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1. Introduction 

It is well known that the Virasoro algebra plays an important role in string theory, 

conformal field theory, the representation theory of Kac–Moody algebras and the theory 

of vertex operator algebras, as well as extended affine Lie algebras (see, e.g., [1–3]). It is 

interesting to study various generalizations of the Virasoro algebra and other closely re-

lated algebras. The Lie algebra L  is an infinite-dimensional Lie algebra with a 

-basis  1 2, , ,m mL E c c m  and the following Lie brackets: 

 

for any ,m n . It is clear that L  contains the Virasoro algebra as its subalgebra. 

Generally, a Lie algebra has a one-dimensional center, but the interesting thing 

about this Lie algebra is that it has a two-dimensional center. Derivations and universal 

central extensions of the centerless Lie algebra L  were studied in [4]. The automor-

phism group of the centerless Lie algebra L  was characterized in [5]. However, Lie 

bialgebra structures on L  are unknown. 

In this paper, we investigate Lie bialgebra structures on L . The notion of Lie bi-

algebras was originally introduced by Drinfeld (see [6,7]) in order to search for the solu-

tions of the Yang–Baxter quantum equation. Since then, Lie bialgebras have attracted 

wide attention (see, e.g., [8–19]). For instance, Lie bialgebra structures on the one-sided 

Witt algebra, the Witt algebra and the Virasoro algebra were proved in [8,10] to be tri-

angular coboundary, while the generalized case was considered in [11]. Furthermore, 
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Abstract: A Lie bialgebra is a vector space endowed simultaneously with the structure of a Lie algebra
and the structure of a Lie coalgebra, and some compatibility condition. Moreover, Lie brackets have
skew symmetry. Because of the close relation between Lie bialgebras and quantum groups, it is
interesting to consider the Lie bialgebra structures on the Lie algebra L related to the Virasoro algebra.
In this paper, the Lie bialgebras on L are investigated by computing Der(L, L⊗ L). It is proved
that all such Lie bialgebras are triangular coboundary, and the first cohomology group H1(L, L⊗ L)

is trivial.
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1. Introduction

It is well known that the Virasoro algebra plays an important role in string theory,
conformal field theory, the representation theory of Kac–Moody algebras and the theory
of vertex operator algebras, as well as extended affine Lie algebras (see, e.g., [1–3]). It
is interesting to study various generalizations of the Virasoro algebra and other closely
related algebras. The Lie algebra L is an infinite-dimensional Lie algebra with a C-basis
{Lm, Em, c1, c2|m ∈ Z} and the following Lie brackets:

[Lm, Ln] = (m− n)Lm+n + δm+n,0
m3 −m

12
c1,

[Em, En] =
m− n

2
Lm+n + δm+n,0

m3 −m
24

c1,

[Lm, En] = (m− n)Em+n + δm+n,0(m3 −m)c2,

for any m, n ∈ Z. It is clear that L contains the Virasoro algebra as its subalgebra.
Generally, a Lie algebra has a one-dimensional center, but the interesting thing about

this Lie algebra is that it has a two-dimensional center. Derivations and universal central
extensions of the centerless Lie algebra L were studied in [4]. The automorphism group of
the centerless Lie algebra L was characterized in [5]. However, Lie bialgebra structures on
L are unknown.

In this paper, we investigate Lie bialgebra structures on L. The notion of Lie bialgebras
was originally introduced by Drinfeld (see [6,7]) in order to search for the solutions of the
Yang–Baxter quantum equation. Since then, Lie bialgebras have attracted wide attention
(see, e.g., [8–19]). For instance, Lie bialgebra structures on the one-sided Witt algebra, the
Witt algebra and the Virasoro algebra were proved in [8,10] to be triangular coboundary,
while the generalized case was considered in [11]. Furthermore, Lie bialgebra structures in
generalized Virasoro-like types were determined in [12]. Motivated by the works mentioned
above, we study Lie bialgebra structures on L. The main result presented in the paper is
Theorem 3.1, which states that every Lie bialgebra structure on L is triangular coboundary.
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This result makes sense since dualizing a triangular coboundary Lie bialgebra may produce
new Lie algebras (see, e.g., [20]). This will be studied in a sequel.

Throughout the paper, the sets of the complex numbers, the integers, the nonzero
integers, and the nonnegative integers are denoted by C, Z, Z∗, and N, respectively.

2. Preliminaries

In this section, we recall the definitions of Lie algebras, Lie coalgebras, Lie bialgebras,
and related results which will be used in Section 3.

Let g be a vector space over the complex field C. Denote by σ the twist map of g⊗ g and
ψ the cyclic map of g⊗ g⊗ g, namely, σ(x1 ⊗ x2) = x2 ⊗ x1, ψ(x1 ⊗ x2 ⊗ x3) = x2 ⊗ x3 ⊗ x1,
for x1, x2, x3 ∈ g.

Then the definitions of a Lie algebra and Lie coalgebra can be reformulated as follows.
A Lie algebra is a pair (g, θ) of a vector space g and a linear map θ : g⊗ g→ g (called the
bracket of g) satisfying the following conditions:

Ker(1⊗ 1− σ) ⊂ Kerθ. (skewsymmetry),

θ(1⊗ θ)(1⊗ 1⊗ 1 + ψ + ψ2) = 0 (Jacobiidentity),

where 1 denotes the identity map on g. A Lie coalgebra is a pair (g, ϑ) of a vector space g and
a linear map ϑ : g→ g⊗ g (called the cobracket of g) satisfying the following conditions:

Imϑ ⊂ Im(1⊗ 1− σ). (anti-commutativity),

(1⊗ 1⊗ 1 + ψ + ψ2)(1⊗ ϑ)ϑ = 0. (Jacobiidentity), (1)

For a Lie algebra g, we shall use [x, y] = θ(x, y) to denote its Lie bracket and use the
symbol “·” to denote the diagonal adjoint action:

x · (∑
i

yi⊗zi) = ∑
i
([x, yi]⊗zi + yi ⊗ [x, zi]), for x, yi, zi ∈ g

Definition 2.1. A Lie bialgebra is a triple(g, θ, ϑ), where (g, θ)is a Lie algebra, (g, ϑ)is a Lie
coalgebra and

ϑθ(x⊗ y) = x · ϑ(y)− y · ϑ(x), for any x, y ∈ g (2)

Denote by U(g) the universal enveloping algebra of g and 1 the identity element of
U(g). For any r = ∑

i
xi⊗yi ∈ g⊗ g, define rij, c(r), i, j = 1, 2, 3 to be the elements of

U(g)⊗U(g)⊗U(g) by

r12 = ∑
i

xi⊗yi ⊗ 1, r13 = ∑
i

xi⊗1⊗ yi, r23 = ∑
i

1⊗xi ⊗ yi

and
c(r) = [r12, r13] + [r12, r23] + [r13, r23]

= ∑
i,j

[xi, xj]⊗ yi ⊗ yj + ∑
i,j

xi ⊗ [yi, xj]⊗ yj + ∑
i,j

xi ⊗ xj ⊗ [yi, yj] (3)

Definition 2.2. (1) A coboundary Lie bialgebra is a 4-tuple (g, θ, ϑ, r), where (g, θ, ϑ)is a Lie
bialgebra and r ∈ Im(1⊗ 1− σ) ⊂ g⊗ g, such that ϑ = ϑris a coboundary of r, where ϑr is
defined by

ϑr(x) = x · r, for any x ∈ g
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(2) A coboundary Lie bialgebra (g, θ, ϑ, r) is called triangular if r satisfies the following
classical Yang–Baxter Equation (CYBE):

c(r) = 0 (4)

(3) An element r ∈ Im(1⊗ 1− σ) ⊂ g⊗ g is said to satisfy the modified Yang–Baxter
Equation (MYBE) if

x · c(r) = 0, for all x ∈ g (5)

The following results come from [6,7,10].

Lemma 2.3. Let g be a Lie algebra and r ∈ Im(1⊗ 1− σ) ⊂ g⊗ g.

(1) The triple (g, [·, ·], ϑr) is a Lie bialgebra if, and only if, r satisfies MYBE.
(2) We have

(1⊗ 1⊗ 1 + ψ + ψ2)(1⊗ ϑ)ϑ(x) = x · c(r) for all x ∈ g

3. Lie Bialgebra Structures on the Lie Algebra L Related to the Virasoro Algebra

In this section, the main result of this paper (Theorem 3.1) is first presented, then
several lemmas and propositions are given to prove Theorem 3.1, finally Theorem 3.1
is proved.

Theorem 3.1. Every Lie bialgebra structure on L is triangular coboundary.

We introduce the grading on L which will be used later. It is obvious that L = ⊕
n∈Z

Ln

is Z-graded with

Ln = SpanC{Ln, En | n ∈ Z} ⊕ δn, 0(Cc1 ⊕Cc2)

Lemma 3.2. Regard L⊗ L⊗ L (the tensor product of three copies of L) as an L-module under
the adjoint diagonal action of L. Suppose r ∈ L⊗ L⊗ L satisfying a · r = 0 for all a ∈ L. Then,
r ∈ Z(L)⊗Z(L)⊗Z(L), where Z(L) is the center of L.

Proof. Write r = ∑
t∈Z

rt as a finite sum with rt ∈ (L⊗ L⊗ L)t. From 0 = L0 · r =− ∑
t∈Z

trt,

we obtain r = r0 ∈ (L⊗ L⊗ L)0. Now we may assume that

r ≡ ∑
m, n ∈ Z

A, B, D ∈ {L, E}

αA, B, D
m, n Am ⊗ Bn ⊗ D−(m+n) + ∑

k ∈ Z, i ∈ {1, 2}
A, B ∈ {L, E}

βA, B
k, i Ak ⊗ B−k ⊗ ci

+ ∑
k ∈ Z, i ∈ {1, 2}

A, B ∈ {L, E}

ξA, B
k, i Ak ⊗ ci ⊗ B−k + ∑

k ∈ Z, i ∈ {1, 2}
A, B ∈ {L, E}

ρA, B
k, i ci ⊗ Ak ⊗ B−k + ∑

i, j ∈ {1, 2}
A ∈ {L, E}

λA
i, j A0 ⊗ ci ⊗ cj

+ ∑
i, j ∈ {1, 2}
A ∈ {L, E}

µA
i, jci ⊗ A0 ⊗ cj + ∑

i, j ∈ {1, 2}
A ∈ {L, E}

τA
i, jci ⊗ cj ⊗ A0 (mod(Z(L)⊗ Z(L)⊗ Z(L)))

where all the coefficients of the tensor products are complex numbers and the sums are all
finite. Fix the normal total order on Z compatible with its additive group structure. Define
the total order on Z×Z by

(m1, n1) > (m2, n2)⇔ m1 > m2, or m1 = m2, n1 > n2
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If αA, B, D
m, n 6= 0 for some m, n ∈ Z, A, B, D ∈ {L, E}, let

(m0, n0) = max
{
(m, n) ∈ Z×Z

∣∣∣ αA, B, D
m, n 6= 0

}
.

Choose any p > 0 such that p−m0 6= 0. Then,

0 6= (p−m0)α
A, B, D
m0, n0

Ap+m0 ⊗ Bn0 ⊗ D−(m0+n0)

is linearly independent with other terms of Lp · r, a contradiction to the fact that Lp · r = 0.
Thus, αA, B, D

m, n = 0 for any m, n ∈ Z, A, B, D ∈ {L, E}. We can similarly prove that
βA, B

k, i = ξA, B
k, i = ρA, B

k, i = 0 for any k ∈ Z, i ∈ {1, 2}, A, B ∈ {L, E}. Moreover, by

0 = L1 · r = ∑
i, j ∈ {1, 2}
A ∈ {L, E}

λA
i, j A1 ⊗ ci ⊗ cj + ∑

i, j ∈ {1, 2}
A ∈ {L, E}

µA
i, jci ⊗ A1 ⊗ cj + ∑

i, j ∈ {1, 2}
A ∈ {L, E}

τA
i, jci ⊗ cj ⊗ A1,

it follows that λA
i, j = µA

i, j = τA
i, j = 0 for any i, j ∈ {1, 2}, A ∈ {L, E}. This completes

the proof. �

Corollary 3.3. An element r ∈ Im(1⊗ 1− σ) ⊂ L⊗ L satisfies CYBE in (4) if, and only if, it
satisfies MYBE in (5).

Proof. It follows immediately from Lemma 3.2 and (3). �

The tensor product V = L⊗ L is a Z-graded L-module under the adjoint diagonal
action of L. The gradation is given by V = ⊕

n∈Z
Vn, where Vn = ∑

p, q ∈ Z
p + q = n

Lp ⊗ Lq.

We shall discuss the derivation algebra Der(L, V). First, let us recall some
basic definitions.

Denote by Der(L, V) the set of derivations D : L→ V which are linear maps satisfying

D([a, b]) = a · D(b)− b · D(a) for a, b ∈ L, (6)

and Inn(L, V) the set of inner derivations uinn, u ∈ V, defined by

uinn : a 7→ a · u for a ∈ L.

A derivation D ∈ Der(L, V) is homogeneous of degree ε ∈ Z if D(Ln) ∈ Vε+n for
all n ∈ Z. Denote by Der(L, V)ε = {D ∈ Der(L, V) | degD = ε} for ε ∈ Z. It is well
known that

H1(L, V) ∼= Der(L, V)/Inn(L, V)

where H1(L, V) is the first cohomology group of the Lie algebra L with coefficients in the
L-module V.

Proposition 3.4. Every derivation from L to V is inner, i.e., H1(L, V) = 0.

Proof. We shall divide the proof of the proposition into several claims.

Claim 1. For every D ∈ Der(L, V), we have

D = ∑
ε∈Z

Dε, whereDε ∈ Der(L, V)ε, (7)
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which holds in the sense that for every a ∈ L, only finitely many Dε(a) 6= 0, and
D(a) = ∑

ε∈Z
Dε(a)(we say that (7) is summable).

For any ε ∈ Z, we define a homogeneous linear map Dε : L→ V of degree ε as
follows: for any p ∈ Z and a ∈ Lp, we can write D(a) = ∑

m∈Z
um, where um ∈ Vm. Then, we

define Dε(a) = uε+p. Obviously Dε ∈ Der(L, V)ε and (7) hold.

Claim 2. If ε ∈ Z∗, then Dε ∈ Inn(L, V).

Denote v = −ε−1Dε(L0) ∈ Vε. Then for any an ∈ Ln, applying Dε to [L0, an] = −nan,
since Dε(an) ∈ Vn+ε and the action of L0 on Vn+ε is the scalar −(n + ε), we have

− (n + ε)Dε(an)− an · Dε(L0) = −nDε(an),

i.e., Dε(an) = vinn(an). Then, Dε = vinn is inner.
For convenience, we shall use “≡” to denote equal modulo Z(L)⊗Z(L) in the following.

Claim 3. D0(L0) ≡ D0(c1) ≡ D0(c2) ≡ 0.

For any n ∈ Z and an ∈ Ln, considering the action of D0 on [L0, an] = −nan and
[an, ci] = 0 (i = 1, 2), respectively, we can deduce that an · D0(L0) = 0 and
an · D0(ci) = 0 (i = 1, 2). By Lemma 3.2, we have D0(L0), D0(ci) ∈ Z(L)⊗Z(L) for
i = 1, 2. Thus Claim 3 is proved.

Claim 4. By replacing D0 by D0 − vinn for some v ∈ V0, we can suppose D0(L) ≡ 0.

For any s ∈ Z∗, t ∈ Z, under modulo Z(L)⊗Z(L), we can write D0(Ls) and D0(Et)
as follows.

D0(Ls) ≡ ∑
i∈Z

αs,iLi ⊗ Ls−i + ∑
i∈Z

βs,iLi ⊗ Es−i +
2
∑

j=1
α

j
sLs ⊗ cj +

2
∑

j=1
β

j
scj ⊗ Ls

+ ∑
i∈Z

ξs,iEi ⊗ Ls−i + ∑
i∈Z

ρs,iEi ⊗ Es−i +
2
∑

j=1
ξ

j
sEs ⊗ cj +

2
∑

j=1
ρ

j
scj ⊗ Es

(8)

D0(Et) ≡ ∑
i∈Z

λt,iLi ⊗ Lt−i + ∑
i∈Z

µt,iLi ⊗ Et−i +
2
∑

j=1
λ

j
tLt ⊗ cj +

2
∑

j=1
µ

j
tcj ⊗ Lt

+ ∑
i∈Z

τt,iEi ⊗ Lt−i + ∑
i∈Z

ηt,iEi ⊗ Et−i +
2
∑

j=1
τ

j
t Et ⊗ cj +

2
∑

j=1
η

j
tcj ⊗ Et

(9)

where αs,i, βs,i, ξs,i, ρs,i, λt,i, µt,i, τt,i, ηt,i, α
j
s, β

j
s, ξ

j
s, ρ

j
s, λ

j
t, µ

j
t, τ

j
t η

j
t ∈ C, s ∈ Z∗, t,i ∈ Z,

j ∈ {1, 2}, {i ∈ Z | αs,i 6= 0} , {i ∈ Z | βs,i 6= 0} ,{i ∈ Z | ξs,i 6= 0} , {i ∈ Z | ρs,i 6= 0} ,
{i ∈ Z | λt,i 6= 0} , {i ∈ Z | µt,i 6= 0} , {i ∈ Z | τt,i 6= 0} and {i ∈ Z | ηt,i 6= 0} are all finite
sets. Note that for any i ∈ Z and j ∈ {1, 2}, we have

(Li ⊗ L−i)inn(L1) = (1− i)L1+i ⊗ L−i + (1 + i)Li ⊗ L1−i, (L0 ⊗ cj)inn(L1) = L1 ⊗ cj,
(Li ⊗ E−i)inn(L1) = (1− i)L1+i ⊗ E−i + (1 + i)Li ⊗ E1−i, (cj ⊗ L0)inn(L1) = cj ⊗ L1,
(Ei ⊗ L−i)inn(L1) = (1− i)E1+i ⊗ L−i + (1 + i)Ei ⊗ L1−i, (E0 ⊗ cj)inn(L1) = E1 ⊗ cj,
(Ei ⊗ E−i)inn(L1) = (1− i)E1+i ⊗ E−i + (1 + i)Ei ⊗ E1−i, (cj ⊗ E0)inn(L1) = cj ⊗ E1.

Denote
N1 = max{ |i| | α1,i 6= 0} , N2 = max{ |i| | β1,i 6= 0}
N3 = max{ |i| | ξ1,i 6= 0} , N4 = max{ |i| | ρ1,i 6= 0}

Applying the induction on
4
∑

j=1
Nj in the above equations, by replacing D0 by D0− vinn,

where v is a combination of some Li ⊗ L−i, Li ⊗ E−i, Ei ⊗ L−i, Ei ⊗ E−i, L0 ⊗ cj, cj ⊗ L0,
E0 ⊗ cj, cj ⊗ E0, we can suppose

α
j
1 = β

j
1 = ξ

j
1 = ρ

j
1 = 0, for j ∈ {1, 2}, α1,i = β1,i = ξ1,i = ρ1,i = 0, for i 6= −1, 2
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Thus we have

D0(L1) ≡ α1,−1L−1 ⊗ L2 + α1,2L2 ⊗ L−1 + β1,−1L−1 ⊗ E2 + β1,2L2 ⊗ E−1

+ ξ1,−1E−1 ⊗ L2 + ξ1,2E2 ⊗ L−1 + ρ1,−1E−1 ⊗ E2 + ρ1,2E2 ⊗ E−1

Considering the action of D0 on [L−1, L1] = −2L0, under modulo Z(L)⊗Z(L), we
deduce that

∑
i∈Z

[(2− i)α−1,i−1 + (2 + i)α−1,i]Li ⊗ L−i + 3α1,−1L−1 ⊗ L1 + 3α1,2L1 ⊗ L−1

+ ∑
i∈Z

[(2− i)β−1,i−1 + (2 + i)β−1,i]Li ⊗ E−i + 3β1,−1L−1 ⊗ E1 + 3β1,2L1 ⊗ E−1

+ ∑
i∈Z

[(2− i)ρ−1,i−1 + (2 + i)ρ−1,i]Ei ⊗ E−i + 3ρ1,−1E−1 ⊗ E1 + 3ρ1,2E1 ⊗ E−1

+
2
∑

j=1
2α

j
−1L0 ⊗ cj +

2
∑

j=1
2β

j
−1cj ⊗ L0 +

2
∑

j=1
2ξ

j
−1E0 ⊗ cj +

2
∑

j=1
2ρ

j
−1cj ⊗ E0 = 0

Comparing the coefficients of L0 ⊗ cj, cj ⊗ L0, E0 ⊗ cj, cj ⊗ E0, we obtain

α
j
−1 = β

j
−1 = ξ

j
−1 = ρ

j
−1 = 0, j ∈ {1, 2}

Comparing the coefficients of Li ⊗ L−i for i ∈ Z, we have

3α−1,−2 + α−1,−1 + 3α1,−1 = 0, α−1,0 + 3α−1,1 + 3α1,2 = 0,
(2− i)α−1,i−1 + (2 + i)α−1,i = 0, for i ∈ Z, i 6= ±1

Since {i ∈ Z | α−1,i 6= 0} is a finite set, we obtain

α−1,−1 + α−1,0 = 0, α−1,i = 0, for i ∈ Z, i 6= −2,−1, 0, 1,

and we have the following relations:

α−1,−1 = −α−1,0, α1,−1 =
1
3

α−1,0 − α−1,−2, α1,2 = −(1
3

α−1,0 + α−1,1).

Comparing the coefficients of Li ⊗ E−i for i ∈ Z, we obtain

3β−1,−2 + β−1,−1 + 3β1,−1 = 0, β−1,0 + 3β−1,1 + 3β1,2 = 0,
(2− i)β−1,i−1 + (2 + i)β−1,i = 0, for i ∈ Z, i 6= ±1

Since {i ∈ Z | β−1,i 6= 0} is a finite set, we have

β−1,−1 = −β−1,0, β−1,i = 0, for i ∈ Z, i 6= −2,−1, 0, 1,
β1,−1 = 1

3 β−1,0 − β−1,−2, β1,2 = −( 1
3 β−1,0 + β−1,1)

Comparing the coefficients of Ei ⊗ L−i for i ∈ Z, we deduce that

3ξ−1,−2 + ξ−1,−1 + 3ξ1,−1 = 0, ξ−1,0 + 3ξ−1,1 + 3ξ1,2 = 0,
(2− i)ξ−1,i−1 + (2 + i)ξ−1,i = 0, for i ∈ Z, .i 6= ±1.

Since {i ∈ Z | ξ−1,i 6= 0} is a finite set, we have the following identities:

ξ−1,−1 = −ξ−1,0, ξ−1,i = 0, for i ∈ Z, i 6= −2,−1, 0, 1,
ξ1,−1 = 1

3 ξ−1,0 − ξ−1,−2, ξ1,2 = −( 1
3 ξ−1,0 + ξ−1,1)

Comparing the coefficients of Ei ⊗ E−i for i ∈ Z, we obtain

3ρ−1,−2 + ρ−1,−1 + 3ρ1,−1 = 0, ρ−1,0 + 3ρ−1,1 + 3ρ1,2 = 0,
(2− i)ρ−1,i−1 + (2 + i)ρ−1,i = 0, for i ∈ Z, i 6= ±1
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Since {i ∈ Z | ρ−1,i 6= 0} is a finite set, we have

ρ−1,−1 = −ρ−1,0, ρ−1,i = 0, for i ∈ Z, i 6= −2,−1, 0, 1,
ρ1,−1 = 1

3 ρ−1,0 − ρ−1,−2, ρ1,2 = −( 1
3 ρ−1,0 + ρ−1,1)

Consequently, we can rewrite

D0(L1) ≡ ( 1
3 α−1,0 − α−1,−2)L−1 ⊗ L2 − ( 1

3 α−1,0 + α−1,1)L2 ⊗ L−1
+( 1

3 β−1,0 − β−1,−2)L−1 ⊗ E2 − ( 1
3 β−1,0 + β−1,1)L2 ⊗ E−1

+( 1
3 ξ−1,0 − ξ−1,−2)E−1 ⊗ L2 − ( 1

3 ξ−1,0 + ξ−1,1)E2 ⊗ L−1
+( 1

3 ρ−1,0 − ρ−1,−2)E−1 ⊗ E2 − ( 1
3 ρ−1,0 + ρ−1,1)E2 ⊗ E−1

D0(L−1) ≡ α−1,−2L−2 ⊗ L1 − α−1,0L−1 ⊗ L0 + α−1,0L0 ⊗ L−1 + α−1,1L1 ⊗ L−2
+β−1,−2L−2 ⊗ E1 − β−1,0L−1 ⊗ E0 + β−1,0L0 ⊗ E−1 + β−1,1L1 ⊗ E−2
+ξ−1,−2E−2 ⊗ L1 − ξ−1,0E−1 ⊗ L0 + ξ−1,0E0 ⊗ L−1 + ξ−1,1E1 ⊗ L−2
+ρ−1,−2E−2 ⊗ E1 − ρ−1,0E−1 ⊗ E0 + ρ−1,0E0 ⊗ E−1 + ρ−1,1E1 ⊗ E−2

Considering the action of D0 on [L2, L−1] = 3L1, under modulo Z(L)⊗Z(L),
we obtain

α−1,−2(4L0 +
1
2 c1)⊗ L1 + α−1,−2L−2 ⊗ L3 − 3α−1,0L1 ⊗ L0 − 2α−1,0L−1 ⊗ L2

+2α−1,0L2 ⊗ L−1 + 3α−1,0L0 ⊗ L1 + α−1,1L3 ⊗ L−2 + α−1,1L1 ⊗ (4L0 +
1
2 c1)

+β−1,−2(4L0 +
1
2 c1)⊗ E1 + β−1,−2L−2 ⊗ E3 − 3β−1,0L1 ⊗ E0 − 2β−1,0L−1 ⊗ E2

+2β−1,0L2 ⊗ E−1 + 3β−1,0L0 ⊗ E1 + β−1,1L3 ⊗ E−2 + β−1,1L1 ⊗ (4E0 + 6c2)
+ξ−1,−2(4E0 + 6c2)⊗ L1 + ξ−1,−2E−2 ⊗ L3 − 3ξ−1,0E1 ⊗ L0 − 2ξ−1,0E−1 ⊗ L2

+2ξ−1,0E2 ⊗ L−1 + 3ξ−1,0E0 ⊗ L1 + ξ−1,1E3 ⊗ L−2 + ξ−1,1E1 ⊗ (4L0 +
1
2 c1)

+ρ−1,−2(4E0 + 6c2)⊗ E1 + ρ−1,−2E−2 ⊗ E3 − 3ρ−1,0E1 ⊗ E0 − 2ρ−1,0E−1 ⊗ E2
+2ρ−1,0E2 ⊗ E−1 + 3ρ−1,0E0 ⊗ E1 + ρ−1,1E3 ⊗ E−2 + ρ−1,1E1 ⊗ (4E0 + 6c2)

+ ∑
i∈Z

(1 + i)α2,iLi−1 ⊗ L2−i + ∑
i∈Z

(3− i)α2,iLi ⊗ L1−i + ∑
i∈Z

(1 + i)β2,iLi−1 ⊗ E2−i

+ ∑
i∈Z

(3− i)β2,iLi ⊗ E1−i + ∑
i∈Z

(1 + i)ξ2,iEi−1 ⊗ L2−i + ∑
i∈Z

(3− i)ξ2,iEi ⊗ L1−i

+ ∑
i∈Z

(1 + i)ρ2,iEi−1 ⊗ E2−i + ∑
i∈Z

(3− i)ρ2,iEi ⊗ E1−i +
2
∑

j=1
3α

j
2L1 ⊗ cj +

2
∑

j=1
3β

j
2cj ⊗ L1

+
2
∑

j=1
3ξ

j
2E1 ⊗ cj +

2
∑

j=1
3ρ

j
2cj ⊗ E1 − (α−1,0 − 3α−1,−2)L−1 ⊗ L2 + (α−1,0 + 3α−1,1)L2 ⊗ L−1

−(β−1,0 − 3β−1,−2)L−1 ⊗ E2 + (β−1,0 + 3β−1,1)L2 ⊗ E−1 − (ξ−1,0 − 3ξ−1,−2)E−1 ⊗ L2
+(ξ−1,0 + 3ξ−1,1)E2 ⊗ L−1 − (ρ−1,0 − 3ρ−1,−2)E−1 ⊗ E2 + (ρ−1,0 + 3ρ−1,1)E2 ⊗ E−1 = 0

For j ∈ {1, 2}, comparing the coefficients of L1 ⊗ cj, cj ⊗ L1, E1 ⊗ cj, cj ⊗ E1 in the
above equation, we have

α1
2 = − 1

6 α−1,1, α2
2 = −2β−1,1, β1

2 = − 1
6 α−1,−2, β2

2 = −2ξ−1,−2,
ξ1

2 = − 1
6 ξ−1,1, ξ2

2 = −2ρ−1,1, ρ1
2 = − 1

6 β−1,−2, ρ2
2 = −2ρ−1,−2

For any i ∈ Z, comparing the coefficients of Li ⊗ L1−i, Li ⊗ E1−i, Ei ⊗ L1−i and Ei ⊗
E1−i, respectively, and noting that {i ∈ Z | α2,i 6= 0} ,{i ∈ Z | β2,i 6= 0} , {i ∈ Z | ξ2,i 6= 0}
and {i ∈ Z | ρ2,i 6= 0} are finite sets, we deduce that

α−1,−2 + 5α2,−2 = 0, 3α−1,−2 − 3α−1,0 + α2,0 + 4α2,−1 = 0, 4α−1,−2 + 3α−1,0 + 2α2,1 + 3α2,0 = 0,
4α−1,1 − 3α−1,0 + 3α2,2 + 2α2,1 = 0, 3α−1,0 + 3α−1,1 + 4α2,3 + α2,2 = 0, α−1,1 + 5α2,4 = 0, α2,i = 0
β−1,−2 + 5β2,−2 = 0, 3β−1,−2 − 3β−1,0 + β2,0 + 4β2,−1 = 0, 4β−1,−2 + 3β−1,0 + 2β2,1 + 3β2,0 = 0,

4β−1,1 − 3β−1,0 + 3β2,2 + 2β2,1 = 0, 3β−1,0 + 3β−1,1 + 4β2,3 + β2,2 = 0, β−1,1 + 5β2,4 = 0, β2,i = 0
ξ−1,−2 + 5ξ2,−2 = 0, 3ξ−1,−2 − 3ξ−1,0 + ξ2,0 + 4ξ2,−1 = 0, 4ξ−1,−2 + 3ξ−1,0 + 2ξ2,1 + 3ξ2,0 = 0,

4ξ−1,1 − 3ξ−1,0 + 3ξ2,2 + 2ξ2,1 = 0, 3ξ−1,0 + 3ξ−1,1 + 4ξ2,3 + ξ2,2 = 0, ξ−1,1 + 5ξ2,4 = 0, ξ2,i = 0
ρ−1,−2 + 5ρ2,−2 = 0, 3ρ−1,−2 − 3ρ−1,0 + ρ2,0 + 4ρ2,−1 = 0, 4ρ−1,−2 + 3ρ−1,0 + 2ρ2,1 + 3ρ2,0 = 0,

4ρ−1,1 − 3ρ−1,0 + 3ρ2,2 + 2ρ2,1 = 0, 3ρ−1,0 + 3ρ−1,1 + 4ρ2,3 + ρ2,2 = 0, ρ−1,1 + 5ρ2,4 = 0, ρ2,i = 0
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for i 6= −1, 0, 1, 2, 3. Then, we have the following identities:

α−1,−2 = −5α2,−2 = 0, α−1,1 = −5α2,4 = 0, α2,−1 = 3
4 α−1,0 − 1

4 α2,0,
α2,1 = − 3

2 α−1,0 − 3
2 α2,0, α2,2 = 2α−1,0 + α2,0, α2,3 = − 5

4 α−1,0 − 1
4 α2,0,

β−1,−2 = −5β2,−2 = 0, β−1,1 = −5β2,4 = 0, β2,−1 = 3
4 β−1,0 − 1

4 β2,0

β2,1 = − 3
2 β−1,0 − 3

2 β2,0, β2,2 = 2β−1,0 + β2,0, β2,3 = − 5
4 β−1,0 − 1

4 β2,0,
ξ−1,−2 = −5ξ2,−2 = 0, ξ−1,1 = −5ξ2,4 = 0, ξ2,−1 = 3

4 ξ−1,0 − 1
4 ξ2,0

ξ2,1 = − 3
2 ξ−1,0 − 3

2 ξ2,0, ξ2,2 = 2ξ−1,0 + ξ2,0, ξ2,3 = − 5
4 ξ−1,0 − 1

4 ξ2,0
ρ−1,−2 = −5ρ2,−2 = 0, ρ−1,1 = −5ρ2,4 = 0, ρ2,−1 = 3

4 ρ−1,0 − 1
4 ρ2,0,

ρ2,1 = − 3
2 ρ−1,0 − 3

2 ρ2,0, ρ2,2 = 2ρ−1,0 + ρ2,0, ρ2,3 = − 5
4 ρ−1,0 − 1

4 ρ2,0
α1

2 = α2
2 = β1

2 = β2
2 = ξ1

2 = ξ2
2 = ρ1

2 = ρ2
2 = 0

Thus we can rewrite

D0(L1) ≡ 1
3 α−1,0L−1 ⊗ L2 − 1

3 α−1,0L2 ⊗ L−1 +
1
3 β−1,0L−1 ⊗ E2 − 1

3 β−1,0L2 ⊗ E−1
+ 1

3 ξ−1,0E−1 ⊗ L2 − 1
3 ξ−1,0E2 ⊗ L−1 +

1
3 ρ−1,0E−1 ⊗ E2 − 1

3 ρ−1,0E2 ⊗ E−1,
D0(L−1) ≡ −α−1,0L−1 ⊗ L0 + α−1,0L0 ⊗ L−1 − β−1,0L−1 ⊗ E0 + β−1,0L0 ⊗ E−1

−ξ−1,0E−1 ⊗ L0 + ξ−1,0E0 ⊗ L−1 − ρ−1,0E−1 ⊗ E0 + ρ−1,0E0 ⊗ E−1,
D0(L2) ≡ ( 3

4 α−1,0 − 1
4 α2,0)L−1 ⊗ L3 + α2,0L0 ⊗ L2 − ( 3

2 α−1,0 +
3
2 α2,0)L1 ⊗ L1

+(2α−1,0 + α2,0)L2 ⊗ L0 − ( 5
4 α−1,0 +

1
4 α2,0)L3 ⊗ L−1

+( 3
4 β−1,0 − 1

4 β2,0)L−1 ⊗ E3 + β2,0L0 ⊗ E2 − ( 3
2 β−1,0 +

3
2 β2,0)L1 ⊗ E1

+(2β−1,0 + β2,0)L2 ⊗ E0 − ( 5
4 β−1,0 +

1
4 β2,0)L3 ⊗ E−1

+( 3
4 ξ−1,0 − 1

4 ξ2,0)E−1 ⊗ L3 + ξ2,0E0 ⊗ L2 − ( 3
2 ξ−1,0 +

3
2 ξ2,0)E1 ⊗ L1

+(2ξ−1,0 + ξ2,0)E2 ⊗ L0 − ( 5
4 ξ−1,0 +

1
4 ξ2,0)E3 ⊗ L−1

+( 3
4 ρ−1,0 − 1

4 ρ2,0)E−1 ⊗ E3 + ρ2,0E0 ⊗ E2 − ( 3
2 ρ−1,0 +

3
2 ρ2,0)E1 ⊗ E1

+(2ρ−1,0 + ρ2,0)E2 ⊗ E0 − ( 5
4 ρ−1,0 +

1
4 ρ2,0)E3 ⊗ E−1

Considering the action of D0 on [L1, L−2] = 3L−1, under modulo Z(L)⊗Z(L),
we have

∑
i∈Z

(1− i)α−2,iL1+i ⊗ L−2−i + ∑
i∈Z

(3 + i)α−2,iLi ⊗ L−1−i + ∑
i∈Z

(1− i)β−2,iL1+i ⊗ E−2−i

+ ∑
i∈Z

(3 + i)β−2,iLi ⊗ E−1−i + ∑
i∈Z

(1− i)ξ−2,iE1+i ⊗ L−2−i + ∑
i∈Z

(3 + i)ξ−2,iEi ⊗ L−1−i

+ ∑
i∈Z

(1− i)ρ−2,iE1+i ⊗ E−2−i + ∑
i∈Z

(3 + i)ρ−2,iEi ⊗ E−1−i +
2
∑

j=1
3α

j
−2L−1 ⊗ cj

+
2
∑

j=1
3β

j
−2cj ⊗ L−1 +

2
∑

j=1
3ξ

j
−2E−1 ⊗ cj +

2
∑

j=1
3ρ

j
−2cj ⊗ E−1 +

1
3 α−1,0L−3 ⊗ L2

+ 4
3 α−1,0L−1 ⊗ L0 +

1
6 α−1,0L−1 ⊗ c1 − 4

3 α−1,0L0 ⊗ L−1 − 1
6 α−1,0c1 ⊗ L−1 − 1

3 α−1,0L2 ⊗ L−3
+ 1

3 β−1,0L−3 ⊗ E2 +
4
3 β−1,0L−1 ⊗ E0 + 2β−1,0L−1 ⊗ c2 − 4

3 β−1,0L0 ⊗ E−1 − 1
6 β−1,0c1 ⊗ E−1

− 1
3 β−1,0L2 ⊗ E−3 +

1
3 ξ−1,0E−3 ⊗ L2 +

4
3 ξ−1,0E−1 ⊗ L0 +

1
6 ξ−1,0E−1 ⊗ c1 − 4

3 ξ−1,0E0 ⊗ L−1
−2ξ−1,0c2 ⊗ L−1 − 1

3 ξ−1,0E2 ⊗ L−3 +
1
3 ρ−1,0E−3 ⊗ E2 +

4
3 ρ−1,0E−1 ⊗ E0 + 2ρ−1,0E−1 ⊗ c2

− 4
3 ρ−1,0E0 ⊗ E−1 − 2ρ−1,0c2 ⊗ E−1 − 1

3 ρ−1,0E2 ⊗ E−3 + 3α−1,0L−1 ⊗ L0 − 3α−1,0L0 ⊗ L−1
+3β−1,0L−1 ⊗ E0 − 3β−1,0L0 ⊗ E−1 + 3ξ−1,0E−1 ⊗ L0 − 3ξ−1,0E0 ⊗ L−1 + 3ρ−1,0E−1 ⊗ E0

−3ρ−1,0E0 ⊗ E−1 = 0

For any i ∈ Z and j ∈ {1, 2}, comparing the coefficients of Li ⊗ L−1−i, Li ⊗ E−1−i,Ei ⊗
L−1−i, Ei ⊗ E−1−i, L−1 ⊗ cj, cj ⊗ L−1, E−1 ⊗ cj and cj ⊗ E−1 in the above equation, and not-
ing that {i ∈ Z | α−2,i 6= 0} , {i ∈ Z | β−2,i 6= 0} , {i ∈ Z | ξ−2,i 6= 0} and {i ∈ Z | ρ−2,i 6= 0}
are finite sets, we obtain
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α−1,0 = 0, α−2,−3 = − 1
4 α−2,0, α−2,−2 = α−2,0, α−2,−1 = − 3

2 α−2,0, α−2,1 = − 1
4 α−2,0, α−2,i = 0,

β−1,0 = 0, β−2,−3 = − 1
4 β−2,0, β−2,−2 = β−2,0, β−2,−1 = − 3

2 β−2,0, β−2,1 = − 1
4 β−2,0, β−2,i = 0,

ξ−1,0 = 0, ξ−2,−3 = − 1
4 ξ−2,0, ξ−2,−2 = ξ−2,0, ξ−2,−1 = − 3

2 ξ−2,0, ξ−2,1 = − 1
4 ξ−2,0, ξ−2,i = 0, ρ−1,0 = 0,

ρ−2,−3 = − 1
4 ρ−2,0, ρ−2,−2 = ρ−2,0, ρ−2,−1 = − 3

2 ρ−2,0, ρ−2,1 = − 1
4 ρ−2,0, ρ−2,i = 0

α1
−2 = − 1

18 α−1,0 = 0, α2
−2 = − 2

3 β−1,0 = 0, β1
−2 = 1

18 α−1,0 = 0, β2
−2 = 2

3 ξ−1,0 = 0
ξ1
−2 = − 1

18 ξ−1,0 = 0, ξ2
−2 = − 2

3 ρ−1,0 = 0, ρ1
−2 = 1

18 β−1,0 = 0,
ρ2
−2 = 2

3 ρ−1,0 = 0

for i 6= −3,−2,−1, 0, 1. Consequently, we can rewrite

D0(L1) ≡ D0(L−1) ≡ 0,
D0(L2) ≡ − 1

4 α2,0L−1 ⊗ L3 + α2,0L0 ⊗ L2 − 3
2 α2,0L1 ⊗ L1 + α2,0L2 ⊗ L0

− 1
4 α2,0L3 ⊗ L−1 − 1

4 β2,0L−1 ⊗ E3 + β2,0L0 ⊗ E2 − 3
2 β2,0L1 ⊗ E1

+β2,0L2 ⊗ E0 − 1
4 β2,0L3 ⊗ E−1 − 1

4 ξ2,0E−1 ⊗ L3 + ξ2,0E0 ⊗ L2
− 3

2 ξ2,0E1 ⊗ L1 + ξ2,0E2 ⊗ L0 − 1
4 ξ2,0E3 ⊗ L−1 − 1

4 ρ2,0E−1 ⊗ E3
+ρ2,0E0 ⊗ E2 − 3

2 ρ2,0E1 ⊗ E1 + ρ2,0E2 ⊗ E0 − 1
4 ρ2,0E3 ⊗ E−1,

D0(L−2) ≡ − 1
4 α−2,0L−3 ⊗ L1 + α−2,0L−2 ⊗ L0 − 3

2 α−2,0L−1 ⊗ L−1 + α−2,0L0 ⊗ L−2
− 1

4 α−2,0L1 ⊗ L−3 − 1
4 β−2,0L−3 ⊗ E1 + β−2,0L−2 ⊗ E0 − 3

2 β−2,0L−1 ⊗ E−1
+β−2,0L0 ⊗ E−2 − 1

4 β−2,0L1 ⊗ E−3 − 1
4 ξ−2,0E−3 ⊗ L1 + ξ−2,0E−2 ⊗ L0

− 3
2 ξ−2,0E−1 ⊗ L−1 + ξ−2,0E0 ⊗ L−2 − 1

4 ξ−2,0E1 ⊗ L−3 − 1
4 ρ−2,0E−3 ⊗ E1

+ρ−2,0E−2 ⊗ E0 − 3
2 ρ−2,0E−1 ⊗ E−1 + ρ−2,0E0 ⊗ E−2 − 1

4 ρ−2,0E1 ⊗ E−3

Applying D0 to [L2, L−2] = 4L0 +
1
2 c1, we have

α−2,0 = −α2,0, β−2,0 = −β2,0, ξ−2,0 = −ξ2,0, ρ−2,0 = −ρ2,0

Denote
v = −1

4
α2,0(L−1 ⊗ L1 − 2L0 ⊗ L0 + L1 ⊗ L−1)

− 1
4 β2,0(L−1 ⊗ E1 − 2L0 ⊗ E0 + L1 ⊗ E−1)

− 1
4 ξ2,0(E−1 ⊗ L1 − 2E0 ⊗ L0 + E1 ⊗ L−1)

− 1
4

ρ2,0(E−1 ⊗ E1 − 2E0 ⊗ E0 + E1 ⊗ E−1)

Replacing D0 by D0 − vinn, we obtain

D0(L±1) ≡ D0(L±2) ≡ 0

Since L has a Virasoro subalgebra L′ := SpanC{Lm |m ∈ Z}, which can be generated
by the set {L−2, L−1, L1, L2}, then we have

D0(Lm) ≡ 0, for any m ∈ Z (10)

Considering the action of D0 on [L1, E1] = 0 and [L−1, E−1] = 0, respectively, under
modulo Z(L)⊗Z(L), we obtain

λ1,i = µ1,i = τ1,i = η1,i = 0, for i 6= 0, 1
λ1,0 + λ1,1 = µ1,0 + µ1,1 = τ1,0 + τ1,1 = η1,0 + η1,1 = 0,

λ−1,i = µ−1,i = τ−1,i = η−1,i = 0, for i 6= 0,−1,
λ−1,0 + λ−1,−1 = µ−1,0 + µ−1,−1 = τ−1,0 + τ−1,−1 = η−1,0 + η−1,−1 = 0



Symmetry 2023, 15, 239 10 of 13

Then, we can write

D0(E1) ≡ λ1,0L0 ⊗ L1 − λ1,0L1 ⊗ L0 + µ1,0L0 ⊗ E1 − µ1,0L1 ⊗ E0
+τ1,0E0 ⊗ L1 − τ1,0E1 ⊗ L0 + η1,0E0 ⊗ E1 − η1,0E1 ⊗ E0

+
2
∑

j=1
λ

j
1L1 ⊗ cj +

2
∑

j=1
µ

j
1cj ⊗ L1 +

2
∑

j=1
τ

j
1E1 ⊗ cj +

2
∑

j=1
η

j
1cj ⊗ E1,

D0(E−1) ≡ −λ−1,0L−1 ⊗ L0 + λ−1,0L0 ⊗ L−1 − µ−1,0L−1 ⊗ E0 + µ−1,0L0 ⊗ E−1
−τ−1,0E−1 ⊗ L0 + τ−1,0E0 ⊗ L−1 − η−1,0E−1 ⊗ E0 + η−1,0E0 ⊗ E−1

+
2
∑

j=1
λ

j
−1L−1 ⊗ cj +

2
∑

j=1
µ

j
−1cj ⊗ L−1 +

2
∑

j=1
τ

j
−1E−1 ⊗ cj +

2
∑

j=1
η

j
−1cj ⊗ E−1

Applying D0 to [L2, E−1] = 3E1, under modulo Z(L)⊗Z(L), we obtain

λ1,0 = λ−1,0 = µ1,0 = µ−1,0 = τ1,0 = τ−1,0 = η1,0 = η−1,0 = 0,
λ

j
−1 = λ

j
1, µ

j
−1 = µ

j
1, τ

j
−1 = τ

j
1, η

j
−1 = η

j
1, for j ∈ {1, 2}

Thus, we can rewrite

D0(E1) ≡
2
∑

j=1
λ

j
1L1 ⊗ cj +

2
∑

j=1
µ

j
1cj ⊗ L1 +

2
∑

j=1
τ

j
1E1 ⊗ cj +

2
∑

j=1
η

j
1cj ⊗ E1,

D0(E−1) ≡
2
∑

j=1
λ

j
1L−1 ⊗ cj +

2
∑

j=1
µ

j
1cj ⊗ L−1 +

2
∑

j=1
τ

j
1E−1 ⊗ cj +

2
∑

j=1
η

j
1cj ⊗ E−1

Applying D0 to [E1, E−1] = L0, under modulo Z(L)⊗Z(L), we have

λ
j
1 = µ

j
1 = τ

j
1 = η

j
1 = 0, for j ∈ {1, 2}.

Then,
D0(E1) ≡ D0(E−1) ≡ 0 (11)

Since the Lie algebra L is generated by the set {L−2, L−1, L1, L2, E1}, using (10) and
(11), we obtain D0(L) ≡ 0. Then, Claim 4 is proved.

Claim 5. L is perfect, i.e., [L,L] = L.

By Lie brackets of L, we have

Lm = 1
m [Lm, L0] ∈ [L,L] for m 6= 0, L0 = 1

2 [L1, L−1] ∈ [L,L],
c1 = 2[L2, L−2]− 8L0 ∈ [L,L], Em = 1

m [Em, L0] ∈ [L,L] for m 6= 0,
E0 = 1

2 [L1, E−1] ∈ [L,L], c2 = 1
6 [L2, E−2]− 2

3 E0 ∈ [L,L]

Note that {Lm, Em, c1, c2|m ∈ Z} is a C-basis of the Lie algebra L. Thus L is perfect.
Claim 5 is proved.

Claim 6. D0 = 0.

It is proved that D0(L)⊆ Z(L)⊗Z(L) in Claim 4. Because L = [L, L] by Claim 5, we
have D0(L) ⊆ L · D0(L) = 0 . Then, Claim 6 is proved.

Claim 7. For every D ∈ Der(L, V),D = ∑
ε∈Z

Dε is a finite sum, where Dε ∈ Der(L, V)ε.

According to the above claims, for any ε ∈ Z, we can suppose Dε ∈ (uε)inn for some
uε ∈ Vε. If {ε ∈ Z∗ | uε 6= 0} is an infinite set, then we have D(L0) = − ∑

ε∈Z∗
εuε is an

infinite sum, a contradiction with the fact that D ∈ Der(L, V). This proves Claim 7 and
Proposition 3.4. �

Lemma 3.5. Suppose ω ∈ V such that a · ω ∈ Im(1 ⊗ 1 − σ) for all a ∈ L. Thenω ∈
Im(1⊗ 1− σ).
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Proof. It is easy to see that L · Im(1⊗ 1− σ) ⊂ Im(1⊗ 1− σ). After a few of steps in each
of which ω is replaced by ω − γ for some γ ∈ Im(1⊗ 1− σ), we shall prove that ω = 0
and thus ω ∈ Im(1⊗ 1− σ). We can write ω = ∑

k∈Z
ωk, where ωk ∈ Vk. Clearly,

ω ∈ Im(1⊗ 1− σ)⇔ ωk ∈ Im(1⊗ 1− σ) for all k ∈ Z

Then, without loss of generality, we may assume that ω = ωk is homogeneous. For
any k 6= 0, ωk = − 1

k L0 ·ωk ∈ Im(1⊗ 1− σ). Thus, we can suppose ω = ω0 ∈ V0. Now ω
can be written as

ω = ∑
i∈Z

αiLi ⊗ L−i + ∑
i∈Z

βiLi ⊗ E−i + ∑
i∈Z

ξiEi ⊗ L−i + ∑
i∈Z

ρiEi ⊗ E−i

+
2
∑

j=1
α

j
0L0 ⊗ cj +

2
∑

j=1
β

j
0cj ⊗ L0 +

2
∑

j=1
ξ

j
0E0 ⊗ cj +

2
∑

j=1
ρ

j
0cj ⊗ E0

where αi, βi, ξi, ρi, α
j
0, β

j
0, ξ

j
0, ρ

j
0 ∈ C, for i ∈ Z, j ∈ {1, 2}; {i ∈ Z | αi 6= 0} , {i ∈ Z | βi 6= 0} ,

{i ∈ Z | ξi 6= 0} and {i ∈ Z | ρi 6= 0} are finite sets. For any i ∈ Z, since γ1,i := Li ⊗ L−i −
L−i ⊗ Li, γ2,i := Li ⊗ E−i − E−i ⊗ Li, γ3,i := Ei ⊗ E−i − E−i ⊗ Ei,γ1 := L0 ⊗ c1 − c1 ⊗ L0,
γ2 := L0 ⊗ c2 − c2 ⊗ L0, γ3 := E0 ⊗ c1 − c1 ⊗ E0, γ4 := E0 ⊗ c2 − c2 ⊗ E0 are all in
Im(1 ⊗ 1 − σ), by replacing ω by ω − γ, where γ is a combination of some γ1,i, γ2,i,
γ3,i, γ1, γ2, γ3 and γ4, one can suppose

ξi = β
j
0 = ρ

j
0 = 0, for any i ∈ Z, j ∈ {1, 2} (12)

αi , ρi 6= 0⇒ i ≥ 0 (13)

Thus ω has the following form

ω = ∑
i∈N

αiLi ⊗ L−i + ∑
i∈Z

βiLi ⊗ E−i + ∑
i∈N

ρiEi ⊗ E−i +
2

∑
j=1

α
j
0L0 ⊗ cj +

2

∑
j=1

ξ
j
0E0 ⊗ cj

Suppose that there exists i > 0 such that αi 6= 0. Let j > 0 be such that j 6= i. It is
easy to see that the term Li+j ⊗ L−i appears in Lj ·ω. However the term L−i ⊗ Li+j cannot
appear in Lj ·ω by (13), a contradiction with the fact that Lj ·ω ∈ Im(1⊗ 1− σ). Thus, we
can further suppose that αi = 0 for any i ∈ Z∗. Similarly, we also can suppose that ρi = 0
for any i ∈ Z∗. Then, ω can be written as

ω = α0L0 ⊗ L0 + ∑
i∈Z

βiLi ⊗ E−i + ρ0E0 ⊗ E0 +
2

∑
j=1

α
j
0L0 ⊗ cj +

2

∑
j=1

ξ
j
0E0 ⊗ cj

Noting that Im(1⊗ 1− σ) ⊂ Ker(1⊗ 1 + σ) and using that L · ω ∈ Im(1⊗ 1− σ),
we have

0 = (1⊗ 1 + σ)L1 ·ω
= 2α0(L1 ⊗ L0 + L0 ⊗ L1) + 2ρ0(E1 ⊗ E0 + E0 ⊗ E1)

+
2
∑

j=1
α

j
0(L1 ⊗ cj + cj ⊗ L1) +

2
∑

j=1
ξ

j
0(E1 ⊗ cj + cj ⊗ E1)

+ ∑
i∈Z

[(2− i)βi−1 + (1 + i)βi]Li ⊗ E1−i + ∑
i∈Z

[(2− i)βi−1 + (1 + i)βi]E1−i ⊗ Li

Since {i ∈ Z | βi 6= 0} is a finite set, comparing the coefficient of the tensor products
in the above equation, it follows that

α0 = ρ0 = α
j
0 = ξ

j
0 = βi = 0, for j ∈ {1, 2}, i ∈ Z,

i 6= −1, 0, 1
β0 = −2β−1 = −2β1
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Thus ω has the following form

ω = β1(L−1 ⊗ E1 − 2L0 ⊗ E0 + L1 ⊗ E−1)

Considering the computation

0 = (1⊗ 1 + σ)L2 ·ω.

= β1(1⊗ 1 + σ)[6L1 ⊗ E1 + L−1 ⊗ E3 − 4L2 ⊗ E0 − 4L0 ⊗ E2 + L3 ⊗ E−1]

it follows immediately that β1 = 0. Thus ω = 0. This completes the proof. �

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Let (L, [·, ·], ϑ) be a Lie bialgebra structure on L. By (2) and (6),
ϑ ∈ Der(L, V). By Proposition 3.4, Der(L, V) = Inn(L, V). Thus, there exists r ∈ V such
that ϑ = ϑr, where ϑr is defined by (1) of Definition 2.2. Namely, ϑ(a) = a · r for any a ∈ L.
By (1), Imϑ ⊂ Im(1⊗ 1− σ). Hence, by Lemma 3.5, r ∈ Im(1⊗ 1− σ). By Lemma 2.3,
a · c(r) = 0, for all a ∈ L. By Corollary 3.3, c(r) = 0. Therefore, (1) and (2) of Definition 2.2
imply that (L, [·, ·], ϑ) is a triangular coboundary Lie bialgebra. �
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