# Compression of a Polar Orthotropic Wedge between Rotating Plates: Distinguished Features of the Solution

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Statement of the Problem

## 3. General Stress Solution

## 4. General Velocity Solution

## 5. Solution of the Boundary Value Problem

#### 5.1. Regime of Sticking

#### 5.2. Regime of Sliding

## 6. Singularity

## 7. Conclusions

- no solution at sticking exists; and
- the solution at sliding involves no rigid region.

- no solution at sticking exists if $\alpha <{\alpha}_{cr}$ (${\alpha}_{cr}$ is introduced in (37)) and the solution for $\alpha >{\alpha}_{cr}$ requires a rigid region adjacent to the plate; and
- the solution at sliding exists if $\alpha <{\alpha}_{cr}$ and this solution is singular (some stress and velocity derivatives approach infinity in the vicinity of the friction surface).

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Alexandrov, S.; Jeng, Y.-R. Compression of viscoplastic material between rotating plates. Trans. ASME J. Appl. Mech.
**2009**, 76. [Google Scholar] [CrossRef] - Alexandrov, S.; Miszuris, W. The transition of qualitative behaviour between rigid perfectly plastic and viscoplastic solutions. J. Eng. Math.
**2016**, 97, 67–81. [Google Scholar] [CrossRef] - Alexandrov, S.; Harris, D. An Exact solution for a model of pressure-dependent plasticity in an un-steady plane strain process. Eur. J. Mech. -A/Solids
**2010**, 29, 966–975. [Google Scholar] [CrossRef] - Harris, D.; Grekova, E.F. A hyperbolic well-posed model for the flow of granular materials. J. Eng. Math.
**2005**, 52, 107–135. [Google Scholar] [CrossRef] - Liang, D.S.; Wang, H.J.; Chen, L.W. Vibration and stability of rotating polar orthotropic annular disks subjected to a stationary concentrated transverse load. J. Sound Vib.
**2002**, 250, 795–811. [Google Scholar] [CrossRef] - Koo, K.N. Vibration analysis and critical speeds of polar orthotropic annular disks in rotation. Compos. Struct.
**2006**, 76, 67–72. [Google Scholar] [CrossRef] - Peng, X.-L.; Li, X.-F. Elastic analysis of rotating functionally graded polar orthotropic disks. Int. J. Mech. Sci.
**2012**, 60, 84–91. [Google Scholar] [CrossRef] - Jeong, W.; Alexandrov, S.; Lang, L. Effect of plastic anisotropy on the distribution of residual stresses and strains in rotating annular disks. Symmetry
**2018**, 10, 420. [Google Scholar] [CrossRef] - Alexandrov, S.; Jeng, Y.-R. Singular rigid/plastic solutions in anisotropic plasticity under plane strain conditions. Cont. Mech. Therm.
**2013**, 25, 685–689. [Google Scholar] [CrossRef] - Orowan, E. The calculation of roll pressure in hot and cold flat rolling. Proc. Inst. Mech. Eng.
**1943**, 150, 140–167. [Google Scholar] [CrossRef] - Kimura, H. Application of Orowan theory to hot rolling of aluminum. J. Jpn. Inst. Light Met.
**1985**, 35, 222–227. [Google Scholar] [CrossRef] - Kimura, H. Application of Orowan theory to hot rolling of aluminum: computer control of hot rolling of aluminum. Sumitomo Light Met. Tech. Rep.
**1985**, 26, 189–194. [Google Scholar] - Lenard, J.G.; Wang, F.; Nadkarni, G. Role of constitutive formulation in the analysis of hot rolling. Trans. ASME J. Eng. Mater. Technol.
**1987**, 109, 343–349. [Google Scholar] [CrossRef] - Atreya, A.; Lenard, J.G. Study of cold strip rolling. Trans. ASME J. Eng. Mater. Technol.
**1979**, 101, 129–134. [Google Scholar] [CrossRef] - Domanti, S.; McElwain, D.L.S. Two-dimensional plane strain rolling: an asymptotic approach to the estimation of inhomogeneous effects. Int. J. Mech. Sci.
**1995**, 37, 175–196. [Google Scholar] [CrossRef] - Cawthorn, C.J.; Loukaides, F.G.; Allwood, J.M. Comparison of analytical models for sheet rolling. Proc. Eng.
**2014**, 81, 2451–2456. [Google Scholar] [CrossRef] - Hill, R. The Mathematical Theory of Plasticity; Clarendon Press: Oxford, UK, 1950. [Google Scholar]
- Collins, I.F.; Meguid, S.A. On the influence of hardening and anisotropy on the plane-strain compression of thin metal strip. Trans. ASME J. Appl. Mech.
**1977**, 44, 272–278. [Google Scholar] [CrossRef] - Alexandrov, S.; Mishuris, G. Viscoplasticity with a saturation stress: distinguished features of the model. Arch. Appl. Mech.
**2007**, 77, 35–47. [Google Scholar] [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alexandrov, S.; Lyamina, E.; Chinh, P.; Lang, L.
Compression of a Polar Orthotropic Wedge between Rotating Plates: Distinguished Features of the Solution. *Symmetry* **2019**, *11*, 270.
https://doi.org/10.3390/sym11020270

**AMA Style**

Alexandrov S, Lyamina E, Chinh P, Lang L.
Compression of a Polar Orthotropic Wedge between Rotating Plates: Distinguished Features of the Solution. *Symmetry*. 2019; 11(2):270.
https://doi.org/10.3390/sym11020270

**Chicago/Turabian Style**

Alexandrov, Sergei, Elena Lyamina, Pham Chinh, and Lihui Lang.
2019. "Compression of a Polar Orthotropic Wedge between Rotating Plates: Distinguished Features of the Solution" *Symmetry* 11, no. 2: 270.
https://doi.org/10.3390/sym11020270