# Experimental and Computational Fluid Dynamic Study of Water Flow and Submerged Depth Effects on a Tidal Turbine Performance

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

_{c}represents the distance between the center of the blade chord and the blade drum when the blades are opened or closed. Additionally, Rt is the distance between the drum shaft and the fully open turbine blade. The angle of rotation is denoted by θ in this system, and θ1 is the angle between the flow and the drum to the center of the blade.

_{p}) is defined as the ratio of the actual power output (P) of the turbine to the power available in the incoming water flow (½ρAU

^{3}). The parameters A, ρ, U, and T represent the cross-sectional area of the turbine, water density, the velocity of the incoming flow, and the produced torque on the turbine, respectively.

_{p}can be calculated. However, in the experimental test, the water in the testing tunnel is motionless, the barge that holds the turbine moves with a specific speed, and the produced torque on the turbine is driven from the digital setup installed on the turbine.

## 3. Setup

## 4. Numerical Setup

## 5. Results and Discussion

#### 5.1. The Performance of a Stand-Alone Turbine

_{p}, and then decreases. The power coefficient obtained from the numerical solution for a flow coefficient of 0.47 was 0.185, while the experimental data yielded a power coefficient of 0.177. The turbine reaches its maximum performance at a flow coefficient of 0.47 for a submerged depth of 2D. The comparison of generated power by changing the flow velocity for the experimental test and the numerical simulation is presented in Table 1, which shows a small difference between the experimental and simulation results. The difference between the experimental and numerical simulations is because of two main factors: 1. experimental errors; 2. assumptions and boundary conditions in the computational domain.

#### 5.2. Effect of Turbine Submerged Depth on Its Performance

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Harries, T.; Kwan, A.; Brammer, J.; Falconer, R. Physical testing of performance characteristics of a novel drag-driven vertical axis tidal stream turbine; with comparisons to a conventional Savonius. Int. J. Mar. Energy
**2016**, 14, 215–228. [Google Scholar] [CrossRef][Green Version] - Kariman, H.; Hoseinzadeh, S.; Heyns, S.; Sohani, A. Modeling and exergy analysis of domestic MED desalination with brine tank. Desalin. Water Treat.
**2020**, 197, 1–13. [Google Scholar] [CrossRef] - Mansour, A.E.; Pedersen, P.T.; Paik, J.K. Wave energy extraction using decommissioned ships. Ships Offshore Struct.
**2013**, 8, 504–516. [Google Scholar] [CrossRef] - Kariman, H.; Hoseinzadeh, S.; Heyns, P.S. Energetic and exergetic analysis of evaporation desalination system integrated with mechanical vapor recompression circulation. Case Stud. Therm. Eng.
**2019**, 16, 100548. [Google Scholar] [CrossRef] - Derakhshan, S.; Kasaeian, N. Optimization, Numerical, and Experimental Study of a Propeller Pump as Turbine. J. Energy Resour. Technol.-Trans. Asme
**2014**, 136, 012005. [Google Scholar] [CrossRef] - Kariman, H.; Hoseinzadeh, S.; Shirkhani, A.; Heyns, P.S.; Wannenburg, J. Energy and economic analysis of evaporative vacuum easy desalination system with brine tank. J. Therm. Anal. Calorim.
**2020**, 140, 1935–1944. [Google Scholar] [CrossRef] - Khan, M.J.; Bhuyan, G.; Iqbal, M.T.; Quaicoe, J.E. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Appl. Energy
**2009**, 86, 1823–1835. [Google Scholar] [CrossRef] - Martin-Short, R.; Hill, J.; Kramer, S.C.; Avdis, A.; Allison, P.A.; Piggott, M.D. Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma. Renew. Energy
**2015**, 76, 596–607. [Google Scholar] [CrossRef][Green Version] - Sanchez, M.; Carballo, R.; Ramos, V.; Iglesias, G. Tidal stream energy impact on the transient and residual flow in an estuary: A 3D analysis. Appl. Energy
**2014**, 116, 167–177. [Google Scholar] [CrossRef] - Chen, L.; Lam, W.H. A review of survivability and remedial actions of tidal current turbines. Renew. Sustain. Energy Rev.
**2015**, 43, 891–900. [Google Scholar] [CrossRef][Green Version] - Ma, Y.; Zhang, L.; Ma, L.; Chen, Z. Developing status and development trend of vertical axis turbine-type tidal current energy power generation device. Keji Daobao Sci. Technol. Rev.
**2012**, 30, 71–75. [Google Scholar] - Batten, W.M.J.; Bahaj, A.S.; Molland, A.F.; Chaplin, J.R. The prediction of the hydrodynamic performance of marine current turbines. Renew. Energy
**2008**, 33, 1085–1096. [Google Scholar] [CrossRef] - Li, Y.; Calisal, S.M. Numerical analysis of the characteristics of vertical axis tidal current turbines. Renew. Energy
**2010**, 35, 435–442. [Google Scholar] [CrossRef] - Copping, A.; Hanna, L.; Whiting, J.; Geerlofs, S.; Grear, M.; Blake, K.; Coffey, A.; Massaua, M.; Brown-Saracino, J.; Battey, H. Environmental Effects of Marine Energy Development around the World; Annex IV Final Report; IEA Ocean Energy Systems Initiative, Annex IV: Richland, WA, USA, 2013. [Google Scholar]
- Jacobson, P.T.; Amaral, S.V.; Castro-Santos, T.; Giza, D.; Haro, A.J.; Hecker, G.; McMahon, B.; Perkins, N.; Pioppi, N. Environmental Effects of Hydrokinetic Turbines on Fish: Desktop and Laboratory Flume Studies; Electric Power Research Institute: Palo Alto, CA, USA, 2012. [Google Scholar]
- Yang, B.; Lawn, C. Fluid dynamic performance of a vertical axis turbine for tidal currents. Renew. Energy
**2011**, 36, 3355–3366. [Google Scholar] [CrossRef] - Chen, B.; Cheng, S.B.; Su, T.C.; Zhang, H. Numerical investigation of channel effects on a vertical-axis tidal turbine rotating at variable speed. Ocean Eng.
**2018**, 163, 358–368. [Google Scholar] [CrossRef] - Jing, F.M.; Sheng, Q.H.; Zhang, L. Experimental research on tidal current vertical axis turbine with variable-pitch blades. Ocean Eng.
**2014**, 88, 228–241. [Google Scholar] [CrossRef] - Sun, J.J.; Huang, D.G. Numerical investigation on aerodynamic performance improvement of vertical-axis tidal turbine with super-hydrophobic surface. Ocean Eng.
**2020**, 217, 107995. [Google Scholar] [CrossRef] - Derakhshan, S.; Ashoori, M.; Salemi, A. Experimental and numerical study of a vertical axis tidal turbine performance. Ocean Eng.
**2017**, 137, 59–67. [Google Scholar] [CrossRef][Green Version] - Maduka, M.; Li, C.W. Experimental evaluation of power performance and wake characteristics of twin flanged duct turbines in tandem under bi-directional tidal flows. Renew. Energy
**2022**, 199, 1543–1567. [Google Scholar] [CrossRef] - Arcos, F.Z.D.; Vogel, C.R.; Willden, R.H.J. A parametric study on the hydrodynamics of tidal turbine blade deformation. J. Fluids Struct.
**2022**, 113, 103626. [Google Scholar] [CrossRef] - Moreau, M.; Germain, G.; Maurice, G.; Richard, A. Sea states influence on the behaviour of a bottom mounted full-scale twin vertical axis tidal turbine. Ocean Eng.
**2022**, 265, 112582. [Google Scholar] [CrossRef] - Sun, K.; Yi, Y.; Zhang, J.S.; Zhang, J.H.; Zaidi, S.S.H.; Sun, S.H. Influence of blade numbers on start-up performance of vertical axis tidal current turbines. Ocean Eng.
**2022**, 243, 110314. [Google Scholar] [CrossRef] - Ma, Y.; Hu, C.; Li, L. Hydrodynamics and wake flow analysis of a Π-type vertical axis twin-rotor tidal current turbine in surge motion. Ocean Eng.
**2021**, 224, 108625. [Google Scholar] [CrossRef] - Satrio, D.; Utama, I.K.A.P. Experimental investigation into the improvement of self-starting capability of vertical-axis tidal current turbine. Energy Rep.
**2021**, 7, 4587–4594. [Google Scholar] [CrossRef] - Chen, Y.L.; Sun, J.; Lin, B.L.; Lin, J.; Guo, J.X. Spatial evolution and kinetic energy restoration in the wake zone behind a tidal turbine: An experimental study. Ocean Eng.
**2021**, 228, 108920. [Google Scholar] [CrossRef] - Xie, J.M.; Chen, J.Y. Vertical-axis ocean current turbine design research based on separate design concept. Ocean Eng.
**2019**, 188, 106258. [Google Scholar] [CrossRef] - Han, J.; Jung, J.; Hwang, J.H. Optimal configuration of a tidal current turbine farm in a shallow channel. Ocean Eng.
**2021**, 220, 108395. [Google Scholar] [CrossRef] - Manolesos, M.; Chng, L.; Kaufmann, N.; Ouro, P.; Ntouras, D.; Papadakis, G. Using vortex generators for flow separation control on tidal turbine profiles and blades. Renew. Energy
**2023**, 205, 1025–1039. [Google Scholar] [CrossRef] - Wang, P.Z.; Zhao, B.W.; Cheng, H.T.; Huang, B.; He, W.S.; Zhang, Q.; Zhu, F.W. Study on the performance of a 300W counter-rotating type horizontal axis tidal turbine. Ocean Eng.
**2022**, 255, 111446. [Google Scholar] [CrossRef] - Samadi, M.; Hassanabad, M.G.; Mozafari, S.B. Performance enhancement of low speed current savonius tidal turbines through adding semi-cylindrical deflectors. Ocean Eng.
**2022**, 259, 111873. [Google Scholar] [CrossRef] - Khanjanpour, M.H.; Javadi, A.A. Optimization of a Horizontal Axis Tidal (HAT) turbine for powering a Reverse Osmosis (RO) desalination system using Computational Fluid Dynamics (CFD) and Taguchi method. Energy Convers. Manag.
**2021**, 231, 113833. [Google Scholar] [CrossRef] - Yang, B.; Lawn, C. Three-dimensional effects on the performance of a vertical axis tidal turbine. Ocean Eng.
**2013**, 58, 1–10. [Google Scholar] [CrossRef] - Wang, X.L.; Qiao, D.S.; Jin, L.X.; Yan, J.; Wang, B.; Li, B.B.; Ou, J.P. Numerical investigation of wave run-up and load on heaving cylinder subjected to regular waves. Ocean Eng.
**2023**, 268, 113415. [Google Scholar] [CrossRef] - Liang, H.Z.; Qiao, D.S.; Wang, X.Z.; Zhi, G.N.; Yan, J.; Ning, D.Z.; Ou, J.P. Energy capture optimization of heave oscillating buoy wave energy converter based on model predictive control. Ocean Eng.
**2023**, 268, 113402. [Google Scholar] [CrossRef] - Wang, Z.M.; Qiao, D.S.; Yan, J.; Tang, G.Q.; Li, B.B.; Ning, D.Z. A new approach to predict dynamic mooring tension using LSTM neural network based on responses of floating structure. Ocean Eng.
**2022**, 249, 110905. [Google Scholar] [CrossRef] - Nazarieh, M.; Kariman, H.; Hoseinzadeh, S. Numerical simulation of fluid dynamic performance of turbulent flow over Hunter turbine with variable angle of blades. Int. J. Numer. Methods Heat Fluid Flow
**2023**, 33, 153–173. [Google Scholar] [CrossRef]

**Figure 9.**Velocity contours for 3D from θ = 0, 20, 50 and Cf 0.4 and 0.46. ((

**a**): θ = 0, Cf = 0.4; (

**b**): θ = 20, Cf = 0.4; (

**c**): θ = 50, Cf = 0.4; (

**d**): θ = 0, Cf = 0.46; (

**e**): θ = 20, Cf = 0.46; (

**f**): θ = 50, Cf = 0.46). θ = 0, 20, 50 and Cf 0.49 and 0.52. ((

**g**): θ = 0, Cf = 0.49; (

**h**): θ = 20, Cf = 0.49; (

**i**): θ = 50, Cf = 0.49; (

**j**): θ = 0, Cf = 0.52; (

**k**): θ = 20, Cf = 0.52; (

**l**): θ = 50, Cf = 0.52).

**Figure 10.**Pressure contours for 3D from θ = 0, 20, 50 and Cf 0.4 and 0.46. ((

**a**): θ = 0, Cf = 0.4; (

**b**): θ = 20, Cf = 0.4; (

**c**): θ = 50, Cf = 0.4; (

**d**): θ = 0, Cf = 0.46; (

**e**): θ = 20, Cf = 0.46; (

**f**): θ = 50, Cf = 0.46). θ = 0, 20, 50 and Cf 0.49 and 0.52. ((

**g**): θ = 0, Cf = 0.49; (

**h**): θ = 20, Cf = 0.49; (

**i**): θ = 50, Cf = 0.49; (

**j**): θ = 0, Cf = 0.52; (

**k**): θ = 20, Cf = 0.52; (

**l**): θ = 50, Cf = 0.52).

**Figure 12.**The pressure contours of the turbine in different vertical positions, with a rotation angle of 50 and a flow coefficient of 0.46.

**Figure 13.**The trend of change of total torque with angle of rotation with various flow coefficients in 1D depth.

**Figure 14.**The trend of change of total torque with angle of rotation with various flow coefficients in 2D depth.

**Figure 15.**The trend of change of total torque with angle of rotation with various flow coefficients in 3D depth.

**Figure 16.**The trend of change of total torque with angle of rotation with various flow coefficients in 4D depth.

**Figure 17.**The trend of change of power coefficient with angle of rotation with various flow coefficients in 1D depth.

**Figure 18.**The trend of change of power coefficient with angle of rotation with various flow coefficients in 2D depth.

**Figure 19.**The trend of change of power coefficient with angle of rotation with various flow coefficients in 3D depth.

**Figure 20.**The trend of change of power coefficient with angle of rotation with various flow coefficients in 4D depth.

Velocity (m/s) | Power (w)—Exp. | Power (w)—Nu. |
---|---|---|

0.4 | 0.017 | 0.09 |

0.7 | 0.11 | 0.17 |

0.8 | 0.19 | 0.29 |

1 | 0.44 | 0.53 |

1.2 | 0.58 | 0.78 |

1.4 | 0.89 | 1.06 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ghamati, E.; Kariman, H.; Hoseinzadeh, S.
Experimental and Computational Fluid Dynamic Study of Water Flow and Submerged Depth Effects on a Tidal Turbine Performance. *Water* **2023**, *15*, 2312.
https://doi.org/10.3390/w15132312

**AMA Style**

Ghamati E, Kariman H, Hoseinzadeh S.
Experimental and Computational Fluid Dynamic Study of Water Flow and Submerged Depth Effects on a Tidal Turbine Performance. *Water*. 2023; 15(13):2312.
https://doi.org/10.3390/w15132312

**Chicago/Turabian Style**

Ghamati, Erfan, Hamed Kariman, and Siamak Hoseinzadeh.
2023. "Experimental and Computational Fluid Dynamic Study of Water Flow and Submerged Depth Effects on a Tidal Turbine Performance" *Water* 15, no. 13: 2312.
https://doi.org/10.3390/w15132312