of the Lie algebra relations used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflict of interest regarding the publication of this paper.

References

  1. Kac, V.G. Infinite-Dimensional Lie Algebras, 3rd ed.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
  2. Dong, C.Y.; Lepowsky, J. Generalized Vertex Algebras and Relative Vertex Operators; Progress in Math; Birkhauser: Boston, MA, USA, 1993; Volume 112. [Google Scholar]
  3. Allison, B.; Azam, S.; Berman, S.; Gao, Y.; Pianzola, A. Extended Affine Lie Algebras and Their Root Systems; Memoirs of the American Mathematical Society: Charles, RI, USA, 1997; Volume 126. [Google Scholar]
  4. Chen, X.; Huang, Z. Structures of the Lie algebra L related to Virasoro algebra. J. Xiamen Univ. Technol. 2014, 22, 91–96. (In Chinese) [Google Scholar]
  5. Zhao, Q. On Structures of Two Classes of Infinite Dimensional Lie Algebras. Master’s Thesis, Xiamen University, Xiamen, China, 2014; pp. 1–25. (In Chinese). [Google Scholar]
  6. Drinfeld, V.G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Soviet Math. Dokl. 1983, 28, 667–671. [Google Scholar]
  7. Drinfeld, V.G. Quantum Groups. In Proceedings of the International Congress of Mathematicians, Berkeley, CA, USA, 3–11 August 1986; American Mathematical Society: Providence, RI, USA, 1987; Volumes 1 and 2, pp. 798–820. [Google Scholar]
  8. Taft, E.J. Witt and Virasoro algebras as Lie bialgebras. J. Pure Appl. Algebra 1993, 87, 301–312. [Google Scholar] [CrossRef] [Green Version]
  9. Michaelis, W. A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv. Math. 1994, 107, 365–392. [Google Scholar] [CrossRef] [Green Version]
  10. Ng, S.H.; Taft, E.J. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J. Pure Appl. Algebra 2000, 151, 67–88. [Google Scholar] [CrossRef] [Green Version]
  11. Song, G.; Su, Y. Lie bialgebras of generalized Witt type. Sci. China Ser. A 2006, 49, 533–544. [Google Scholar] [CrossRef] [Green Version]
  12. Wu, Y.; Song, G.; Su, Y. Lie bialgebras of generalized Virasoro-like type. Acta Math. Sin. Engl. Ser. 2006, 22, 1915–1922. [Google Scholar] [CrossRef]
  13. Yue, X.; Su, Y. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm. Algebra 2008, 36, 1537–1549. [Google Scholar] [CrossRef]
  14. Han, J.; Li, J.; Su, Y. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J. Math. Phys. 2009, 50, 083504. [Google Scholar] [CrossRef]
  15. Li, J.; Su, Y. Lie bialgebra structures on the W-algebra W (2,2). Algebra Colloq. 2010, 17, 181–190. [Google Scholar] [CrossRef]
  16. Liu, D.; Pei, Y.; Zhu, L. Lie bialgebra structures on the twisted Heisenberg-Virasoro algebra. J. Algebra 2012, 359, 35–48. [Google Scholar] [CrossRef] [Green Version]
  17. Fa, H.; Li, J.; Zheng, Y. Lie bialgebra structures on the deformative Schrödinger-Virasoro algebras. J. Math. Phys. 2015, 56, 111706. [Google Scholar] [CrossRef]
  18. Wu, H.; Wang, S.; Yue, X. Lie bialgebras of generalized loop Virasoro algebras. Chin. Ann. Math. Ser. B 2015, 36, 437–446. [Google Scholar] [CrossRef] [Green Version]
  19. Chen, H.; Dai, X.; Yang, H. Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras. Front. Math. China 2019, 14, 239–260. [Google Scholar] [CrossRef]
  20. Song, G.; Su, Y. Dual Lie bialgebras of Witt and Virasoro types. Sci. Sin. Math. 2013, 43, 1039–1102. (In Chinese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Chen, X.; Su, Y.; Zheng, J. Lie Bialgebra Structures on the Lie Algebra L Related to the Virasoro Algebra. Symmetry 2023, 15, 239. https://doi.org/10.3390/sym15010239

AMA Style

Chen X, Su Y, Zheng J. Lie Bialgebra Structures on the Lie Algebra L Related to the Virasoro Algebra. Symmetry. 2023; 15(1):239. https://doi.org/10.3390/sym15010239

Chicago/Turabian Style

Chen, Xue, Yihong Su, and Jia Zheng. 2023. "Lie Bialgebra Structures on the Lie Algebra L Related to the Virasoro Algebra" Symmetry 15, no. 1: 239. https://doi.org/10.3390/sym15010239

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop