# Theoretical Analysis of an Integrated, CPVT Membrane Distillation System for Cooling, Heating, Power and Seawater Desalination

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

^{3}/year; the lowest month was 3.8 m

^{3}in November.

## 1. Introduction

## 2. Materials and Methods

#### 2.1. System Description

#### 2.2. Governing Equations

#### 2.2.1. Concentration Photovoltaic/Thermal

#### Energy Equations

_{C}cells, Equation (2) is used, in which the special thermal coefficient of the concentrator is equal to 6% [10]:

_{bT}is the direct solar radiation. The ideal electrical energy produced by each multi-junction solar cell can be calculated using Equation (3) [10]:

_{2}O

_{3}nanofluids.)

_{aperture}is the area of the opening. By combining Equations (1)–(6), the electrical energy produced by each cell is obtained as follows [11]:

#### Exergy Equations

#### 2.3. Rankine Cycle

#### Energy Equations

#### 2.4. Absorption Cooling Cycle

#### 2.4.1. Energy Equations

_{1}is the mass ratio of lithium bromide in a dilute solution (a solution with a lower amount of water). Using relations (25) and (26), the temperatures of points 3 and 5 are obtained.

#### 2.4.2. Exergy Equations

#### 2.5. Distillation System

#### 2.5.1. Energy Equations

_{f,g}is the enthalpy of water evaporation and k

_{m}, ${\mathsf{\delta}}_{\mathrm{M}}$ are the conductivity coefficient and membrane thickness, respectively. J

_{P}is the mass transfer rate of permeated water (freshwater passing through the membrane) per unit area of the membrane. Also, T

_{mp}is the temperature of the membrane surface in the distance of the infiltration flow. The rate of heat transfer in the distance of the infiltration flow is obtained using Equation (34):

_{M}is the area of the membrane. ${\mathrm{S}}_{\mathrm{Eo}}$, and ${\mathrm{S}}_{\mathrm{Ei}}$ are the water salinity at the inlet and outlet of the evaporator channel, respectively.

#### 2.5.2. Exergy Equations

## 3. Results

#### 3.1. Concentration Photovoltaic/Thermal System

#### 3.2. Organic Rankine Cycle

#### 3.3. Desalination System

^{3}/year; the lowest was 3.8 m

^{3}in November. Obviously, in the months when high solar radiation is available, higher thermal energy can be fed into the desalination unit to produce freshwater.

## 4. Conclusions

^{3}, the output ratio is 41.3 and the recovery ratio is 57.2. In general, for the combined system, thermal efficiency and exergy efficiency has been obtained, 75% and 93.72%, respectively.

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Nomenclature

A | Area (m^{2}) |

a | Temperature coefficient |

C | Concentration ratio |

EX | Exergy rate (kW) |

e | Specific exergy |

F | Fill factor |

h | Specific enthalpy (kJ/kg) |

I_{bT} | Direct solar radiation (W/m^{2}) |

J_{P} | Mass transfer rate |

k_{m} | Conductivity coefficient |

$\dot{\mathrm{m}}$ | Mass flow rate (kg/s) |

n | Cells number |

P | Power (kW) |

$\dot{\mathrm{Q}}$ | Heat transfer rate (kW) |

s | Specific entropy (kJ/kg·K) |

T | Temperature (°C) |

$\dot{\mathrm{W}}$ | Work (kW) |

X | Solution concentration ratio |

Greek symbols | |

δ_{m} | Membrane thickness |

η | Thermal efficiency (%) |

ψ | Exergy efficiency (%) |

Subscripts | |

a | ambient |

abs | absorber |

c | cell |

coll | collector |

con | condenser |

ev | evaporator |

gen | generator |

id | ideal |

in | inlet |

opt | optical |

out | outlet |

par | parasitic loss |

sol | solar |

T | turbine |

Abbreviations | |

ARS | Absorption refrigeration system |

COP | Coefficient of performance |

CPV/T | Concentrator photovoltaic/thermal |

EES | Engineering equation solver |

MD | Membrane desalination |

ORC | Organic Rankine cycle |

PTC | Parabolic trough collector |

SF | Solar fraction |

TF | Thermal factor |

## References

- Moltames, R.; Roshandel, R. Techno-economic analysis of a modified concentrating photovoltaic/organic Rankine cycle system. Int. J. Ambient. Energy
**2022**, 43, 2026–2038. [Google Scholar] [CrossRef] - Rahbar, K.; Riasi, A.; Sangjoeei, H.K.B.; Razmjoo, N. Heat recovery of nano-fluid based concentrating Photovoltaic Thermal (CPV/T) Collector with Organic Rankine Cycle. Energy Convers. Manag.
**2019**, 179, 373–396. [Google Scholar] [CrossRef] - Albaik, I.; Alamri, Y.A.; Elsheniti, M.B.; Al-Dadah, R.; Mahmoud, S.; Ismail, M.A. Assessment of a novel multi-generation solar CPV/T system combining adsorption and organic rankine cycle subsystems. Sol. Energy
**2022**, 236, 455–472. [Google Scholar] [CrossRef] - Noorollahi, Y.; Yousefi, H.; Moltames, R.; Choubineh, K. Techno-economic Performance Analysis of a Hybrid Concentrated Photovoltaic/Thermal Combined with Organic Rankine Cycle (CPV/T-ORC) system for Simultaneous Generation of Power and Heat. J. Renew. New Energy
**2022**, 9, 113–120. [Google Scholar] - Elminshawy, N.A.; Gadalla, M.A.; Bassyouni, M.; El-Nahhas, K.; Elminshawy, A.; Elhenawy, Y. A novel concentrated photovoltaic-driven membrane distillation hybrid system for the simultaneous production of electricity and potable water. Renew. Energy
**2020**, 162, 802–817. [Google Scholar] [CrossRef] - Heng, Z.; Feipeng, C.; Yang, L.; Haiping, C.; Kai, L.; Boran, Y. The performance analysis of a LCPV/T assisted absorption refrigeration system. Renew. Energy
**2019**, 143, 1852–1864. [Google Scholar] - Buonomano, A.; Calise, F.; Palombo, A. Solar heating and cooling systems by absorption and adsorption chillers driven by stationary and concentrating photovoltaic/thermal solar collectors: Modelling and simulation. Renew. Sustain. Energy Rev.
**2018**, 82, 1874–1908. [Google Scholar] [CrossRef] - Rabiea, M.; Ali, A.Y.; Abo-Zahhad, E.M.; Elqady, H.I.; Elkady, M.F.; Ookawar, S.; El-Shazly, A.H.; Salem, M.S.; Radwan, A. Thermal analysis of a hybrid high concentrator photovoltaic/membrane distillation system for isolated coastal regions. Sol. Energy
**2021**, 215, 220–239. [Google Scholar] [CrossRef] - Moaleman, A.; Kasaeianb, A.; Aramesh, M.; Ahian, O.; Sahota, L.; Tiwari, G.N. Simulation of the performance of a solar concentrating photovoltaic-thermal collector, applied in a combined cooling heating and power generation system. Energy Convers. Manag.
**2018**, 160, 191–208. [Google Scholar] [CrossRef] - Flamant, G. Solar Power Plants: State of the Art. In Concentrating Solar Thermal Energy: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2022; p. 1. [Google Scholar]
- Al-Nimr, M.A.; Dawahdeh, A.I.; Al-Omari, J.A. Dual power generation modes for thermally regenerative electrochemical cycle integrated with concentrated thermal photovoltaic and phase change material storage. J. Energy Storage
**2023**, 58, 106373. [Google Scholar] [CrossRef] - Indira, S.S.; Vaithilingam, C.A.; Narasingamurthi, K.; Sivasubramanian, R.; Chong, K.K.; Saidur, R. Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough concentrator. Appl. Energy
**2022**, 320, 119294. [Google Scholar] [CrossRef] - Wang, Z.; Xie, B.; Xia, X.; Yang, H.; Zuo, Q.; Liu, Z. Energy loss of radial inflow turbine for organic Rankine cycle using mixture based on entropy production method. Energy
**2022**, 245, 123312. [Google Scholar] [CrossRef] - Mohammadi, S.H. Theoretical investigation on performance improvement of a low-temperature transcritical carbon dioxide compression refrigeration system by means of an absorption chiller after-cooler. Appl. Therm. Eng.
**2018**, 138, 264–279. [Google Scholar] [CrossRef] - Mahmoudi, G.; Goodarzi, M.; Dehghani, S.; Akbarzadeh, A. Experimental and theoretical study of a lab scale permeate gap membrane distillation setup for desalination. Desalination
**2017**, 419, 197–210. [Google Scholar] [CrossRef] - Najib, A.; Orfi, J.; Ali, E.; Saleh, J. Thermodynamics analysis of a direct contact membrane distillation with/without heat recovery based on experimental data. Desalination
**2019**, 466, 52–67. [Google Scholar] [CrossRef] - Ma, L.; Mao, J.; Marefati, M. Assessment of a new coal-fired power plant integrated with solid oxide fuel cell and parabolic trough solar collector. Process Saf. Environ. Prot.
**2022**, 163, 340–352. [Google Scholar] [CrossRef]

**Figure 6.**The amount of electricity produced, the amount of electricity consumed and the amount of monthly useful electrical energy in the city of Kerman.

**Figure 8.**Amount of exergy of the incoming flow, exergy of the outgoing flow and destroyed exergy for the months of the year.

**Figure 9.**The exergy level of the Sigel single-effect lithium-bromide absorption cooling components for the months of the year.

**Figure 10.**The amount of freshwater produced and the heat taken by the desalination plant for the months of the year.

Components | Equations |
---|---|

Generator | ${\mathrm{EX}}_{\mathrm{dGe}}={\dot{\mathrm{E}}\mathrm{X}}_{3}+{\dot{\mathrm{E}}\mathrm{X}}_{13}-{\dot{\mathrm{E}}\mathrm{X}}_{4}-{\dot{\mathrm{E}}\mathrm{X}}_{7}-{\dot{\mathrm{E}}\mathrm{X}}_{14}$ |

Evaporator | ${\mathrm{EX}}_{{\mathrm{d}}_{\mathrm{Eva}}}={\dot{\mathrm{E}}\mathrm{X}}_{9}+{\dot{\mathrm{E}}\mathrm{X}}_{11}-{\dot{\mathrm{E}}\mathrm{X}}_{10}-{\dot{\mathrm{E}}\mathrm{X}}_{12}$ |

Condenser | ${\mathrm{EX}}_{{\mathrm{d}}_{\mathrm{Con}}}={\dot{\mathrm{E}}\mathrm{X}}_{7}+{\dot{\mathrm{E}}\mathrm{X}}_{8}-{\mathrm{Q}}_{\mathrm{con}}\left(1-\frac{{\mathrm{T}}_{\mathrm{o}}}{{\mathrm{T}}_{\mathrm{amb}}}\right)$ |

Absorber | ${\mathrm{EX}}_{{\mathrm{d}}_{\mathrm{Abs}}}={\dot{\mathrm{E}}\mathrm{X}}_{6}+{\dot{\mathrm{E}}\mathrm{X}}_{10}-{\dot{\mathrm{E}}\mathrm{X}}_{8}-{\mathrm{Q}}_{\mathrm{Abs}}\left(1-\frac{{\mathrm{T}}_{\mathrm{o}}}{{\mathrm{T}}_{\mathrm{amb}}}\right)$ |

Heat exchanger | ${\mathrm{EX}}_{{\mathrm{d}}_{\mathrm{Shx}}}={\dot{\mathrm{E}}\mathrm{X}}_{4}+{\dot{\mathrm{E}}\mathrm{X}}_{2}-{\dot{\mathrm{E}}\mathrm{X}}_{5}-{\dot{\mathrm{E}}\mathrm{X}}_{3}$ |

Pump | ${\mathrm{EX}}_{{\mathrm{d}}_{\mathrm{Shx}}}={\dot{\mathrm{E}}\mathrm{X}}_{1}+{\dot{\mathrm{E}}\mathrm{X}}_{2}-{\mathrm{W}}_{\mathrm{pump}}$ |

Cooling system expansion valve | ${\mathrm{EX}}_{{\mathrm{d}}_{\mathrm{rev},\mathrm{v}}}={\dot{\mathrm{E}}\mathrm{X}}_{8}+{\dot{\mathrm{E}}\mathrm{X}}_{9}$ |

Pressure relief valve | ${\mathrm{EX}}_{{\mathrm{d}}_{\mathrm{sev},\mathrm{v}}}={\dot{\mathrm{E}}\mathrm{X}}_{5}+{\dot{\mathrm{E}}\mathrm{X}}_{6}$ |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Anazi, A.A.A.; Alghamdi, M.I.; Chammam, A.; Kadhm, M.S.; Al-Kharsan, I.H.; Alayi, R.
Theoretical Analysis of an Integrated, CPVT Membrane Distillation System for Cooling, Heating, Power and Seawater Desalination. *Water* **2023**, *15*, 1345.
https://doi.org/10.3390/w15071345

**AMA Style**

Anazi AAA, Alghamdi MI, Chammam A, Kadhm MS, Al-Kharsan IH, Alayi R.
Theoretical Analysis of an Integrated, CPVT Membrane Distillation System for Cooling, Heating, Power and Seawater Desalination. *Water*. 2023; 15(7):1345.
https://doi.org/10.3390/w15071345

**Chicago/Turabian Style**

Anazi, Abeer Abdullah Al, Mohammed I. Alghamdi, Abdeljelil Chammam, Mustafa Salam Kadhm, Ibrahim H. Al-Kharsan, and Reza Alayi.
2023. "Theoretical Analysis of an Integrated, CPVT Membrane Distillation System for Cooling, Heating, Power and Seawater Desalination" *Water* 15, no. 7: 1345.
https://doi.org/10.3390/w15071345