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Abstract: An infinite wedge of orthotropic material is confined between two rotating planar rough
plates, which are inclined at an angle 2α. An instantaneous boundary value problem for the flow
of the material is formulated and solved for the stress and the velocity fields, the solution being in
closed form. The solution may exhibit the regimes of sliding or sticking at the plates. It is shown that
the overall structure of the solution significantly depends on the friction stress at sliding. This stress
is postulated by the friction law. Solutions, which exhibit sticking, may exist only if the postulated
friction stress at sliding satisfies a certain condition. These solutions have a rigid rotating zone in the
region adjacent to the plates, unless the angle α is equal to a certain critical value. Solutions which
exhibit sliding may be singular. In particular, some space stress and velocity derivatives approach
infinity in the vicinity of the friction surface.

Keywords: polar orthotropy; Hill’s yield criterion; friction regimes; singularity

1. Introduction

An instantaneous plane strain rigid plastic solution is obtained for compression of an infinite
wedge of orthotropic material confined between two rough plates, inclined at angle 2α, and which
intersect in a line. This boundary value problem is ideal for studying qualitative mathematical
properties of boundary value problems, including constitutive equations and boundary conditions. For,
exact analytical or semi-analytical solutions can be found for many constitutive equations. In particular,
such solutions have been presented in [1,2] for isotropic viscoplastic materials and in [3] for the double
slip and rotation model. A description of this model can be found in [4].

The present paper provides an analytic solution for rigid plastic orthotropic material. It is assumed
that the principal axes of anisotropy are straight lines through the apex of the wedge and orthogonal
curves, which are of course circular arcs. This type of orthotropy is of practical interest [5–8] among
many others. The paper focuses on qualitative features of the solution such as non-existence of the
solution, singularity in the stress and velocity fields, appearance of a rigid region near the plates and
transition between the regimes of sticking and sliding. The effect of plastic anisotropy on these features
is discussed.

The stress and velocity fields are singular if the regime of sliding occurs in the case of the maximum
friction law. A detailed asymptotic analysis of the solution is performed for this case. In particular, it is
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shown that the asymptotic behavior of the solution is in agreement with the general theory developed
in [9].

An applied aspect of the solution found, is that it can be used in conjunction with the method for
analysis and the design of flat-rolling proposed in [10]. It is known that solutions, found by means of
this method, show a good comparison with experiment [11–13], and are used for verifying solutions
found by means of other approximate methods [14,15]. The importance of developing fast approximate
methods for the analysis and design of the process of rolling has been emphasized in [16].

2. Statement of the Problem

Two semi-infinite rough plates rotate towards each other with angular velocity of magnitude ω

about an axis O and compress a wedge of polar orthotropic material. The plates are inclined to each
other at an angle 2α (Figure 1). The boundary value problem consists of the instantaneous plane strain
deformation of the wedge. The problem is solved in a system of plane polar coordinates (r, θ) with its
origin at O and with θ = 0, taken as the perpendicular bisector of the angle 2α. It is assumed that the
principal axes of anisotropy coincide with coordinate curves of the coordinate system chosen. Then,
θ = 0 is an axis of symmetry for the flow and it is sufficient to find the solution in the region θ ≥ 0.
The components of the stress tensor referred to the polar coordinate system are denoted as σrr, σθθ and
σrθ ; and the components of the velocity vector as ur and uθ . There is no material flux through O.
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Figure 1. Geometry of the boundary value problem.

Therefore, the radial velocity should satisfy the following condition:

ur = 0 (1)

at r = 0. By symmetry,
uθ = 0 (2)

and
σrθ = 0 (3)

at θ = 0. The circumferential velocity should also satisfy the condition:

uθ = −ωr (4)

at θ = α. Finally, the friction law is taken in the form:{
ur = 0if|σrθ | ≤ τf
σrθ = −τf otherwise

(5)

at θ = α. Here τf > 0 denotes the frictional stress at sliding. The magnitude of τf will be specified
later. The sense of σrθ in (5) is dictated by the condition that ur ≥ 0 at the plate.
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It is assumed that the material obeys Hill’s quadratic yield criterion [17] and its associated flow
rule. The elastic portion of strain is neglected. In the case of plane strain deformation of a polar
orthotropic material, whose principal axes of anisotropy coincide with the coordinate curves of the
polar coordinate system, the constitutive equations of the model are:

(σrr − σθθ)
2

4(1− c)
+ σ2

rθ = T2 (6)

and

ξrr = λ
(σrr − σθθ)

2(1− c)
, ξθθ = −λ

(σrr − σθθ)

2(1− c)
, ξrθ = λσrθ (7)

where (6) in the yield criterion and (7) is the associated flow rule. The quantity T is the shear yield
stress in the coordinate system chosen, c is a constitutive parameter, λ is a non-negative multiplier, ξrr,
ξθθ , ξrθ denote the components of the strain rate tensor. The parameter c can be expressed in terms of
the yield stresses in the directions of the principal axes of anisotropy and can vary (theoretically) in the
range −∞ < c < 1 [17]. Eliminating λ between the equations in (7) yields:

ξrr + ξθθ = 0,
ξrθ

ξrr − ξθθ
=

(1− c)σrθ

σrr − σθθ
. (8)

It is evident that the first equation here is the equation of incompressibility. The strain rate components
are expressed in terms of the velocity components as

ξrr =
∂ur

∂r
, ξθθ =

1
r

∂uθ

∂θ
+

ur

r
, ξrθ =

1
2

(
1
r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r

)
. (9)

The system of Equations (6), (8) and (9) are supplemented by the stress equilibrium equations:

∂σrr

∂r
+

1
r

∂σrθ

∂θ
+

σrr − σθθ

r
= 0,

∂σrθ

∂r
+

1
r

∂σθθ

∂θ
+

2σrθ

r
= 0. (10)

In total, there are five unknowns (three components of the stress tensor and two components
of the velocity vector). The equations to solve are (6), (8) and (10). It is understood here that the
components of the strain rate tensor in (8) should be eliminated by means of (9). The solution should
satisfy the conditions (1) to (5).

3. General Stress Solution

The yield criterion (6) is satisfied by the following substitution:

σrr = σ + T
√

1− c cos 2ϕ, σθθ = σ− T
√

1− c cos 2ϕ, σrθ = −T sin 2ϕ (11)

where σ and ϕ are new unknown functions of r and θ. The direction of flow dictates that σrθ ≤ 0 and
σrr − σθθ ≥ 0. Then, it is immediate from (11) that:

0 ≤ ϕ ≤ π

4
. (12)

Using (11) and (12) the boundary condition (3) transforms to:

ϕ = 0 (13)

at θ = 0. Substituting (11) into (10) gives:

∂σ
∂r − 2T

√
1− c sin 2ϕ

∂ϕ
∂r −

2T cos 2ϕ
r

∂ϕ
∂θ + 2T

√
1−c cos 2ϕ

r = 0,

−2T cos 2ϕ
∂ϕ
∂r + ∂σ

r∂θ −
2T
√

1−c sin 2ϕ
r

∂ϕ
∂θ −

2T sin 2ϕ
r = 0.

(14)
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A standard assumption made in similar problems of the classical theory of plasticity is that ϕ is
independent of r [17]. In this case, the equations in (14) become:

∂σ

∂r
− 2T cos 2ϕ

r
dϕ

dθ
+

2T
√

1− c cos 2ϕ

r
= 0,

∂σ

2T∂θ
−
√

1− c sin 2ϕ
dϕ

dθ
− sin 2ϕ = 0. (15)

The first equation can be immediately integrated to give:

σ

2T
=

(
dϕ

dθ
−
√

1− c
)

cos 2ϕ ln
(

r
r0

)
+

σ0(θ)

2T
. (16)

Here r0 is a constant introduced for convenience and σ0(θ) is an arbitrary function of θ. Substituting
(16) into the second equation in (15) yields:

d
dθ

[(
dϕ

dθ
−
√

1− c
)

cos 2ϕ

]
ln
(

r
r0

)
= −
√

1− c sin 2ϕ
dϕ

dθ
+ sin 2ϕ− dσ0

2Tdθ
. (17)

Since the right-hand side of this equation is independent of r, the coefficient of ln(r/r0) on the left-hand
side must vanish. Then, Equation (17) results in the following two equations:(

dϕ

dθ
−
√

1− c
)

cos 2ϕ = K0
√

1− c,
dσ0

2Tdθ
=

(
−
√

1− c
dϕ

dθ
+ 1
)

sin 2ϕ. (18)

Here K0 is a constant of integration. Equation (16) becomes:

σ

2T
= K0

√
1− c ln

(
r
r0

)
+

σ0(θ)

2T
. (19)

The second equation in (18) can be rewritten as:

dσ0

2Tdϕ
=

(
−
√

1− c +
dθ

dϕ

)
sin 2ϕ.

Eliminating in this equation the derivative dθ/dϕ by means of the first equation in (18) leads to:

dσ0

2Tdϕ
=

1√
1− c

[
1− c +

cos 2ϕ

(K0 + cos 2ϕ)

]
sin 2ϕ.

Integrating gives:
σ0

2T
=

1
2
√

1− c
[− cos 2ϕ + K0ln(K0 + cos 2ϕ) + K1] (20)

where K1 is constant of integration.
It is seen from (12) and (13) that dϕ/dθ > 0 at ϕ = 0. Therefore, it follows from the first equation

in (18) that
K0 > −1. (21)

The first equation in (18) can be integrated to give:

θ
√

1− c = ϕ− K0arctanh

[√
1− K0

1 + K0
tan ϕ

](
1− K2

0

)−1/2
(22)

if |K0| < 1,

θ
√

1− c = ϕ− K0arctan

[√
K0 − 1
K0 + 1

tan ϕ

](
K2

0 − 1
)−1/2

(23)
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if K0 > 1, and

θ
√

1− c = ϕ− tan ϕ

2
(24)

if K0 = 1. The solution for an important special case of (22), K0 = 0, is represented as

θ
√

1− c = ϕ. (25)

The constant K0 cannot be determined without the solution for velocity.

4. General Velocity Solution

The velocity components may be represented as:

ur =
ωr
2

dg(ϕ)

dθ
and uθ = −ωrg(ϕ) . (26)

The condition (1) and the first equation in (8) are then automatically satisfied for any choice of the
function g(ϕ). Equations (9) and (26) combine to give:

ξrr =
ω

2
dg(ϕ)

dθ
, ξθθ = −ω

2
dg(ϕ)

dθ
, ξrθ =

ω

4
d2g(ϕ)

dθ2 . (27)

Substituting (11) and (27) in the second equation in (8) yields:

d2g
dθ2 + 2

√
1− c tan 2ϕ

dg
dθ

= 0 (28)

or
dG
dθ

+ 2
√

1− c tan 2ϕG = 0 (29)

where G = dg/dθ. Replacing in (29) differentiation with respect to θ with differentiation with respect
to ϕ by means of the first equation in (18) results in:

dG
dϕ

= − 2 sin 2ϕ

(K0 + cos 2ϕ)
G. (30)

Integrating gives
G = G0(K0 + cos 2ϕ). (31)

Here G0 is constant of integration. The definition for G and (31) combine to give:

dg
dθ

= G0(K0 + cos 2ϕ). (32)

Replacing here differentiation with respect to θ with differentiation with respect to ϕ by means of the
first equation in (18) results in:

dg
dϕ

=
G0 cos 2ϕ√

1− c
. (33)

It is seen from (2), (13) and (26) that g = 0 at ϕ = 0. The solution of Equation (32) satisfying this
condition is:

g =
G0 sin 2ϕ

2
√

1− c
. (34)

Substituting (33) into (26) and then the resulting expression for the circumferential velocity into
(4) yields:

G0 sin 2ϕw = 2
√

1− c (35)
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where ϕw is the value of ϕ at θ = α. The dependence of ϕw on α follows from the solution of the first
equation in (18).

To complete the solution of the boundary value problem, it is necessary to satisfy the boundary
condition (5).

5. Solution of the Boundary Value Problem

The boundary condition (5) comprises two friction regimes, sticking and sliding. These regimes
should be treated separately.

5.1. Regime of Sticking

In this regime, the boundary condition (5) becomes ur = 0 at θ = α. It is seen from the definition
for G and (26) that this condition is equivalent to the condition G = 0 at θ = α. Then, it follows from
(31) that:

K0 = − cos 2ϕw. (36)

In this case the dependence of θ on ϕ is given by (22). Eliminating K0 in (22) by means of (36),
it is possible to find that the argument of the inverse hyperbolic tangent function is equal to 1 at θ = α.
Therefore, the left-hand side of (22) approaches infinity (or negative infinity) unless K0 = 0. In the
latter case, it is more convenient to use the solution (25). It follows from this solution, (35) and (36) that

ϕw =
π

4
, G0 = 2

√
1− c and α =

π

4
√

1− c
= αcr. (37)

The solution at sticking is possible only if α and c satisfy the third equation. Another restriction
on the existence of the solution at sticking is that the shear stress at θ = α is less or equal to τf involved
in (5). It is seen from the first equation in (37) and (11) that σrθ = −T at θ = α if the regime of sticking
occurs. Since T is the maximum possible value of the shear stress in the polar coordinate system,
a necessary condition for the existence of the regime of sticking is that τf = T. If τf < T then no
solution at sticking exists.

Assume that τf = T. The relation between α and c in (37) has been derived assuming that plastic
yielding occurs in the region 0 ≤ θ ≤ α. In the case of rigid/plastic solids, rigid regions may appear.
In the case under consideration, the solution at sticking is possible if α > αcr and the material in the
region α ≥ θ ≥ αcr is rigid. It worthy of note that the stress solution at K0 = 0 given in Section 3 is
valid in the rigid region. Therefore, the yield criterion is not violated in the range α ≥ θ ≥ αcr and the
solution is complete.

5.2. Regime of Sliding

It is convenient to consider two cases, τf = T and τf < T, separately. Assume that τf = T and
α < αcr. Then, no solution at sticking exists and it is necessary to find the solution at sliding. It follows
from (5), (11) and (35) that the first and second equations in (37) are valid. The equation for determining
K0 follows from (22) or (23). It is however convenient to start with the special case K0 = 1. In this case
Equation (24) is valid. Therefore, this special case occurs only if α and c satisfy the following equation:

α =
(π − 2)
4
√

1− c
= αs. (38)

It is evident from (37) and (38) that αs < αcr. Equation (22) is valid in the range αs < α < αcr.
In this case, the equation for K0 is

α
√

1− c =
π

4
− K0 arctanh

[√
1− K0

1 + K0

](
1− K2

0

)−1/2
. (39)
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Equation (23) is valid in the range 0 < α < αs. In this case, the equation for K0 is

α
√

1− c =
π

4
− K0 arctan

[√
K0 − 1
K0 + 1

](
K2

0 − 1
)−1/2

. (40)

Equations (39) and (40) should be solved numerically.
Prandtl’s friction law reads τf = mT where 0 ≤ m ≤ 1. The case m = 1 has been treated above.

Therefore, assume that m < 1. In this case, no solution at sticking exists. The friction law (5) becomes
σrθ = −mT at θ = α (or ϕ = ϕw). Then, it follows from (11) that:

ϕw =
1
2

arcsinm. (41)

The value of G0 is found from (35) and (41) as:

G0 =
2
√

1− c
m

. (42)

The equation for determining K0 follows from (22) or (23). As before, it is more convenient to
consider special cases first. The values of αcr and αs are now determined from (24) and (25) as:

αcr =
ϕw√
1− c

and αs =

(
ϕw −

tan ϕw

2

)
1√

1− c
. (43)

In these equations, ϕw should be eliminated by means of (41). Equation (22) is valid in the ranges
αs < α < αcr and α > αcr. In this case, the equation for K0 is:

α
√

1− c = ϕw − K0 arctanh

[√
1− K0

1 + K0
tan ϕw

](
1− K2

0

)−1/2
. (44)

The value of K0 is positive in the range αs < α < αcr and negative in the range α > αcr.
Equation (23) is valid in the ranges 0 < α < αs. In this case, the equation for K0 is:

α
√

1− c = ϕw − K0 arctan

[√
K0 − 1
K0 + 1

tan ϕw

](
K2

0 − 1
)−1/2

. (45)

6. Singularity

It is seen from (18) that the derivative dϕ/dθ approaches infinity as ϕ→ π/4 if K0 6= 0. If m < 1
then ϕw < π/4 and the solution is not singular. If the regime of sticking occurs then ϕw = π/4
but K0 = 0. Therefore, the solution may be singular only if m = 1 and the regime of sliding occurs.
It follows from (18) that:

dϕ

dθ
=

K0
√

1− c
2(π/4− ϕ)

+ O(1) (46)

as ϕ→ π/4. Integrating and using the boundary condition ϕ = π/4 at θ = α yields:

π

4
− ϕ =

√
K0
√

1− c
√

θ − α + o
(√

θ − α
)

(47)

as θ → α .
Consider the stress field. Differentiating (11) with respect to θ yields:

∂σrr

∂θ
=

∂σ

∂θ
− 2T

√
1− c sin 2ϕ

dϕ

dθ
,

∂σθθ

∂θ
=

∂σ

∂θ
+ 2T

√
1− c sin 2ϕ

dϕ

dθ
,

∂σrθ

∂θ
= −2T cos 2ϕ

dϕ

dθ
. (48)
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Eliminating the derivative dϕ/dθ in these equations by means of (18) gives:

∂σrr
∂θ = ∂σ

∂θ −
2T(1−c)(K0+cos 2ϕ) sin 2ϕ

cos 2ϕ , ∂σθθ
∂θ = ∂σ

∂θ + 2T(1−c)(K0+cos 2ϕ) sin 2ϕ
cos 2ϕ ,

∂σrθ
∂θ = −2T

√
1− c(K0 + cos 2ϕ).

(49)

It is evident that the derivative ∂σrθ/∂θ is of a finite magnitude at ϕ = π/4 (or θ = α).
The derivative ∂σ/∂θ involved in (49) is determined from (18), (19) and (20) as:

∂σ

∂θ
= 2T

[
1− (1− c)(K0 + cos 2ϕ)

cos 2ϕ

]
sin 2ϕ. (50)

Equations (49) and (50) combine to give:

∂σrr

∂θ
= 2T

[
1− 2(1− c)(K0 + cos 2ϕ)

cos 2ϕ

]
sin 2ϕ,

∂σθθ

∂θ
= 2T sin 2ϕ. (51)

It is evident that the derivative ∂σθθ/∂θ is of a finite magnitude at ϕ = π/4 (or θ = α). Expanding
the right-hand side of the first equation in (51) in a series in the vicinity of ϕ = π/4 results in

∂σrr

∂θ
= −2TK0(1− c)

(π/4− ϕ)
+ o
[
(π/4− ϕ)−1

]
(52)

as ϕ→ π/4. Equations (47) and (52) combine to give:

∂σrr

∂θ
= − 2TK0(1− c)√

K0
√

1− c
√

θ − α
+ o
[
(θ − α)−1/2

]
(53)

as θ → α . It is seen from this equation that the derivative ∂σrr/∂θ approaches infinity (or negative
infinity) in the vicinity of the friction surface and follows an inverse square root rule.

Consider the strain rate field. It follows from the definition for G, (27) and (31), that
ξrr = −ξθθ = ωG0(K0 + cos 2ϕ)/2. It is evident from this equation that the normal strain rates in the
polar coordinate system are bounded at the friction surface. The shear strain rate is determined from
(18), (27) and (31) as:

ξrθ = −ωG0
√

1− c(K0 + cos 2ϕ) tan 2ϕ

2
. (54)

It is seen from this equation that |ξrθ | → ∞ as ϕ→ π/4. Expanding the right-hand side of (54)
in a series in the vicinity of ϕ = π/4 results in:

ξrθ = −ωG0K0
√

1− c
4

(π

4
− ϕ

)−1
+ o
[(π

4
− ϕ

)−1
]

(55)

as ϕ→ π/4. Equations (47) and (55) combine to give:

ξrθ = −ωG0
√

K0
√

1− c
4
√

θ − α
+ o
[
(θ − α)−1/2

]
(56)

as θ → α . It is seen from this equation that the shear strain rate in the polar coordinate system follows
an inverse square root rule in the vicinity of the friction surface. This result is in agreement with the
general theory developed in [9].

Some models of anisotropic plasticity (for example, [18]) involve the material spin. Therefore, it is
of interest to understand the asymptotic behavior of the only non-zero spin component, ωrθ , near the
friction surface. By definition,

ωrθ =
1
2

(
1
r

∂ur

∂θ
− ∂uθ

∂r
− uθ

r

)
. (57)
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Equations (26) and (57) combine to give:

ωrθ =
ω

4

(
d2g
dθ2 + 4g

)
. (58)

Using the definition for G, (18), (31) and (34) Equation (58) can be rewritten as:

ωrθ =
ωG0 sin 2ϕ

4

[
1√

1− c
− 2
√

1− c
cos 2ϕ

(K0 + cos 2ϕ)

]
. (59)

It is seen from this equation that |ωrθ | → ∞ as ϕ→ π/4. Expanding the right-hand side of (59)
in a series in the vicinity of ϕ = π/4 results in:

ωrθ = −ω
√

1− cG0K0

4

(π

4
− ϕ

)−1
+ o
[(π

4
− ϕ

)−1
]

(60)

as ϕ→ π/4. Equations (47) and (60) combine to give:

ωrθ = −ω
√√

1− cK0G0

4
√

θ − α
+ o
[
(θ − α)−1/2

]
(61)

as θ → α . The qualitative behavior of the material spin near the friction surface that its magnitude
approaches infinity should be taken into account in material models that involve this quantity. A similar
approach has been used in visco-plasticity [19], where the qualitative behavior of the quadratic
invariant of the strain tensor near the friction surface, that its magnitude approaches infinity has been
taken into account.

7. Conclusions

The boundary value problem for the flow of the orthotropic material, resulting from the problem
formulated in Section 2 and illustrated in Figure 1, has been solved with the resulting solution being in
closed form. The stress field has been determined up to an arbitrary constant (K1 in Equation (20)).
Emphasized are the qualitative features of the solution. In particular, if the friction law demands
that the friction stress at sliding is less than the shear yield stress referred to in the principal axes of
anisotropy then:

1. no solution at sticking exists; and
2. the solution at sliding involves no rigid region.

If the friction law demands that the friction stress at sliding is equal to the shear yield stress
referred to the principal axes of anisotropy then:

1. no solution at sticking exists if α < αcr (αcr is introduced in (37)) and the solution for α > αcr

requires a rigid region adjacent to the plate; and
2. the solution at sliding exists if α < αcr and this solution is singular (some stress and velocity

derivatives approach infinity in the vicinity of the friction surface).

The effect of plastic anisotropy on the solution is controlled by the constitutive parameter c and
c = 0 for isotropic material. Even though the qualitative features of the solution are independent of
the value of c, the quantitative effect may be quite significant. For example, the values of two critical
angles, αcr and αs (αs is introduced in (38)), are sensitive to the value of c, and these angles control the
overall structure of the solution.
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