Article

Lie Bialgebra Structures on the Lie Algebra \mathfrak{L} Related to the Virasoro Algebra

Xue Chen *, Yihong Su and Jia Zheng
School of Mathematics and Statistics, Xiamen University of Technology, Xiamen 361024, China
* Correspondence: 2013111001@xmut.edu.cn

Citation: Chen, X.; Su, Y.; Zheng, J. Lie Bialgebra Structures on the Lie Algebra \mathfrak{L} Related to the Virasoro Algebra. Symmetry 2023, 15, 239. https://doi.org/10.3390/ sym15010239

Academic Editor: Alexei Kanel-Belov
Received: 17 December 2022
Revised: 10 January 2023
Accepted: 11 January 2023
Published: 15 January 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

A Lie bialgebra is a vector space endowed simultaneously with the structure of a Lie algebra and the structure of a Lie coalgebra, and some compatibility condition. Moreover, Lie brackets have skew symmetry. Because of the close relation between Lie bialgebras and quantum groups, it is interesting to consider the Lie bialgebra structures on the Lie algebra \mathfrak{L} related to the Virasoro algebra. In this paper, the Lie bialgebras on \mathfrak{L} are investigated by computing $\operatorname{Der}(\mathfrak{L}, \mathfrak{L} \otimes \mathfrak{L})$. It is proved that all such Lie bialgebras are triangular coboundary, and the first cohomology group $H^{1}(\mathfrak{L}, \mathfrak{L} \otimes \mathfrak{L})$ is trivial.

Keywords: Lie bialgebras; Yang-Baxter equation; the Lie algebra

1. Introduction

It is well known that the Virasoro algebra plays an important role in string theory, conformal field theory, the representation theory of Kac-Moody algebras and the theory of vertex operator algebras, as well as extended affine Lie algebras (see, e.g., [1-3]). It is interesting to study various generalizations of the Virasoro algebra and other closely related algebras. The Lie algebra \mathfrak{L} is an infinite-dimensional Lie algebra with a \mathbb{C}-basis $\left\{L_{m}, E_{m}, c_{1}, c_{2} \mid m \in \mathbb{Z}\right\}$ and the following Lie brackets:

$$
\begin{gathered}
{\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\delta_{m+n, 0} \frac{m^{3}-m}{12} c_{1}} \\
{\left[E_{m}, E_{n}\right]=\frac{m-n}{2} L_{m+n}+\delta_{m+n, 0} \frac{m^{3}-m}{24} c_{1}} \\
{\left[L_{m}, E_{n}\right]=(m-n) E_{m+n}+\delta_{m+n, 0}\left(m^{3}-m\right) c_{2}}
\end{gathered}
$$

for any $m, n \in \mathbb{Z}$. It is clear that \mathfrak{L} contains the Virasoro algebra as its subalgebra.
Generally, a Lie algebra has a one-dimensional center, but the interesting thing about this Lie algebra is that it has a two-dimensional center. Derivations and universal central extensions of the centerless Lie algebra \mathfrak{L} were studied in [4]. The automorphism group of the centerless Lie algebra \mathfrak{L} was characterized in [5]. However, Lie bialgebra structures on \mathfrak{L} are unknown.

In this paper, we investigate Lie bialgebra structures on \mathfrak{L}. The notion of Lie bialgebras was originally introduced by Drinfeld (see [6,7]) in order to search for the solutions of the Yang-Baxter quantum equation. Since then, Lie bialgebras have attracted wide attention (see, e.g., [8-19]). For instance, Lie bialgebra structures on the one-sided Witt algebra, the Witt algebra and the Virasoro algebra were proved in $[8,10]$ to be triangular coboundary, while the generalized case was considered in [11]. Furthermore, Lie bialgebra structures in generalized Virasoro-like types were determined in [12]. Motivated by the works mentioned above, we study Lie bialgebra structures on \mathfrak{L}. The main result presented in the paper is Theorem 3.1, which states that every Lie bialgebra structure on \mathfrak{L} is triangular coboundary.

This result makes sense since dualizing a triangular coboundary Lie bialgebra may produce new Lie algebras (see, e.g., [20]). This will be studied in a sequel.

Throughout the paper, the sets of the complex numbers, the integers, the nonzero integers, and the nonnegative integers are denoted by $\mathbb{C}, \mathbb{Z}, \mathbb{Z}^{*}$, and \mathbb{N}, respectively.

2. Preliminaries

In this section, we recall the definitions of Lie algebras, Lie coalgebras, Lie bialgebras, and related results which will be used in Section 3.

Let \mathfrak{g} be a vector space over the complex field \mathbb{C}. Denote by σ the twist map of $\mathfrak{g} \otimes \mathfrak{g}$ and ψ the cyclic map of $\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}$, namely, $\sigma\left(x_{1} \otimes x_{2}\right)=x_{2} \otimes x_{1}, \psi\left(x_{1} \otimes x_{2} \otimes x_{3}\right)=x_{2} \otimes x_{3} \otimes x_{1}$, for $x_{1}, x_{2}, x_{3} \in \mathfrak{g}$.

Then the definitions of a Lie algebra and Lie coalgebra can be reformulated as follows. A Lie algebra is a pair (\mathfrak{g}, θ) of a vector space \mathfrak{g} and a linear map $\theta: \mathfrak{g} \otimes \mathfrak{g} \rightarrow \mathfrak{g}$ (called the bracket of \mathfrak{g}) satisfying the following conditions:

$$
\begin{gathered}
\operatorname{Ker}(1 \otimes 1-\sigma) \subset \operatorname{Ker} \theta . \text { (skewsymmetry) } \\
\theta(1 \otimes \theta)\left(1 \otimes 1 \otimes 1+\psi+\psi^{2}\right)=0(\text { Jacobiidentity })
\end{gathered}
$$

where 1 denotes the identity map on \mathfrak{g}. A Lie coalgebra is a pair $(\mathfrak{g}, \vartheta)$ of a vector space \mathfrak{g} and a linear map $\vartheta: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ (called the cobracket of \mathfrak{g}) satisfying the following conditions:

$$
\begin{gather*}
\operatorname{Im} \vartheta \subset \operatorname{Im}(1 \otimes 1-\sigma) .(\text { anti-commutativity }) \\
\left(1 \otimes 1 \otimes 1+\psi+\psi^{2}\right)(1 \otimes \vartheta) \vartheta=0 .(\text { Jacobiidentity }) \tag{1}
\end{gather*}
$$

For a Lie algebra \mathfrak{g}, we shall use $[x, y]=\theta(x, y)$ to denote its Lie bracket and use the symbol "." to denote the diagonal adjoint action:

$$
x \cdot\left(\sum_{i} y_{i} \otimes z_{i}\right)=\sum_{i}\left(\left[x, y_{i}\right] \otimes z_{i}+y_{i} \otimes\left[x, z_{i}\right]\right), \text { for } x, y_{i}, z_{i} \in \mathfrak{g}
$$

Definition 2.1. A Lie bialgebra is a triple $(\mathfrak{g}, \theta, \vartheta)$, where (\mathfrak{g}, θ) is a Lie algebra, $(\mathfrak{g}, \vartheta)$ is a Lie coalgebra and

$$
\begin{equation*}
\vartheta \theta(x \otimes y)=x \cdot \vartheta(y)-y \cdot \vartheta(x), \text { for any } x, y \in \mathfrak{g} \tag{2}
\end{equation*}
$$

Denote by $U(\mathfrak{g})$ the universal enveloping algebra of \mathfrak{g} and 1 the identity element of $U(\mathfrak{g})$. For any $r=\sum_{i} x_{i} \otimes y_{i} \in \mathfrak{g} \otimes \mathfrak{g}$, define $r^{i j}, c(r), i, j=1,2,3$ to be the elements of $U(\mathfrak{g}) \otimes U(\mathfrak{g}) \otimes U(\mathfrak{g})$ by

$$
r^{12}=\sum_{i} x_{i} \otimes y_{i} \otimes 1, r^{13}=\sum_{i} x_{i} \otimes 1 \otimes y_{i}, r^{23}=\sum_{i} 1 \otimes x_{i} \otimes y_{i}
$$

and

$$
\begin{gather*}
c(r)=\left[r^{12}, r^{13}\right]+\left[r^{12}, r^{23}\right]+\left[r^{13}, r^{23}\right] \\
=\sum_{i, j}\left[x_{i}, x_{j}\right] \otimes y_{i} \otimes y_{j}+\sum_{i, j} x_{i} \otimes\left[y_{i}, x_{j}\right] \otimes y_{j}+\sum_{i, j} x_{i} \otimes x_{j} \otimes\left[y_{i}, y_{j}\right] \tag{3}
\end{gather*}
$$

Definition 2.2. (1) A coboundary Lie bialgebra is a 4-tuple $(\mathfrak{g}, \theta, \vartheta, r)$, where $(\mathfrak{g}, \theta, \vartheta)$ is a Lie bialgebra and $r \in \operatorname{Im}(1 \otimes 1-\sigma) \subset \mathfrak{g} \otimes \mathfrak{g}$, such that $\vartheta=\vartheta_{r}$ is a coboundary of r, where ϑ_{r} is defined by

$$
\vartheta_{r}(x)=x \cdot r, \text { for any } x \in \mathfrak{g}
$$

(2) A coboundary Lie bialgebra $(\mathfrak{g}, \theta, \vartheta, r)$ is called triangular if r satisfies the following classical Yang-Baxter Equation (CYBE):

$$
\begin{equation*}
c(r)=0 \tag{4}
\end{equation*}
$$

(3) An element $r \in \operatorname{Im}(1 \otimes 1-\sigma) \subset \mathfrak{g} \otimes \mathfrak{g}$ is said to satisfy the modified Yang-Baxter Equation (MYBE) if

$$
\begin{equation*}
x \cdot c(r)=0, \text { for all } x \in \mathfrak{g} \tag{5}
\end{equation*}
$$

The following results come from $[6,7,10]$.
Lemma 2.3. Let \mathfrak{g} be a Lie algebra and $r \in \operatorname{Im}(1 \otimes 1-\sigma) \subset \mathfrak{g} \otimes \mathfrak{g}$.
(1) The triple $\left(\mathfrak{g},[\cdot, \cdot], \vartheta_{r}\right)$ is a Lie bialgebra if, and only if, r satisfies MYBE.
(2) We have

$$
\left(1 \otimes 1 \otimes 1+\psi+\psi^{2}\right)(1 \otimes \vartheta) \vartheta(x)=x \cdot c(r) \text { for all } x \in \mathfrak{g}
$$

3. Lie Bialgebra Structures on the Lie Algebra \mathfrak{L} Related to the Virasoro Algebra

In this section, the main result of this paper (Theorem 3.1) is first presented, then several lemmas and propositions are given to prove Theorem 3.1, finally Theorem 3.1 is proved.

Theorem 3.1. Every Lie bialgebra structure on \mathfrak{L} is triangular coboundary.
We introduce the grading on \mathfrak{L} which will be used later. It is obvious that $\mathfrak{L}=\underset{n \in \mathbb{Z}}{\oplus} \mathfrak{L}_{n}$ is \mathbb{Z}-graded with

$$
\mathfrak{L}_{n}=\operatorname{Span}_{\mathbb{C}}\left\{L_{n}, E_{n} \mid n \in \mathbb{Z}\right\} \oplus \delta_{n, 0}\left(\mathbb{C} c_{1} \oplus \mathbb{C} c_{2}\right)
$$

Lemma 3.2. Regard $\mathfrak{L} \otimes \mathfrak{L} \otimes \mathfrak{L}$ (the tensor product of three copies of \mathfrak{L}) as an \mathfrak{L}-module under the adjoint diagonal action of \mathfrak{L}. Suppose $r \in \mathfrak{L} \otimes \mathfrak{L} \otimes \mathfrak{L}$ satisfying $a \cdot r=0$ for all $a \in \mathfrak{L}$. Then, $r \in \mathbf{Z}(\mathfrak{L}) \otimes \mathbf{Z}(\mathfrak{L}) \otimes \mathbf{Z}(\mathfrak{L})$, where $\mathbf{Z}(\mathfrak{L})$ is the center of \mathfrak{L}.

Proof. Write $r=\sum_{t \in \mathbb{Z}} r_{t}$ as a finite sum with $r_{t} \in(\mathfrak{L} \otimes \mathfrak{L} \otimes \mathfrak{L})_{t}$. From $0=L_{0} \cdot r=-\sum_{t \in \mathbb{Z}} t r_{t}$, we obtain $r=r_{0} \in(\mathfrak{L} \otimes \mathfrak{L} \otimes \mathfrak{L})_{0}$. Now we may assume that

$$
\begin{aligned}
& r \equiv \quad \sum_{m, n \in \mathbb{Z}} \quad \alpha_{m, n}^{A, B, D} A_{m} \otimes B_{n} \otimes D_{-(m+n)}+\sum_{k \in \mathbb{Z}, i \in\{1,2\}} \beta_{k, i}^{A, B} A_{k} \otimes B_{-k} \otimes c_{i} \\
& A, B, D \in\{L, E\} \\
& +\sum_{k \in \mathbb{Z}, i \in\{1,2\}} \xi_{k, i}^{A, B} A_{k} \otimes c_{i} \otimes B_{-k}+\sum_{k \in \mathbb{Z}, i \in\{1,2\}} \rho_{k, i}^{A, B} c_{i} \otimes A_{k} \otimes B_{-k}+\sum_{i, j \in\{1,2\}} \lambda_{i, j}^{A} A_{0} \otimes c_{i} \otimes c_{j} \\
& A, B \in\{L, E\} \\
& A, B \in\{L, E\} \\
& A \in\{L, E\} \\
& +\sum_{i, j \in\{1,2\}} \mu_{i, j}^{A} c_{i} \otimes A_{0} \otimes c_{j}+\sum_{i, j \in\{1,2\}} \tau_{i, j}^{A} c_{i} \otimes c_{j} \otimes A_{0}(\bmod (\mathrm{Z}(\mathfrak{L}) \otimes \mathrm{Z}(\mathfrak{L}) \otimes \mathrm{Z}(\mathfrak{L}))) \\
& A \in\{L, E\} \quad A \in\{L, E\}
\end{aligned}
$$

where all the coefficients of the tensor products are complex numbers and the sums are all finite. Fix the normal total order on \mathbb{Z} compatible with its additive group structure. Define the total order on $\mathbb{Z} \times \mathbb{Z}$ by

$$
\left(m_{1}, n_{1}\right)>\left(m_{2}, n_{2}\right) \Leftrightarrow m_{1}>m_{2}, \text { or } m_{1}=m_{2}, n_{1}>n_{2}
$$

If $\alpha_{m, n}^{A, B, D} \neq 0$ for some $m, n \in \mathbb{Z}, A, B, D \in\{L, E\}$, let

$$
\left(m_{0}, n_{0}\right)=\max \left\{(m, n) \in \mathbb{Z} \times \mathbb{Z} \mid \alpha_{m, n}^{A, B, D} \neq 0\right\}
$$

Choose any $p>0$ such that $p-m_{0} \neq 0$. Then,

$$
0 \neq\left(p-m_{0}\right) \alpha_{m_{0}, n_{0}}^{A, B, D} A_{p+m_{0}} \otimes B_{n_{0}} \otimes D_{-\left(m_{0}+n_{0}\right)}
$$

is linearly independent with other terms of $L_{p} \cdot r$, a contradiction to the fact that $L_{p} \cdot r=0$. Thus, $\alpha_{m, n}^{A, B, D}=0$ for any $m, n \in \mathbb{Z}, A, B, D \in\{L, E\}$. We can similarly prove that $\beta_{k, i}^{A, B}=\xi_{k, i}^{A, B}=\rho_{k, i}^{A, B}=0$ for any $k \in \mathbb{Z}, i \in\{1,2\}, A, B \in\{L, E\}$. Moreover, by
$0=L_{1} \cdot r=\sum_{\substack{i, j \in\{1,2\} \\ A \in\{L, E\}}} \lambda_{i, j}^{A} A_{1} \otimes c_{i} \otimes c_{j}+\sum_{\substack{i, j \in\{1,2\} \\ A \in\{L, E\}}} \mu_{i, j}^{A} c_{i} \otimes A_{1} \otimes c_{j}+\sum_{\substack{i, j \in\{1,2\} \\ A \in\{ \\ }} \tau_{i, j}^{A} c_{i} \otimes c_{j} \otimes A_{1}$,
it follows that $\lambda_{i, j}^{A}=\mu_{i, j}^{A}=\tau_{i, j}^{A}=0$ for any $i, j \in\{1,2\}, A \in\{L, E\}$. This completes the proof.

Corollary 3.3. An element $r \in \operatorname{Im}(1 \otimes 1-\sigma) \subset \mathfrak{L} \otimes \mathfrak{L}$ satisfies $C Y B E$ in (4) if, and only if, it satisfies MYBE in (5).

Proof. It follows immediately from Lemma 3.2 and (3).
The tensor product $V=\mathfrak{L} \otimes \mathfrak{L}$ is a \mathbb{Z}-graded \mathfrak{L}-module under the adjoint diagonal action of \mathfrak{L}. The gradation is given by $V=\underset{n \in \mathbb{Z}}{\oplus} V_{n}$, where $V_{n}=\sum_{\substack{p, q \in \mathbb{Z} \\ p+q=n}} \mathfrak{L}_{p} \otimes \mathfrak{L}_{q}$.

We shall discuss the derivation algebra $\operatorname{Der}(\mathfrak{L}, V)$. First, let us recall some basic definitions.

Denote by $\operatorname{Der}(\mathfrak{L}, V)$ the set of derivations $D: \mathfrak{L} \rightarrow V$ which are linear maps satisfying

$$
\begin{equation*}
D([a, b])=a \cdot D(b)-b \cdot D(a) \text { for } a, b \in L \tag{6}
\end{equation*}
$$

and $\operatorname{Inn}(\mathfrak{L}, V)$ the set of inner derivations $u_{\mathrm{inn}}, u \in V$, defined by

$$
u_{\mathrm{inn}}: a \mapsto a \cdot u \text { for } a \in \mathfrak{L} .
$$

A derivation $D \in \operatorname{Der}(\mathfrak{L}, V)$ is homogeneous of degree $\varepsilon \in \mathbb{Z}$ if $D\left(\mathfrak{L}_{n}\right) \in V_{\varepsilon+n}$ for all $n \in \mathbb{Z}$. Denote by $\operatorname{Der}(\mathfrak{L}, V)_{\varepsilon}=\{D \in \operatorname{Der}(\mathfrak{L}, V) \mid \operatorname{deg} D=\varepsilon\}$ for $\varepsilon \in \mathbb{Z}$. It is well known that

$$
H^{1}(\mathfrak{L}, V) \cong \operatorname{Der}(\mathfrak{L}, V) / \operatorname{Inn}(\mathfrak{L}, V)
$$

where $H^{1}(\mathfrak{L}, V)$ is the first cohomology group of the Lie algebra \mathfrak{L} with coefficients in the \mathfrak{L}-module V.

Proposition 3.4. Every derivation from \mathfrak{L} to V is inner, i.e., $H^{1}(\mathfrak{L}, V)=0$.
Proof. We shall divide the proof of the proposition into several claims.
Claim 1. For every $D \in \operatorname{Der}(\mathfrak{L}, V)$, we have

$$
\begin{equation*}
D=\sum_{\varepsilon \in \mathbb{Z}} D_{\varepsilon}, \text { where } D_{\varepsilon} \in \operatorname{Der}(\mathfrak{L}, V)_{\varepsilon} \tag{7}
\end{equation*}
$$

which holds in the sense that for every $a \in \mathfrak{L}$, only finitely many $D_{\varepsilon}(a) \neq 0$, and $D(a)=\sum_{\varepsilon \in \mathbb{Z}} D_{\varepsilon}(a)$ (we say that (7) is summable).

For any $\varepsilon \in \mathbb{Z}$, we define a homogeneous linear map $D_{\varepsilon}: \mathfrak{L} \rightarrow V$ of degree ε as follows: for any $p \in \mathbb{Z}$ and $a \in \mathfrak{L}_{p}$, we can write $D(a)=\sum_{m \in \mathbb{Z}} u_{m}$, where $u_{m} \in V_{m}$. Then, we define $D_{\varepsilon}(a)=u_{\varepsilon+p}$. Obviously $D_{\varepsilon} \in \operatorname{Der}(\mathfrak{L}, V)_{\varepsilon}$ and (7) hold.

Claim 2. If $\varepsilon \in \mathbb{Z}^{*}$, then $D_{\varepsilon} \in \operatorname{Inn}(\mathfrak{L}, V)$.
Denote $v=-\varepsilon^{-1} D_{\varepsilon}\left(L_{0}\right) \in V_{\varepsilon}$. Then for any $a_{n} \in \mathfrak{L}_{n}$, applying D_{ε} to $\left[\mathfrak{L}_{0}, a_{n}\right]=-n a_{n}$, since $D_{\varepsilon}\left(a_{n}\right) \in V_{n+\varepsilon}$ and the action of L_{0} on $V_{n+\varepsilon}$ is the scalar $-(n+\varepsilon)$, we have

$$
-(n+\varepsilon) D_{\varepsilon}\left(a_{n}\right)-a_{n} \cdot D_{\varepsilon}\left(L_{0}\right)=-n D_{\varepsilon}\left(a_{n}\right),
$$

i.e., $D_{\varepsilon}\left(a_{n}\right)=v_{\text {inn }}\left(a_{n}\right)$. Then, $D_{\varepsilon}=v_{\text {inn }}$ is inner.

For convenience, we shall use "三" to denote equal modulo $\mathbf{Z}(\mathfrak{L}) \otimes Z(\mathfrak{L})$ in the following. Claim 3. $D_{0}\left(L_{0}\right) \equiv D_{0}\left(c_{1}\right) \equiv D_{0}\left(c_{2}\right) \equiv 0$.

For any $n \in \mathbb{Z}$ and $a_{n} \in \mathfrak{L}_{n}$, considering the action of D_{0} on $\left[L_{0}, a_{n}\right]=-n a_{n}$ and $\left[a_{n}, c_{i}\right]=0(i=1,2)$, respectively, we can deduce that $a_{n} \cdot D_{0}\left(L_{0}\right)=0$ and $a_{n} \cdot D_{0}\left(c_{i}\right)=0(i=1,2)$. By Lemma 3.2, we have $D_{0}\left(L_{0}\right), D_{0}\left(c_{i}\right) \in \mathrm{Z}(\mathfrak{L}) \otimes \mathrm{Z}(\mathfrak{L})$ for $i=1,2$. Thus Claim 3 is proved.
Claim 4. By replacing D_{0} by $D_{0}-v_{\text {inn }}$ for some $v \in V_{0}$, we can suppose $D_{0}(\mathfrak{L}) \equiv 0$.
For any $s \in \mathbb{Z}^{*}, t \in \mathbb{Z}$, under modulo $\mathbf{Z}(\mathfrak{L}) \otimes \mathbf{Z}(\mathfrak{L})$, we can write $D_{0}\left(L_{s}\right)$ and $D_{0}\left(E_{t}\right)$ as follows.

$$
\begin{align*}
& D_{0}\left(L_{s}\right) \equiv \sum_{i \in \mathbb{Z}} \alpha_{s, i} L_{i} \otimes L_{s-i}+\sum_{i \in \mathbb{Z}} \beta_{s, i} L_{i} \otimes E_{s-i}+\sum_{j=1}^{2} \alpha_{s}^{j} L_{s} \otimes c_{j}+\sum_{j=1}^{2} \beta_{s}^{j} c_{j} \otimes L_{s} \\
& \quad+\sum_{i \in \mathbb{Z}} \xi_{s, i} E_{i} \otimes L_{s-i}+\sum_{i \in \mathbb{Z}} \rho_{s, i} E_{i} \otimes E_{s-i}+\sum_{j=1}^{2} \xi_{s}^{j} E_{s} \otimes c_{j}+\sum_{j=1}^{2} \rho_{s}^{j} c_{j} \otimes E_{s} \tag{8}\\
& D_{0}\left(E_{t}\right) \equiv \sum_{i \in \mathbb{Z}} \lambda_{t, i} L_{i} \otimes L_{t-i}+\sum_{i \in \mathbb{Z}} \mu_{t, i} L_{i} \otimes E_{t-i}+\sum_{j=1}^{2} \lambda_{t}^{j} L_{t} \otimes c_{j}+\sum_{j=1}^{2} \mu_{t}^{j} c_{j} \otimes L_{t} \tag{9}\\
& \quad+\sum_{i \in \mathbb{Z}} \tau_{t, i} E_{i} \otimes L_{t-i}+\sum_{i \in \mathbb{Z}} \eta_{t, i} E_{i} \otimes E_{t-i}+\sum_{j=1}^{2} \tau_{t}^{j} E_{t} \otimes c_{j}+\sum_{j=1}^{2} \eta_{t}^{j} c_{j} \otimes E_{t}
\end{align*}
$$

where $\alpha_{s, i}, \beta_{s, i}, \xi_{s, i}, \rho_{s, i}, \lambda_{t, i}, \mu_{t, i}, \tau_{t, i}, \eta_{t, i}, \alpha_{s}^{j}, \beta_{s}^{j}, \xi_{s}^{j}, \rho_{s}^{j}, \lambda_{t}^{j}, \mu_{t}^{j}, \tau_{t}^{j} \eta_{t}^{j} \in \mathbb{C}, s \in \mathbb{Z}^{*}, t, i \in \mathbb{Z}$, $j \in\{1,2\},\left\{i \in \mathbb{Z} \mid \alpha_{s, i} \neq 0\right\},\left\{i \in \mathbb{Z} \mid \beta_{s, i} \neq 0\right\},\left\{i \in \mathbb{Z} \mid \xi_{s, i} \neq 0\right\},\left\{i \in \mathbb{Z} \mid \rho_{s, i} \neq 0\right\}$, $\left\{i \in \mathbb{Z} \mid \lambda_{t, i} \neq 0\right\},\left\{i \in \mathbb{Z} \mid \mu_{t, i} \neq 0\right\},\left\{i \in \mathbb{Z} \mid \tau_{t, i} \neq 0\right\}$ and $\left\{i \in \mathbb{Z} \mid \eta_{t, i} \neq 0\right\}$ are all finite sets. Note that for any $i \in \mathbb{Z}$ and $j \in\{1,2\}$, we have

$$
\begin{aligned}
& \left(L_{i} \otimes L_{-i}\right)_{\mathrm{inn}}\left(L_{1}\right)=(1-i) L_{1+i} \otimes L_{-i}+(1+i) L_{i} \otimes L_{1-i},\left(L_{0} \otimes c_{j}\right)_{\mathrm{inn}}\left(L_{1}\right)=L_{1} \otimes c_{j}, \\
& \left(L_{i} \otimes E_{-i}\right)_{\mathrm{inn}}\left(L_{1}\right)=(1-i) L_{1+i} \otimes E_{-i}+(1+i) L_{i} \otimes E_{1-i},\left(c_{j} \otimes L_{0}\right)_{\mathrm{inn}}\left(L_{1}\right)=c_{j} \otimes L_{1}, \\
& \left(E_{i} \otimes L_{-i}\right)_{\mathrm{inn}}\left(L_{1}\right)=(1-i) E_{1+i} \otimes L_{-i}+(1+i) E_{i} \otimes L_{1-i},\left(E_{0} \otimes c_{j}\right)_{\mathrm{inn}}\left(L_{1}\right)=E_{1} \otimes c_{j}, \\
& \left(E_{i} \otimes E_{-i}\right)_{\mathrm{inn}}\left(L_{1}\right)=(1-i) E_{1+i} \otimes E_{-i}+(1+i) E_{i} \otimes E_{1-i},\left(c_{j} \otimes E_{0}\right)_{\mathrm{inn}}\left(L_{1}\right)=c_{j} \otimes E_{1} .
\end{aligned}
$$

Denote

$$
\begin{aligned}
& N_{1}=\max \left\{|i| \mid \alpha_{1, i} \neq 0\right\}, N_{2}=\max \left\{|i| \mid \beta_{1, i} \neq 0\right\} \\
& N_{3}=\max \left\{|i| \mid \xi_{1, i} \neq 0\right\}, N_{4}=\max \left\{|i| \mid \rho_{1, i} \neq 0\right\}
\end{aligned}
$$

Applying the induction on $\sum_{j=1}^{4} N_{j}$ in the above equations, by replacing D_{0} by $D_{0}-v_{\text {inn }}$, where v is a combination of some $L_{i} \otimes L_{-i}, L_{i} \otimes E_{-i}, E_{i} \otimes L_{-i}, E_{i} \otimes E_{-i}, L_{0} \otimes c_{j}, c_{j} \otimes L_{0}$, $E_{0} \otimes c_{j}, c_{j} \otimes E_{0}$, we can suppose

$$
\alpha_{1}^{j}=\beta_{1}^{j}=\xi_{1}^{j}=\rho_{1}^{j}=0, \text { for } j \in\{1,2\}, \alpha_{1, i}=\beta_{1, i}=\xi_{1, i}=\rho_{1, i}=0, \text { for } i \neq-1,2
$$

Thus we have

$$
\begin{gathered}
D_{0}\left(L_{1}\right) \equiv \alpha_{1,-1} L_{-1} \otimes L_{2}+\alpha_{1,2} L_{2} \otimes L_{-1}+\beta_{1,-1} L_{-1} \otimes E_{2}+\beta_{1,2} L_{2} \otimes E_{-1} \\
\quad+\xi_{1,-1} E_{-1} \otimes L_{2}+\xi_{1,2} E_{2} \otimes L_{-1}+\rho_{1,-1} E_{-1} \otimes E_{2}+\rho_{1,2} E_{2} \otimes E_{-1}
\end{gathered}
$$

Considering the action of D_{0} on $\left[L_{-1}, L_{1}\right]=-2 L_{0}$, under modulo $Z(\mathfrak{L}) \otimes Z(\mathfrak{L})$, we deduce that

$$
\begin{aligned}
& \quad \sum_{i \in \mathbb{Z}}\left[(2-i) \alpha_{-1, i-1}+(2+i) \alpha_{-1, i}\right] L_{i} \otimes L_{-i}+3 \alpha_{1,-1} L_{-1} \otimes L_{1}+3 \alpha_{1,2} L_{1} \otimes L_{-1} \\
& + \\
& +\sum_{i \in \mathbb{Z}}\left[(2-i) \beta_{-1, i-1}+(2+i) \beta_{-1, i}\right] L_{i} \otimes E_{-i}+3 \beta_{1,-1} L_{-1} \otimes E_{1}+3 \beta_{1,2} L_{1} \otimes E_{-1} \\
& + \\
& +\sum_{i \in \mathbb{Z}}\left[(2-i) \rho_{-1, i-1}+(2+i) \rho_{-1, i}\right] E_{i} \otimes E_{-i}+3 \rho_{1,-1} E_{-1} \otimes E_{1}+3 \rho_{1,2} E_{1} \otimes E_{-1} \\
& \\
& \quad+\sum_{j=1}^{2} 2 \alpha_{-1}^{j} L_{0} \otimes c_{j}+\sum_{j=1}^{2} 2 \beta_{-1}^{j} c_{j} \otimes L_{0}+\sum_{j=1}^{2} 2 \tilde{\zeta}_{-1}^{j} E_{0} \otimes c_{j}+\sum_{j=1}^{2} 2 \rho_{-1}^{j} c_{j} \otimes E_{0}=0
\end{aligned}
$$

Comparing the coefficients of $L_{0} \otimes c_{j}, c_{j} \otimes L_{0}, E_{0} \otimes c_{j}, c_{j} \otimes E_{0}$, we obtain

$$
\alpha_{-1}^{j}=\beta_{-1}^{j}=\xi_{-1}^{j}=\rho_{-1}^{j}=0, j \in\{1,2\}
$$

Comparing the coefficients of $L_{i} \otimes L_{-i}$ for $i \in \mathbb{Z}$, we have

$$
\begin{aligned}
& 3 \alpha_{-1,-2}+\alpha_{-1,-1}+3 \alpha_{1,-1}=0, \alpha_{-1,0}+3 \alpha_{-1,1}+3 \alpha_{1,2}=0, \\
& \quad(2-i) \alpha_{-1, i-1}+(2+i) \alpha_{-1, i}=0, \text { for } i \in \mathbb{Z}, i \neq \pm 1
\end{aligned}
$$

Since $\left\{i \in \mathbb{Z} \mid \alpha_{-1, i} \neq 0\right\}$ is a finite set, we obtain

$$
\alpha_{-1,-1}+\alpha_{-1,0}=0, \alpha_{-1, i}=0, \text { for } i \in \mathbb{Z}, i \neq-2,-1,0,1,
$$

and we have the following relations:

$$
\alpha_{-1,-1}=-\alpha_{-1,0}, \alpha_{1,-1}=\frac{1}{3} \alpha_{-1,0}-\alpha_{-1,-2}, \alpha_{1,2}=-\left(\frac{1}{3} \alpha_{-1,0}+\alpha_{-1,1}\right) .
$$

Comparing the coefficients of $L_{i} \otimes E_{-i}$ for $i \in \mathbb{Z}$, we obtain

$$
\begin{gathered}
3 \beta_{-1,-2}+\beta_{-1,-1}+3 \beta_{1,-1}=0, \beta_{-1,0}+3 \beta_{-1,1}+3 \beta_{1,2}=0, \\
\quad(2-i) \beta_{-1, i-1}+(2+i) \beta_{-1, i}=0, \text { for } i \in \mathbb{Z}, i \neq \pm 1
\end{gathered}
$$

Since $\left\{i \in \mathbb{Z} \mid \beta_{-1, i} \neq 0\right\}$ is a finite set, we have

$$
\begin{gathered}
\beta_{-1,-1}=-\beta_{-1,0}, \beta_{-1, i}=0, \text { for } i \in \mathbb{Z}, i \neq-2,-1,0,1 \\
\beta_{1,-1}=\frac{1}{3} \beta_{-1,0}-\beta_{-1,-2}, \beta_{1,2}=-\left(\frac{1}{3} \beta_{-1,0}+\beta_{-1,1}\right)
\end{gathered}
$$

Comparing the coefficients of $E_{i} \otimes L_{-i}$ for $i \in \mathbb{Z}$, we deduce that

$$
\begin{gathered}
3 \xi_{-1,-2}+\xi_{-1,-1}+3 \xi_{1,-1}=0, \xi_{-1,0}+3 \xi_{-1,1}+3 \xi_{1,2}=0 \\
\quad(2-i) \xi_{-1, i-1}+(2+i) \xi_{-1, i}=0, \text { for } i \in \mathbb{Z}, . i \neq \pm 1 .
\end{gathered}
$$

Since $\left\{i \in \mathbb{Z} \mid \xi_{-1, i} \neq 0\right\}$ is a finite set, we have the following identities:

$$
\begin{gathered}
\xi_{-1,-1}=-\xi_{-1,0}, \xi_{-1, i}=0, \text { for } i \in \mathbb{Z}, i \neq-2,-1,0,1, \\
\xi_{1,-1}=\frac{1}{3} \xi_{-1,0}-\xi_{-1,-2}, \xi_{1,2}=-\left(\frac{1}{3} \xi_{-1,0}+\xi_{-1,1}\right)
\end{gathered}
$$

Comparing the coefficients of $E_{i} \otimes E_{-i}$ for $i \in \mathbb{Z}$, we obtain

$$
\begin{gathered}
3 \rho_{-1,-2}+\rho_{-1,-1}+3 \rho_{1,-1}=0, \rho_{-1,0}+3 \rho_{-1,1}+3 \rho_{1,2}=0 \\
(2-i) \rho_{-1, i-1}+(2+i) \rho_{-1, i}=0, \text { for } i \in \mathbb{Z}, i \neq \pm 1
\end{gathered}
$$

Since $\left\{i \in \mathbb{Z} \mid \rho_{-1, i} \neq 0\right\}$ is a finite set, we have

$$
\begin{gathered}
\rho_{-1,-1}=-\rho_{-1,0}, \rho_{-1, i}=0, \text { for } i \in \mathbb{Z}, i \neq-2,-1,0,1, \\
\rho_{1,-1}=\frac{1}{3} \rho_{-1,0}-\rho_{-1,-2}, \rho_{1,2}=-\left(\frac{1}{3} \rho_{-1,0}+\rho_{-1,1}\right)
\end{gathered}
$$

Consequently, we can rewrite

$$
\begin{gathered}
D_{0}\left(L_{1}\right) \equiv\left(\frac{1}{3} \alpha_{-1,0}-\alpha_{-1,-2}\right) L_{-1} \otimes L_{2}-\left(\frac{1}{3} \alpha_{-1,0}+\alpha_{-1,1}\right) L_{2} \otimes L_{-1} \\
\quad+\left(\frac{1}{3} \beta_{-1,0}-\beta_{-1,-2}\right) L_{-1} \otimes E_{2}-\left(\frac{1}{3} \beta_{-1,0}+\beta_{-1,1}\right) L_{2} \otimes E_{-1} \\
\quad+\left(\frac{1}{3} \xi_{-1,0}-\xi-1,-2\right) E_{-1} \otimes L_{2}-\left(\frac{1}{3} \xi_{-1,0}+\xi_{-1,1}\right) E_{2} \otimes L_{-1} \\
\quad+\left(\frac{1}{3} \rho_{-1,0}-\rho_{-1,-2}\right) E_{-1} \otimes E_{2}-\left(\frac{1}{3} \rho_{-1,0}+\rho_{-1,1}\right) E_{2} \otimes E_{-1} \\
D_{0}\left(L_{-1}\right) \equiv \alpha_{-1,-2} L_{-2} \otimes L_{1}-\alpha_{-1,0} L_{-1} \otimes L_{0}+\alpha_{-1,0} L_{0} \otimes L_{-1}+\alpha_{-1,1} L_{1} \otimes L_{-2} \\
+\beta_{-1,-2} L_{-2} \otimes E_{1}-\beta_{-1,0} L_{-1} \otimes E_{0}+\beta_{-1,0} L_{0} \otimes E_{-1}+\beta_{-1,1} L_{1} \otimes E_{-2} \\
+\xi_{-1,-2} E_{-2} \otimes L_{1}-\xi \xi_{-1,0} E_{-1} \otimes L_{0}+\xi_{-1,0} E_{0} \otimes L_{-1}+\xi_{-1,1} E_{1} \otimes L_{-2} \\
+\rho_{-1,-2} E_{-2} \otimes E_{1}-\rho_{-1,0} E_{-1} \otimes E_{0}+\rho_{-1,0} E_{0} \otimes E_{-1}+\rho_{-1,1} E_{1} \otimes E_{-2}
\end{gathered}
$$

Considering the action of D_{0} on $\left[L_{2}, L_{-1}\right]=3 L_{1}$, under modulo $Z(\mathfrak{L}) \otimes \mathbf{Z}(\mathfrak{L})$, we obtain

$$
\begin{aligned}
& \alpha_{-1,-2}\left(4 L_{0}+\frac{1}{2} c_{1}\right) \otimes L_{1}+\alpha_{-1,-2} L_{-2} \otimes L_{3}-3 \alpha_{-1,0} L_{1} \otimes L_{0}-2 \alpha_{-1,0} L_{-1} \otimes L_{2} \\
& \quad+2 \alpha_{-1,0} L_{2} \otimes L_{-1}+3 \alpha_{-1,0} L_{0} \otimes L_{1}+\alpha_{-1,1} L_{3} \otimes L_{-2}+\alpha_{-1,1} L_{1} \otimes\left(4 L_{0}+\frac{1}{2} c_{1}\right) \\
& +\quad \beta_{-1,-2}\left(4 L_{0}+\frac{1}{2} c_{1}\right) \otimes E_{1}+\beta_{-1,-2} L_{-2} \otimes E_{3}-3 \beta_{-1,0} L_{1} \otimes E_{0}-2 \beta \beta_{-1,0} L_{-1} \otimes E_{2} \\
& \quad+2 \beta_{-1,0} L_{2} \otimes E_{-1}+3 \beta_{-1,0} L_{0} \otimes E_{1}+\beta_{-1,1} L_{3} \otimes E_{-2}+\beta_{-1,1} L_{1} \otimes\left(4 E_{0}+6 c_{2}\right) \\
& \quad+\xi_{-1,-2}\left(4 E_{0}+6 c_{2}\right) \otimes L_{1}+\xi_{-1,-2} E_{-2} \otimes L_{3}-3 \xi_{-1,0} E_{1} \otimes L_{0}-2 \xi_{-1,0} E_{-1} \otimes L_{2} \\
& \quad+2 \xi_{-1,0} E_{2} \otimes L_{-1}+3 \xi_{-1,0} E_{0} \otimes L_{1}+\xi_{-1,1} E_{3} \otimes L_{-2}+\xi_{-1,1} E_{1} \otimes\left(4 L_{0}+\frac{1}{2} c_{1}\right) \\
& \quad+\rho_{-1,-2}\left(4 E_{0}+6 c_{2}\right) \otimes E_{1}+\rho_{-1,-2} E_{-2} \otimes E_{3}-3 \rho_{-1,0} E_{1} \otimes E_{0}-2 \rho_{-1,0} E_{-1} \otimes E_{2} \\
& \quad+2 \rho_{-1,0} E_{2} \otimes E_{-1}+3 \rho_{-1,0} E_{0} \otimes E_{1}+\rho_{-1,1} E_{3} \otimes E_{-2}+\rho_{-1,1} E_{1} \otimes\left(4 E_{0}+6 c_{2}\right) \\
& \quad+\sum_{i \in \mathbb{Z}}(1+i) \alpha_{2, i} L_{i-1} \otimes L_{2-i}+\sum_{i \in \mathbb{Z}}(3-i) \alpha_{2, i} L_{i} \otimes L_{1-i}+\sum_{i \in \mathbb{Z}}(1+i) \beta_{2, i} L_{i-1} \otimes E_{2-i} \\
& \quad+\sum_{i \in \mathbb{Z}}(3-i) \beta_{2, i} L_{i} \otimes E_{1-i}+\sum_{i \in \mathbb{Z}}(1+i) \xi_{2, i} E_{i-1} \otimes L_{2-i}+\sum_{i \in \mathbb{Z}}(3-i) \xi_{2, i} E_{i} \otimes L_{1-i} \\
& +\sum_{i \in \mathbb{Z}}(1+i) \rho_{2, i} E_{i-1} \otimes E_{2-i}+\sum_{i \in \mathbb{Z}}(3-i) \rho_{2, i} E_{i} \otimes E_{1-i}+\sum_{j=1}^{2} 3 \alpha_{2}^{j} L_{1} \otimes c_{j}+\sum_{j=1}^{2} 3 \beta_{2}^{j} c_{j} \otimes L_{1} \\
& +\sum_{j=1}^{2} 3 \xi_{2}^{j} E_{1} \otimes c_{j}+\sum_{j=1}^{2} 3 \rho_{2}^{j} c_{j} \otimes E_{1}-\left(\alpha_{-1,0}-3 \alpha_{-1,-2}\right) L_{-1} \otimes L_{2}+\left(\alpha_{-1,0}+3 \alpha_{-1,1}\right) L_{2} \otimes L_{-1} \\
& -\left(\beta-1,0-3 \beta_{-1,-2}\right) L_{-1} \otimes E_{2}+\left(\beta_{-1,0}+3 \beta_{-1,1}\right) L_{2} \otimes E_{-1}-\left(\xi \xi_{-1,0}-3 \xi-1,-2\right) E_{-1} \otimes L_{2} \\
& +\left(\xi \xi_{-1,0}+3 \xi_{-1,1}\right) E_{2} \otimes L_{-1}-\left(\rho_{-1,0}-3 \rho_{-1,-2}\right) E_{-1} \otimes E_{2}+\left(\rho_{-1,0}+3 \rho_{-1,1}\right) E_{2} \otimes E_{-1}=0
\end{aligned}
$$

For $j \in\{1,2\}$, comparing the coefficients of $L_{1} \otimes c_{j}, c_{j} \otimes L_{1}, E_{1} \otimes c_{j}, c_{j} \otimes E_{1}$ in the above equation, we have

$$
\begin{gathered}
\alpha_{2}^{1}=-\frac{1}{6} \alpha_{-1,1}, \quad \alpha_{2}^{2}=-2 \beta_{-1,1}, \quad \beta_{2}^{1}=-\frac{1}{6} \alpha_{-1,-2}, \quad \beta_{2}^{2}=-2 \xi_{-1,-2} \\
\xi_{2}^{1}=-\frac{1}{6} \xi_{-1,1}, \quad \xi_{2}^{2}=-2 \rho_{-1,1}, \quad \rho_{2}^{1}=-\frac{1}{6} \beta_{-1,-2}, \quad \rho_{2}^{2}=-2 \rho_{-1,-2}
\end{gathered}
$$

For any $i \in \mathbb{Z}$, comparing the coefficients of $L_{i} \otimes L_{1-i}, L_{i} \otimes E_{1-i}, E_{i} \otimes L_{1-i}$ and $E_{i} \otimes$ E_{1-i}, respectively, and noting that $\left\{i \in \mathbb{Z} \mid \alpha_{2, i} \neq 0\right\},\left\{i \in \mathbb{Z} \mid \beta_{2, i} \neq 0\right\},\left\{i \in \mathbb{Z} \mid \xi_{2, i} \neq 0\right\}$ and $\left\{i \in \mathbb{Z} \mid \rho_{2, i} \neq 0\right\}$ are finite sets, we deduce that

$$
\begin{gathered}
\alpha_{-1,-2}+5 \alpha_{2,-2}=0,3 \alpha_{-1,-2}-3 \alpha_{-1,0}+\alpha_{2,0}+4 \alpha_{2,-1}=0,4 \alpha_{-1,-2}+3 \alpha_{-1,0}+2 \alpha_{2,1}+3 \alpha_{2,0}=0, \\
4 \alpha_{-1,1}-3 \alpha_{-1,0}+3 \alpha_{2,2}+2 \alpha_{2,1}=0,3 \alpha_{-1,0}+3 \alpha_{-1,1}+4 \alpha_{2,3}+\alpha_{2,2}=0, \alpha_{-1,1}+5 \alpha_{2,4}=0, \alpha_{2, i}=0 \\
\beta_{-1,-2}+5 \beta_{2,-2}=0,3 \beta_{-1,-2}-3 \beta_{-1,0}+\beta_{2,0}+4 \beta_{2,-1}=0,4 \beta_{-1,-2}+3 \beta_{-1,0}+2 \beta_{2,1}+3 \beta_{2,0}=0, \\
4 \beta_{-1,1}-3 \beta_{-1,0}+3 \beta_{2,2}+2 \beta_{2,1}=0,3 \beta_{-1,0}+3 \beta_{-1,1}+4 \beta_{2,3}+\beta_{2,2}=0, \beta_{-1,1}+5 \beta_{2,4}=0, \beta_{2, i}=0 \\
\xi-1,-2+5 \xi_{2,-2}=0,3 \xi_{-1,-2}-3 \xi_{-1,0}+\xi \xi_{2,0}+4 \xi_{2,-1}=0,4 \xi_{-1,-2}+3 \xi_{-1,0}+2 \xi_{2,1}+3 \xi_{2,0}=0, \\
4 \xi_{-1,1}-3 \xi_{-1,0}+3 \xi_{2,2}+2 \xi_{2,1}=0,3 \xi_{-1,0}+3 \xi_{-1,1}+4 \xi_{2,3}+\xi_{2,2}=0, \xi-1,1+5 \xi_{2,4}=0, \xi_{2, i}=0 \\
\rho_{-1,-2}+5 \rho_{2,-2}=0,3 \rho_{-1,-2}-3 \rho_{-1,0}+\rho_{2,0}+4 \rho_{2,-1}=0,4 \rho_{-1,-2}+3 \rho_{-1,0}+2 \rho_{2,1}+3 \rho_{2,0}=0, \\
4 \rho_{-1,1}-3 \rho_{-1,0}+3 \rho_{2,2}+2 \rho_{2,1}=0,3 \rho_{-1,0}+3 \rho_{-1,1}+4 \rho_{2,3}+\rho_{2,2}=0, \rho_{-1,1}+5 \rho_{2,4}=0, \rho_{2, i}=0
\end{gathered}
$$

for $i \neq-1,0,1,2,3$. Then, we have the following identities:

$$
\begin{gathered}
\alpha_{-1,-2}=-5 \alpha_{2,-2}=0, \alpha_{-1,1}=-5 \alpha_{2,4}=0, \alpha_{2,-1}=\frac{3}{4} \alpha_{-1,0}-\frac{1}{4} \alpha_{2,0} \\
\alpha_{2,1}=-\frac{3}{2} \alpha_{-1,0}-\frac{3}{2} \alpha_{2,0}, \alpha_{2,2}=2 \alpha_{-1,0}+\alpha_{2,0}, \alpha_{2,3}=-\frac{5}{4} \alpha_{-1,0}-\frac{1}{4} \alpha_{2,0} \\
\beta_{-1,-2}=-5 \beta_{2,-2}=0, \beta_{-1,1}=-5 \beta_{2,4}=0, \beta_{2,-1}=\frac{3}{4} \beta_{-1,0}-\frac{1}{4} \beta_{2,0} \\
\beta_{2,1}=-\frac{3}{2} \beta_{-1,0}-\frac{3}{2} \beta_{2,0}, \beta_{2,2}=2 \beta_{-1,0}+\beta_{2,0}, \beta_{2,3}=-\frac{5}{4} \beta_{-1,0}-\frac{1}{4} \beta_{2,0}, \\
\xi-1,-2=-5 \xi_{2,-2}=0, \xi-1,1=-5 \xi_{2,4}=0, \xi_{2,-1}=\frac{3}{4} \xi-1,0-\frac{1}{4} \xi_{2,0} \\
\xi_{2,1}=-\frac{3}{2} \xi_{-1,0}-\frac{3}{2} \xi_{2,0}, \xi_{2,2}=2 \xi_{-1,0}+\xi_{2,0}, \xi_{2,3}=-\frac{5}{4} \xi_{-1,0}-\frac{1}{4} \xi_{2,0} \\
\rho_{-1,-2}=-5 \rho_{2,-2}=0, \rho_{-1,1}=-5 \rho_{2,4}=0, \rho_{2,-1}=\frac{3}{4} \rho_{-1,0}-\frac{1}{4} \rho_{2,0} \\
\rho_{2,1}=-\frac{3}{2} \rho_{-1,0}-\frac{3}{2} \rho_{2,0}, \rho_{2,2}=2 \rho_{-1,0}+\rho_{2,0}, \rho_{2,3}=-\frac{5}{4} \rho_{-1,0}-\frac{1}{4} \rho_{2,0} \\
\alpha_{2}^{1}=\alpha_{2}^{2}=\beta_{2}^{1}=\beta_{2}^{2}=\xi_{2}^{1}=\xi_{2}^{2}=\rho_{2}^{1}=\rho_{2}^{2}=0
\end{gathered}
$$

Thus we can rewrite

$$
\begin{gathered}
D_{0}\left(L_{1}\right) \equiv \frac{1}{3} \alpha_{-1,0} L_{-1} \otimes L_{2}-\frac{1}{3} \alpha_{-1,0} L_{2} \otimes L_{-1}+\frac{1}{3} \beta_{-1,0} L_{-1} \otimes E_{2}-\frac{1}{3} \beta_{-1,0} L_{2} \otimes E_{-1} \\
+\frac{1}{3} \xi_{-1,0} E_{-1} \otimes L_{2}-\frac{1}{3} \xi_{-1,0} E_{2} \otimes L_{-1}+\frac{1}{3} \rho_{-1,0} E_{-1} \otimes E_{2}-\frac{1}{3} \rho_{-1,0} E_{2} \otimes E_{-1} \\
D_{0}\left(L_{-1}\right) \equiv-\alpha_{-1,0} L_{-1} \otimes L_{0}+\alpha_{-1,0} L_{0} \otimes L_{-1}-\beta_{-1,0} L_{-1} \otimes E_{0}+\beta_{-1,0} L_{0} \otimes E_{-1} \\
-\xi_{-1,0} E_{-1} \otimes L_{0}+\xi_{-1,0} E_{0} \otimes L_{-1}-\rho_{-1,0} E_{-1} \otimes E_{0}+\rho_{-1,0} E_{0} \otimes E_{-1} \\
D_{0}\left(L_{2}\right) \equiv\left(\frac{3}{4} \alpha_{-1,0}-\frac{1}{4} \alpha_{2,0}\right) L_{-1} \otimes L_{3}+\alpha_{2,0} L_{0} \otimes L_{2}-\left(\frac{3}{2} \alpha_{-1,0}+\frac{3}{2} \alpha_{2,0}\right) L_{1} \otimes L_{1} \\
\quad+\left(2 \alpha_{-1,0}+\alpha_{2,0}\right) L_{2} \otimes L_{0}-\left(\frac{5}{4} \alpha_{-1,0}+\frac{1}{4} \alpha_{2,0}\right) L_{3} \otimes L_{-1} \\
+\left(\frac{3}{4} \beta_{-1,0}-\frac{1}{4} \beta_{2,0}\right) L_{-1} \otimes E_{3}+\beta_{2,0} L_{0} \otimes E_{2}-\left(\frac{3}{2} \beta_{-1,0}+\frac{3}{2} \beta_{2,0}\right) L_{1} \otimes E_{1} \\
\quad+\left(2 \beta_{-1,0}+\beta_{2,0}\right) L_{2} \otimes E_{0}-\left(\frac{5}{4} \beta_{-1,0}+\frac{1}{4} \beta_{2,0}\right) L_{3} \otimes E_{-1} \\
+\left(\frac{3}{4} \xi_{-1,0}-\frac{1}{4} \xi_{2,0}\right) E_{-1} \otimes L_{3}+\xi_{2,0} E_{0} \otimes L_{2}-\left(\frac{3}{2} \xi_{-1,0}+\frac{3}{2} \xi_{2,0}\right) E_{1} \otimes L_{1} \\
\quad+\left(2 \xi_{-1,0}+\xi_{2,0}\right) E_{2} \otimes L_{0}-\left(\frac{5}{4} \xi-1,0+\frac{1}{4} \xi_{2,0}\right) E_{3} \otimes L_{-1} \\
+\left(\frac{3}{4} \rho_{-1,0}-\frac{1}{4} \rho_{2,0}\right) E_{-1} \otimes E_{3}+\rho_{2,0} E_{0} \otimes E_{2}-\left(\frac{3}{2} \rho_{-1,0}+\frac{3}{2} \rho_{2,0}\right) E_{1} \otimes E_{1} \\
+\left(2 \rho_{-1,0}+\rho_{2,0}\right) E_{2} \otimes E_{0}-\left(\frac{5}{4} \rho_{-1,0}+\frac{1}{4} \rho_{2,0}\right) E_{3} \otimes E_{-1}
\end{gathered}
$$

Considering the action of D_{0} on $\left[L_{1}, L_{-2}\right]=3 L_{-1}$, under modulo $Z(\mathfrak{L}) \otimes Z(\mathfrak{L})$, we have

$$
\begin{aligned}
& \sum_{i \in \mathbb{Z}}(1-i) \alpha_{-2, i} L_{1+i} \otimes L_{-2-i}+\sum_{i \in \mathbb{Z}}(3+i) \alpha_{-2, i} L_{i} \otimes L_{-1-i}+\sum_{i \in \mathbb{Z}}(1-i) \beta_{-2, i} L_{1+i} \otimes E_{-2-i} \\
& +\sum_{i \in \mathbb{Z}}(3+i) \beta_{-2, i} L_{i} \otimes E_{-1-i}+\sum_{i \in \mathbb{Z}}(1-i) \xi_{-2, i} E_{1+i} \otimes L_{-2-i}+\sum_{i \in \mathbb{Z}}(3+i) \xi_{-2, i} E_{i} \otimes L_{-1-i} \\
& \quad+\sum_{i \in \mathbb{Z}}(1-i) \rho_{-2, i} E_{1+i} \otimes E_{-2-i}+\sum_{i \in \mathbb{Z}}(3+i) \rho_{-2, i} E_{i} \otimes E_{-1-i}+\sum_{j=1}^{2} 3 \alpha_{-2}^{j} L_{-1} \otimes c_{j} \\
& \quad+\sum_{j=1}^{2} 3 \beta_{-2}^{j} c_{j} \otimes L_{-1}+\sum_{j=1}^{2} 3 \xi_{-2}^{j} E_{-1} \otimes c_{j}+\sum_{j=1}^{2} 3 \rho_{-2}^{j} c_{j} \otimes E_{-1}+\frac{1}{3} \alpha_{-1,0} L_{-3} \otimes L_{2}
\end{aligned}
$$

$+\frac{4}{3} \alpha_{-1,0} L_{-1} \otimes L_{0}+\frac{1}{6} \alpha_{-1,0} L_{-1} \otimes c_{1}-\frac{4}{3} \alpha_{-1,0} L_{0} \otimes L_{-1}-\frac{1}{6} \alpha_{-1,0} c_{1} \otimes L_{-1}-\frac{1}{3} \alpha_{-1,0} L_{2} \otimes L_{-3}$
$+\frac{1}{3} \beta_{-1,0} L_{-3} \otimes E_{2}+\frac{4}{3} \beta_{-1,0} L_{-1} \otimes E_{0}+2 \beta_{-1,0} L_{-1} \otimes \mathcal{c}_{2}-\frac{4}{3} \beta_{-1,0} L_{0} \otimes E_{-1}-\frac{1}{6} \beta_{-1,0} \mathcal{c}_{1} \otimes E_{-1}$
$-\frac{1}{3} \beta_{-1,0} L_{2} \otimes E_{-3}+\frac{1}{3} \xi_{-1,0} E_{-3} \otimes L_{2}+\frac{4}{3} \xi_{-1,0} E_{-1} \otimes L_{0}+\frac{1}{6} \xi_{-1,0} E_{-1} \otimes c_{1}-\frac{4}{3} \xi_{-1,0} E_{0} \otimes L_{-1}$
$-2 \xi_{-1,0} c_{2} \otimes L_{-1}-\frac{1}{3} \xi_{-1,0} E_{2} \otimes L_{-3}+\frac{1}{3} \rho_{-1,0} E_{-3} \otimes E_{2}+\frac{4}{3} \rho_{-1,0} E_{-1} \otimes E_{0}+2 \rho_{-1,0} E_{-1} \otimes c_{2}$
$-\frac{4}{3} \rho_{-1,0} E_{0} \otimes E_{-1}-2 \rho_{-1,0} c_{2} \otimes E_{-1}-\frac{1}{3} \rho_{-1,0} E_{2} \otimes E_{-3}+3 \alpha_{-1,0} L_{-1} \otimes L_{0}-3 \alpha_{-1,0} L_{0} \otimes L_{-1}$
$+3 \beta_{-1,0} L_{-1} \otimes E_{0}-3 \beta_{-1,0} L_{0} \otimes E_{-1}+3 \xi_{-1,0} E_{-1} \otimes L_{0}-3 \xi_{-1,0} E_{0} \otimes L_{-1}+3 \rho_{-1,0} E_{-1} \otimes E_{0}$
$-3 \rho_{-1,0} E_{0} \otimes E_{-1}=0$
For any $i \in \mathbb{Z}$ and $j \in\{1,2\}$, comparing the coefficients of $L_{i} \otimes L_{-1-i}, L_{i} \otimes E_{-1-i}, E_{i} \otimes$ $L_{-1-i}, E_{i} \otimes E_{-1-i}, L_{-1} \otimes c_{j}, c_{j} \otimes L_{-1}, E_{-1} \otimes c_{j}$ and $c_{j} \otimes E_{-1}$ in the above equation, and noting that $\left\{i \in \mathbb{Z} \mid \alpha_{-2, i} \neq 0\right\},\left\{i \in \mathbb{Z} \mid \beta_{-2, i} \neq 0\right\},\left\{i \in \mathbb{Z} \mid \xi_{-2, i} \neq 0\right\}$ and $\left\{i \in \mathbb{Z} \mid \rho_{-2, i} \neq 0\right\}$ are finite sets, we obtain

$$
\begin{gathered}
\alpha_{-1,0}=0, \alpha_{-2,-3}=-\frac{1}{4} \alpha_{-2,0}, \alpha_{-2,-2}=\alpha_{-2,0}, \alpha_{-2,-1}=-\frac{3}{2} \alpha_{-2,0}, \alpha_{-2,1}=-\frac{1}{4} \alpha_{-2,0}, \alpha_{-2, i}=0, \\
\beta_{-1,0}=0, \beta_{-2,-3}=-\frac{1}{4} \beta_{-2,0}, \beta_{-2,-2}=\beta_{-2,0}, \beta_{-2,-1}=-\frac{3}{2} \beta_{-2,0}, \beta_{-2,1}=-\frac{1}{4} \beta_{-2,0}, \beta_{-2, i}=0, \\
\xi-1,0=0, \xi_{-2,-3}=-\frac{1}{4} \xi_{-2,0}, \xi_{-2,-2}=\xi-2,0, \xi_{-2,-1}=-\frac{3}{2} \xi-2,0, \xi_{-2,1}=-\frac{1}{4} \xi_{-2,0}, \xi_{-2, i}=0, \rho_{-1,0}=0, \\
\rho_{-2,-3}=-\frac{1}{4} \rho_{-2,0}, \rho_{-2,-2}=\rho_{-2,0,} \rho_{-2,-1}=-\frac{3}{2} \rho_{-2,0,} \rho_{-2,1}=-\frac{1}{4} \rho_{-2,0}, \rho_{-2, i}=0 \\
\alpha_{-2}^{1}=-\frac{1}{18} \alpha_{-1,0}=0, \alpha_{-2}^{2}=-\frac{2}{3} \beta_{-1,0}=0, \beta_{-2}^{1}=\frac{1}{18} \alpha_{-1,0}=0, \beta_{-2}^{2}=\frac{2}{3} \xi_{-1,0}=0 \\
\xi_{-2}^{1}=-\frac{1}{18} \xi_{-1,0}=0, \xi_{-2}^{2}=-\frac{2}{3} \rho_{-1,0}=0, \rho_{-2}^{1}=\frac{1}{18} \beta_{-1,0}=0, \\
\rho_{-2}^{2}=\frac{2}{3} \rho_{-1,0}=0
\end{gathered}
$$

for $i \neq-3,-2,-1,0,1$. Consequently, we can rewrite

$$
\begin{gathered}
D_{0}\left(L_{1}\right) \equiv D_{0}\left(L_{-1}\right) \equiv 0, \\
D_{0}\left(L_{2}\right) \equiv-\frac{1}{4} \alpha_{2,0} L_{-1} \otimes L_{3}+\alpha_{2,0} L_{0} \otimes L_{2}-\frac{3}{2} \alpha_{2,0} L_{1} \otimes L_{1}+\alpha_{2,0} L_{2} \otimes L_{0} \\
-\frac{1}{4} \alpha_{2,0} L_{3} \otimes L_{-1}-\frac{1}{4} \beta_{2,0} L_{-1} \otimes E_{3}+\beta_{2,0} L_{0} \otimes E_{2}-\frac{3}{2} \beta_{2,0} L_{1} \otimes E_{1} \\
+\beta_{2,0} L_{2} \otimes E_{0}-\frac{1}{4} \beta_{2,0} L_{3} \otimes E_{-1}-\frac{1}{4} \xi_{2,0} E_{-1} \otimes L_{3}+\xi_{2,0} E_{0} \otimes L_{2} \\
-\frac{3}{2} \xi_{2,0} E_{1} \otimes L_{1}+\xi_{2,0} E_{2} \otimes L_{0}-\frac{1}{4} \xi_{2,0} E_{3} \otimes L_{-1}-\frac{1}{4} \rho_{2,0} E_{-1} \otimes E_{3} \\
+\rho_{2,0} E_{0} \otimes E_{2}-\frac{3}{2} \rho_{2,0} E_{1} \otimes E_{1}+\rho_{2,0} E_{2} \otimes E_{0}-\frac{1}{4} \rho_{2,0} E_{3} \otimes E_{-1} \\
D_{0}\left(L_{-2}\right) \equiv-\frac{1}{4} \alpha_{-2,0} L_{-3} \otimes L_{1}+\alpha_{-2,0} L_{-2} \otimes L_{0}-\frac{3}{2} \alpha_{-2,0} L_{-1} \otimes L_{-1}+\alpha_{-2,0} L_{0} \otimes L_{-2} \\
-\frac{1}{4} \alpha_{-2,0} L_{1} \otimes L_{-3}-\frac{1}{4} \beta_{-2,0} L_{-3} \otimes E_{1}+\beta_{-2,0} L_{-2} \otimes E_{0}-\frac{3}{2} \beta_{-2,0} L_{-1} \otimes E_{-1} \\
+\beta+2 L_{-2,0} L_{0} \otimes E_{-2}-\frac{1}{4} \beta_{-2,0} L_{1} \otimes E_{-3}-\frac{1}{4} \xi_{-2,0} E_{-3} \otimes L_{1}+\xi \xi_{-2,0} E_{-2} \otimes L_{0} \\
-\frac{3}{2} \xi_{-2,0} E_{-1} \otimes L_{-1}+\xi-2,0 E_{0} \otimes L_{-2}-\frac{1}{4} \xi_{-2,0} E_{1} \otimes L_{-3}-\frac{1}{4} \rho_{-2,0} E_{-3} \otimes E_{1} \\
+\rho_{-2,0} E_{-2} \otimes E_{0}-\frac{3}{2} \rho_{-2,0} E_{-1} \otimes E_{-1}+\rho_{-2,0} E_{0} \otimes E_{-2}-\frac{1}{4} \rho_{-2,0} E_{1} \otimes E_{-3}
\end{gathered}
$$

Applying D_{0} to $\left[L_{2}, L_{-2}\right]=4 L_{0}+\frac{1}{2} c_{1}$, we have

$$
\alpha_{-2,0}=-\alpha_{2,0}, \beta_{-2,0}=-\beta_{2,0}, \xi_{-2,0}=-\xi_{2,0}, \rho_{-2,0}=-\rho_{2,0}
$$

Denote

$$
\begin{aligned}
v & =-\frac{1}{4} \alpha_{2,0}\left(L_{-1} \otimes L_{1}-2 L_{0} \otimes L_{0}+L_{1} \otimes L_{-1}\right) \\
& -\frac{1}{4} \beta_{2,0}\left(L_{-1} \otimes E_{1}-2 L_{0} \otimes E_{0}+L_{1} \otimes E_{-1}\right) \\
& -\frac{1}{4} \xi_{2,0}\left(E_{-1} \otimes L_{1}-2 E_{0} \otimes L_{0}+E_{1} \otimes L_{-1}\right) \\
& -\frac{1}{4} \rho_{2,0}\left(E_{-1} \otimes E_{1}-2 E_{0} \otimes E_{0}+E_{1} \otimes E_{-1}\right)
\end{aligned}
$$

Replacing D_{0} by $D_{0}-v_{\text {inn }}$, we obtain

$$
D_{0}\left(L_{ \pm 1}\right) \equiv D_{0}\left(L_{ \pm 2}\right) \equiv 0
$$

Since \mathfrak{L} has a Virasoro subalgebra $\mathfrak{L}^{\prime}:=\operatorname{Span}_{\mathbb{C}}\left\{L_{m} \mid m \in \mathbb{Z}\right\}$, which can be generated by the set $\left\{L_{-2}, L_{-1}, L_{1}, L_{2}\right\}$, then we have

$$
\begin{equation*}
D_{0}\left(L_{m}\right) \equiv 0, \text { for any } m \in \mathbb{Z} \tag{10}
\end{equation*}
$$

Considering the action of D_{0} on $\left[L_{1}, E_{1}\right]=0$ and $\left[L_{-1}, E_{-1}\right]=0$, respectively, under modulo $\mathrm{Z}(\mathfrak{L}) \otimes \mathrm{Z}(\mathfrak{L})$, we obtain

$$
\begin{aligned}
\lambda_{1, i}=\mu_{1, i}=\tau_{1, i} & =\eta_{1, i}=0, \text { for } i \neq 0,1 \\
\lambda_{1,0}+\lambda_{1,1}=\mu_{1,0}+\mu_{1,1} & =\tau_{1,0}+\tau_{1,1}=\eta_{1,0}+\eta_{1,1}=0 \\
\lambda_{-1, i}=\mu_{-1, i}=\tau_{-1, i} & =\eta_{-1, i}=0, \text { for } i \neq 0,-1 \\
\lambda_{-1,0}+\lambda_{-1,-1}=\mu_{-1,0}+\mu_{-1,-1} & =\tau_{-1,0}+\tau_{-1,-1}=\eta_{-1,0}+\eta_{-1,-1}=0
\end{aligned}
$$

Then, we can write

$$
\begin{gathered}
D_{0}\left(E_{1}\right) \equiv \lambda_{1,0} L_{0} \otimes L_{1}-\lambda_{1,0} L_{1} \otimes L_{0}+\mu_{1,0} L_{0} \otimes E_{1}-\mu_{1,0} L_{1} \otimes E_{0} \\
+\tau_{1,0} E_{0} \otimes L_{1}-\tau_{1,0} E_{1} \otimes L_{0}+\eta_{1,0} E_{0} \otimes E_{1}-\eta_{1,0} E_{1} \otimes E_{0} \\
+\sum_{j=1}^{2} \lambda_{1}^{j} L_{1} \otimes c_{j}+\sum_{j=1}^{2} \mu_{1}^{j} c_{j} \otimes L_{1}+\sum_{j=1}^{2} \tau_{1}^{j} E_{1} \otimes c_{j}+\sum_{j=1}^{2} \eta_{1}^{j} c_{j} \otimes E_{1}, \\
D_{0}\left(E_{-1}\right) \equiv-\lambda \lambda_{-1,0} L_{-1} \otimes L_{0}+\lambda-1,0 L_{0} \otimes L_{-1}-\mu_{-1,0} L_{-1} \otimes E_{0}+\mu_{-1,0} L_{0} \otimes E_{-1} \\
-\tau_{-1,0} E_{-1} \otimes L_{0}+\tau_{-1,0} E_{0} \otimes L_{-1}-\eta_{-1,0} E_{-1} \otimes E_{0}+\eta_{-1,0} E_{0} \otimes E_{-1} \\
+\sum_{j=1}^{2} \lambda_{-1}^{j} L_{-1} \otimes c_{j}+\sum_{j=1}^{2} \mu_{-1}^{j} c_{j} \otimes L_{-1}+\sum_{j=1}^{2} \tau_{-1}^{j} E_{-1} \otimes c_{j}+\sum_{j=1}^{2} \eta_{-1}^{j} c_{j} \otimes E_{-1}
\end{gathered}
$$

Applying D_{0} to $\left[L_{2}, E_{-1}\right]=3 E_{1}$, under modulo $Z(\mathfrak{L}) \otimes Z(\mathfrak{L})$, we obtain

$$
\begin{gathered}
\lambda_{1,0}=\lambda_{-1,0}=\mu_{1,0}=\mu_{-1,0}=\tau_{1,0}=\tau_{-1,0}=\eta_{1,0}=\eta_{-1,0}=0, \\
\lambda_{-1}^{j}=\lambda_{1}^{j}, \mu_{-1}^{j}=\mu_{1}^{j}, \tau_{-1}^{j}=\tau_{1}^{j}, \eta_{-1}^{j}=\eta_{1}^{j}, \text { for } j \in\{1,2\}
\end{gathered}
$$

Thus, we can rewrite

$$
\begin{gathered}
D_{0}\left(E_{1}\right) \equiv \sum_{j=1}^{2} \lambda_{1}^{j} L_{1} \otimes c_{j}+\sum_{j=1}^{2} \mu_{1}^{j} c_{j} \otimes L_{1}+\sum_{j=1}^{2} \tau_{1}^{j} E_{1} \otimes c_{j}+\sum_{j=1}^{2} \eta_{1}^{j} c_{j} \otimes E_{1}, \\
D_{0}\left(E_{-1}\right) \equiv \sum_{j=1}^{2} \lambda_{1}^{j} L_{-1} \otimes c_{j}+\sum_{j=1}^{2} \mu_{1}^{j} c_{j} \otimes L_{-1}+\sum_{j=1}^{2} \tau_{1}^{j} E_{-1} \otimes c_{j}+\sum_{j=1}^{2} \eta_{1}^{j} c_{j} \otimes E_{-1}
\end{gathered}
$$

Applying D_{0} to $\left[E_{1}, E_{-1}\right]=L_{0}$, under modulo $\mathrm{Z}(\mathfrak{L}) \otimes \mathrm{Z}(\mathfrak{L})$, we have

$$
\lambda_{1}^{j}=\mu_{1}^{j}=\tau_{1}^{j}=\eta_{1}^{j}=0, \text { for } j \in\{1,2\} .
$$

Then,

$$
\begin{equation*}
D_{0}\left(E_{1}\right) \equiv D_{0}\left(E_{-1}\right) \equiv 0 \tag{11}
\end{equation*}
$$

Since the Lie algebra \mathfrak{L} is generated by the set $\left\{L_{-2}, L_{-1}, L_{1}, L_{2}, E_{1}\right\}$, using (10) and (11), we obtain $D_{0}(\mathfrak{L}) \equiv 0$. Then, Claim 4 is proved.

Claim 5. \mathfrak{L} is perfect, i.e., $[\mathfrak{L}, \mathfrak{L}]=\mathfrak{L}$.
By Lie brackets of \mathfrak{L}, we have

$$
\begin{gathered}
L_{m}=\frac{1}{m}\left[L_{m}, L_{0}\right] \in[\mathfrak{L}, \mathfrak{L}] \text { for } m \neq 0, L_{0}=\frac{1}{2}\left[L_{1}, L_{-1}\right] \in[\mathfrak{L}, \mathfrak{L}], \\
c_{1}=2\left[L_{2}, L_{-2}\right]-8 L_{0} \in[\mathfrak{L}, \mathfrak{L}], E_{m}=\frac{1}{m}\left[E_{m}, L_{0}\right] \in[\mathfrak{L}, \mathfrak{L}] \text { for } m \neq 0, \\
E_{0}=\frac{1}{2}\left[L_{1}, E_{-1}\right] \in[\mathfrak{L}, \mathfrak{L}], c_{2}=\frac{1}{6}\left[L_{2}, E_{-2}\right]-\frac{2}{3} E_{0} \in[\mathfrak{L}, \mathfrak{L}]
\end{gathered}
$$

Note that $\left\{L_{m}, E_{m}, c_{1}, c_{2} \mid m \in \mathbb{Z}\right\}$ is a \mathbb{C}-basis of the Lie algebra \mathfrak{L}. Thus \mathfrak{L} is perfect. Claim 5 is proved.
Claim 6. $D_{0}=0$.
It is proved that $D_{0}(\mathfrak{L}) \subseteq \mathrm{Z}(\mathfrak{L}) \otimes \mathrm{Z}(\mathfrak{L})$ in Claim 4. Because $\mathfrak{L}=[\mathfrak{L}, \mathfrak{L}]$ by Claim 5 , we have $D_{0}(\mathfrak{L}) \subseteq \mathfrak{L} \cdot D_{0}(\mathfrak{L})=0$. Then, Claim 6 is proved.

Claim 7. For every $D \in \operatorname{Der}(\mathfrak{L}, V), D=\sum_{\varepsilon \in \mathbb{Z}} D_{\varepsilon}$ is a finite sum, where $D_{\varepsilon} \in \operatorname{Der}(\mathfrak{L}, V)_{\varepsilon}$.
According to the above claims, for any $\varepsilon \in \mathbb{Z}$, we can suppose $D_{\varepsilon} \in\left(u_{\varepsilon}\right)_{\mathrm{inn}}$ for some $u_{\mathcal{\varepsilon}} \in V_{\varepsilon}$. If $\left\{\varepsilon \in \mathbb{Z}^{*} \mid u_{\varepsilon} \neq 0\right\}$ is an infinite set, then we have $D\left(L_{0}\right)=-\sum_{\varepsilon \in \mathbb{Z}^{*}} \varepsilon u_{\varepsilon}$ is an infinite sum, a contradiction with the fact that $D \in \operatorname{Der}(\mathfrak{L}, V)$. This proves Claim 7 and Proposition 3.4.

Lemma 3.5. Suppose $\omega \in V$ such that $a \cdot \omega \in \operatorname{Im}(1 \otimes 1-\sigma)$ for all $a \in \mathfrak{L}$. Then $\omega \in$ $\operatorname{Im}(1 \otimes 1-\sigma)$.

Proof. It is easy to see that $\mathfrak{L} \cdot \operatorname{Im}(1 \otimes 1-\sigma) \subset \operatorname{Im}(1 \otimes 1-\sigma)$. After a few of steps in each of which ω is replaced by $\omega-\gamma$ for some $\gamma \in \operatorname{Im}(1 \otimes 1-\sigma)$, we shall prove that $\omega=0$ and thus $\omega \in \operatorname{Im}(1 \otimes 1-\sigma)$. We can write $\omega=\sum_{k \in \mathbb{Z}} \omega_{k}$, where $\omega_{k} \in V_{k}$. Clearly,

$$
\omega \in \operatorname{Im}(1 \otimes 1-\sigma) \Leftrightarrow \omega_{k} \in \operatorname{Im}(1 \otimes 1-\sigma) \text { for all } k \in \mathbb{Z}
$$

Then, without loss of generality, we may assume that $\omega=\omega_{k}$ is homogeneous. For any $k \neq 0, \omega_{k}=-\frac{1}{k} L_{0} \cdot \omega_{k} \in \operatorname{Im}(1 \otimes 1-\sigma)$. Thus, we can suppose $\omega=\omega_{0} \in V_{0}$. Now ω can be written as

$$
\begin{aligned}
\omega= & \sum_{i \in \mathbb{Z}} \alpha_{i} L_{i} \otimes L_{-i}+\sum_{i \in \mathbb{Z}} \beta_{i} L_{i} \otimes E_{-i}+\sum_{i \in \mathbb{Z}} \xi_{i} E_{i} \otimes L_{-i}+\sum_{i \in \mathbb{Z}} \rho_{i} E_{i} \otimes E_{-i} \\
& +\sum_{j=1}^{2} \alpha_{0}^{j} L_{0} \otimes c_{j}+\sum_{j=1}^{2} \beta_{0}^{j} c_{j} \otimes L_{0}+\sum_{j=1}^{2} \xi_{0}^{j} E_{0} \otimes c_{j}+\sum_{j=1}^{2} \rho_{0}^{j} c_{j} \otimes E_{0}
\end{aligned}
$$

where $\alpha_{i}, \beta_{i}, \xi_{i}, \rho_{i}, \alpha_{0}^{j}, \beta_{0}^{j}, \xi_{0}^{j}, \rho_{0}^{j} \in \mathbb{C}$, for $i \in \mathbb{Z}, j \in\{1,2\} ;\left\{i \in \mathbb{Z} \mid \alpha_{i} \neq 0\right\},\left\{i \in \mathbb{Z} \mid \beta_{i} \neq 0\right\}$, $\left\{i \in \mathbb{Z} \mid \xi_{i} \neq 0\right\}$ and $\left\{i \in \mathbb{Z} \mid \rho_{i} \neq 0\right\}$ are finite sets. For any $i \in \mathbb{Z}$, since $\gamma_{1, i}:=L_{i} \otimes L_{-i}-$ $L_{-i} \otimes L_{i}, \gamma_{2, i}:=L_{i} \otimes E_{-i}-E_{-i} \otimes L_{i}, \gamma_{3, i}:=E_{i} \otimes E_{-i}-E_{-i} \otimes E_{i}, \gamma_{1}:=L_{0} \otimes c_{1}-c_{1} \otimes L_{0}$, $\gamma_{2}:=L_{0} \otimes c_{2}-c_{2} \otimes L_{0}, \gamma_{3}:=E_{0} \otimes c_{1}-c_{1} \otimes E_{0}, \gamma_{4}:=E_{0} \otimes c_{2}-c_{2} \otimes E_{0}$ are all in $\operatorname{Im}(1 \otimes 1-\sigma)$, by replacing ω by $\omega-\gamma$, where γ is a combination of some $\gamma_{1, i}, \gamma_{2, i}$, $\gamma_{3, i}, \gamma_{1}, \gamma_{2}, \gamma_{3}$ and γ_{4}, one can suppose

$$
\begin{gather*}
\xi_{i}=\beta_{0}^{j}=\rho_{0}^{j}=0, \text { for any } i \in \mathbb{Z}, j \in\{1,2\} \tag{12}\\
\alpha_{i}, \rho_{i} \neq 0 \Rightarrow i \geq 0 \tag{13}
\end{gather*}
$$

Thus ω has the following form

$$
\omega=\sum_{i \in \mathbb{N}} \alpha_{i} L_{i} \otimes L_{-i}+\sum_{i \in \mathbb{Z}} \beta_{i} L_{i} \otimes E_{-i}+\sum_{i \in \mathbb{N}} \rho_{i} E_{i} \otimes E_{-i}+\sum_{j=1}^{2} \alpha_{0}^{j} L_{0} \otimes c_{j}+\sum_{j=1}^{2} \tilde{\zeta}_{0}^{j} E_{0} \otimes c_{j}
$$

Suppose that there exists $i>0$ such that $\alpha_{i} \neq 0$. Let $j>0$ be such that $j \neq i$. It is easy to see that the term $L_{i+j} \otimes L_{-i}$ appears in $L_{j} \cdot \omega$. However the term $L_{-i} \otimes L_{i+j}$ cannot appear in $L_{j} \cdot \omega$ by (13), a contradiction with the fact that $L_{j} \cdot \omega \in \operatorname{Im}(1 \otimes 1-\sigma)$. Thus, we can further suppose that $\alpha_{i}=0$ for any $i \in \mathbb{Z}^{*}$. Similarly, we also can suppose that $\rho_{i}=0$ for any $i \in \mathbb{Z}^{*}$. Then, ω can be written as

$$
\omega=\alpha_{0} L_{0} \otimes L_{0}+\sum_{i \in \mathbb{Z}} \beta_{i} L_{i} \otimes E_{-i}+\rho_{0} E_{0} \otimes E_{0}+\sum_{j=1}^{2} \alpha_{0}^{j} L_{0} \otimes c_{j}+\sum_{j=1}^{2} \xi_{0}^{j} E_{0} \otimes c_{j}
$$

Noting that $\operatorname{Im}(1 \otimes 1-\sigma) \subset \operatorname{Ker}(1 \otimes 1+\sigma)$ and using that $\mathfrak{L} \cdot \omega \in \operatorname{Im}(1 \otimes 1-\sigma)$, we have

$$
\begin{gathered}
0=(1 \otimes 1+\sigma) L_{1} \cdot \omega \\
=2 \alpha_{0}\left(L_{1} \otimes L_{0}+L_{0} \otimes L_{1}\right)+2 \rho_{0}\left(E_{1} \otimes E_{0}+E_{0} \otimes E_{1}\right) \\
+\sum_{j=1}^{2} \alpha_{0}^{j}\left(L_{1} \otimes c_{j}+c_{j} \otimes L_{1}\right)+\sum_{j=1}^{2} \xi_{0}^{j}\left(E_{1} \otimes c_{j}+c_{j} \otimes E_{1}\right) \\
+\sum_{i \in \mathbb{Z}}\left[(2-i) \beta_{i-1}+(1+i) \beta_{i}\right] L_{i} \otimes E_{1-i}+\sum_{i \in \mathbb{Z}}\left[(2-i) \beta_{i-1}+(1+i) \beta_{i}\right] E_{1-i} \otimes L_{i}
\end{gathered}
$$

Since $\left\{i \in \mathbb{Z} \mid \beta_{i} \neq 0\right\}$ is a finite set, comparing the coefficient of the tensor products in the above equation, it follows that

$$
\begin{gathered}
\alpha_{0}=\rho_{0}=\alpha_{0}^{j}=\xi_{0}^{j}=\beta_{i}=0, \text { for } j \in\{1,2\}, i \in \mathbb{Z}, \\
i \neq-1,0,1 \\
\beta_{0}=-2 \beta_{-1}=-2 \beta_{1}
\end{gathered}
$$

Thus ω has the following form

$$
\omega=\beta_{1}\left(L_{-1} \otimes E_{1}-2 L_{0} \otimes E_{0}+L_{1} \otimes E_{-1}\right)
$$

Considering the computation

$$
\begin{gathered}
0=(1 \otimes 1+\sigma) L_{2} \cdot \omega \\
=\beta_{1}(1 \otimes 1+\sigma)\left[6 L_{1} \otimes E_{1}+L_{-1} \otimes E_{3}-4 L_{2} \otimes E_{0}-4 L_{0} \otimes E_{2}+L_{3} \otimes E_{-1}\right]
\end{gathered}
$$

it follows immediately that $\beta_{1}=0$. Thus $\omega=0$. This completes the proof.
We are now in a position to prove Theorem 3.1.
Proof of Theorem 3.1. Let $(\mathfrak{L},[\cdot, \cdot], \vartheta)$ be a Lie bialgebra structure on \mathfrak{L}. By (2) and (6), $\vartheta \in \operatorname{Der}(\mathfrak{L}, V)$. By Proposition 3.4, $\operatorname{Der}(\mathfrak{L}, V)=\operatorname{Inn}(\mathfrak{L}, V)$. Thus, there exists $r \in V$ such that $\vartheta=\vartheta_{r}$, where ϑ_{r} is defined by (1) of Definition 2.2. Namely, $\vartheta(a)=a \cdot r$ for any $a \in \mathfrak{L}$. By (1), $\operatorname{Im} \vartheta \subset \operatorname{Im}(1 \otimes 1-\sigma)$. Hence, by Lemma 3.5, $r \in \operatorname{Im}(1 \otimes 1-\sigma)$. By Lemma 2.3, $a \cdot c(r)=0$, for all $a \in \mathfrak{L}$. By Corollary 3.3, $c(r)=0$. Therefore, (1) and (2) of Definition 2.2 imply that $(\mathfrak{L},[\cdot, \cdot], \vartheta)$ is a triangular coboundary Lie bialgebra.

Author Contributions: Conceptualization, methodology, X.C.; writing-original draft preparation, X.C., Y.S. and J.Z.; validation, Y.S.; writing-review and editing, X.C. and Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (Grant no. 11801477); Natural Science Foundation of Fujian Province (Grant no. 2017J05016).

Data Availability Statement: The data of the Lie algebra relations used to support the findings of this study are included within the article.

Conflicts of Interest: The authors declare that there are no conflict of interest regarding the publication of this paper.

References

1. Kac, V.G. Infinite-Dimensional Lie Algebras, 3rd ed.; Cambridge University Press: Cambridge, UK, 1990.
2. Dong, C.Y.; Lepowsky, J. Generalized Vertex Algebras and Relative Vertex Operators; Progress in Math; Birkhauser: Boston, MA, USA, 1993; Volume 112.
3. Allison, B.; Azam, S.; Berman, S.; Gao, Y.; Pianzola, A. Extended Affine Lie Algebras and Their Root Systems; Memoirs of the American Mathematical Society: Charles, RI, USA, 1997; Volume 126.
4. Chen, X.; Huang, Z. Structures of the Lie algebra L related to Virasoro algebra. J. Xiamen Univ. Technol. 2014, $22,91-96$. (In Chinese)
5. Zhao, Q. On Structures of Two Classes of Infinite Dimensional Lie Algebras. Master's Thesis, Xiamen University, Xiamen, China, 2014; pp. 1-25. (In Chinese)
6. Drinfeld, V.G. Constant quasiclassical solutions of the Yang-Baxter quantum equation. Soviet Math. Dokl. 1983, 28 , 667-671.
7. Drinfeld, V.G. Quantum Groups. In Proceedings of the International Congress of Mathematicians, Berkeley, CA, USA, 3-11 August 1986; American Mathematical Society: Providence, RI, USA, 1987; Volumes 1 and 2, pp. 798-820.
8. Taft, E.J. Witt and Virasoro algebras as Lie bialgebras. J. Pure Appl. Algebra 1993, 87, 301-312. [CrossRef]
9. Michaelis, W. A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv. Math. 1994, 107, 365-392. [CrossRef]
10. Ng, S.H.; Taft, E.J. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J. Pure Appl. Algebra 2000, 151, 67-88. [CrossRef]
11. Song, G.; Su, Y. Lie bialgebras of generalized Witt type. Sci. China Ser. A 2006, 49, 533-544. [CrossRef]
12. Wu, Y.; Song, G.; Su, Y. Lie bialgebras of generalized Virasoro-like type. Acta Math. Sin. Engl. Ser. 2006, 22, 1915-1922. [CrossRef]
13. Yue, X.; Su, Y. Lie bialgebra structures on Lie algebras of generalized Weyl type. Comm. Algebra 2008, 36, 1537-1549. [CrossRef]
14. Han, J.; Li, J.; Su, Y. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J. Math. Phys. 2009, 50, 083504. [CrossRef]
15. Li, J.; Su, Y. Lie bialgebra structures on the W-algebra $W(2,2)$. Algebra Colloq. 2010, 17, 181-190. [CrossRef]
16. Liu, D.; Pei, Y.; Zhu, L. Lie bialgebra structures on the twisted Heisenberg-Virasoro algebra. J. Algebra 2012, 359, 35-48. [CrossRef]
17. Fa, H.; Li, J.; Zheng, Y. Lie bialgebra structures on the deformative Schrödinger-Virasoro algebras. J. Math. Phys. 2015, 56, 111706. [CrossRef]
18. Wu, H.; Wang, S.; Yue, X. Lie bialgebras of generalized loop Virasoro algebras. Chin. Ann. Math. Ser. B 2015, 36, 437-446. [CrossRef]
19. Chen, H.; Dai, X.; Yang, H. Lie bialgebra structures on generalized loop Schrödinger-Virasoro algebras. Front. Math. China 2019, 14, 239-260. [CrossRef]
20. Song, G.; Su, Y. Dual Lie bialgebras of Witt and Virasoro types. Sci. Sin. Math. 2013, 43, 1039-1102. (In Chinese)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

