# Large-Scale, Wavelet-Based Analysis of Lysosomal Trajectories and Co-Movements of Lysosomes with Nanoparticle Cargos

^{1}

^{2}

^{3}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

^{+}, and proteases, towards extracellular space [9,10]. Since the resulting acidification and proteolytic remodeling of the tumor microenvironment drives invasion, there is hope that inhibition of excessive lysosomal exocytosis could limit cancer metastasis [11,12].

## 2. Materials and Methods

#### 2.1. Cell Culture, Nanoparticle Treatments, and Confocal Microscopy

^{−1}gentamycin. MCF-10A cells were cultured in DMEM/F12 (11330-032, Thermo Fisher Scientific, Waltham, MA, USA) with 5% horse serum, 20 ng mL

^{−1}epidermal growth factor, 10 µg mL

^{−1}insulin, 0.5 mg mL

^{−1}hydrocortisone, 100 ng mL

^{−1}cholera toxin, and penicillin/streptomycin (10,000 U mL

^{−1}penicillin and 10,000 µg mL

^{−1}streptomycin). MCF-7 were cultured in RPMI with 10% FBS and 25 μg mL

^{−1}gentamycin. MCF-10A, MCF-7, HT-1080 and MEF cells were cultured in a 5% CO

_{2}atmosphere at 37 °C. MDA-MB-231 were cultured in L-15 medium (21083027, Thermo Fisher Scientific, Waltham, MA, USA) with 10% FBS and 25 μg mL

^{−1}gentamycin at 37 °C without CO

_{2}. All cell lines used in this study were free of mycoplasma.

_{H}≈ 7.8 nm (from DLS).

^{−1}). Subconfluent cells were then cultured without NPs (Control/no-NPs), or continuously exposed to 80:20 or TMA NPs (50 nM) for 8 h (for HT-1080 and MEF), or 24 h (for MCF-10A, MDA-MB-231 and MCF-7) at 37 °C. The NP concentrations/exposure times were chosen to allow NP aggregation inside cells’ lysosomes but not induce cell death during lysosome tracking experiments. Overall, at higher concentrations and/or longer exposure times, TMA NPs are toxic, while 80:20 NPs are selectively cytotoxic only towards cancer cells. A detailed description of the cell responses is provided in [37]. Both cancer and noncancerous cells readily internalized both types of nanoparticles, though 80:20 nanoparticles aggregated more readily in lysosomes than TMAs. NP clusters—larger in cancer cells and smaller in noncancerous cells—were imaged label-free with confocal reflection microscopy as described previously [37,47].

_{2}concentrations maintained using a stage-fitted incubator and gas mixer (Live Cell Instruments, Seoul, Korea) as described previously [37,47].

#### 2.2. Image Processing and Tracking

#### 2.3. Movement Analysis

#### 2.3.1. Continuous Wavelet Transform

#### 2.3.2. Active Transport Detection

#### 2.3.3. Co-Movement Detection

#### 2.4. Statistical Data Analysis

## 3. Results

#### 3.1. Lysosomal Movements Are Characterized by a Heavy-Tailed, Lognormal Distribution of Run/Flight Lengths

#### 3.2. Tissue Origin and Cancer-Specific Differences in Lysosomal Dynamics

#### 3.3. Wavelet-Based Approach for Detection of Lysosome-Nanoparticle Co-Movement

#### 3.4. Mixed-Charge Gold Nanoparticles Selectively Disrupt Lysosomal Transport in Cancer Cells

## 4. Discussion

## 5. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

**Figure A1.**CCDFs of datasets with corresponding distribution fits. Subpanels show curves for run (

**a**–

**c**,

**g**,

**h**) and flight (

**d**–

**f**,

**i**,

**j**) lengths for MCF-10A (

**a**,

**d**), MDA-MB-231(

**b**,

**e**), MCF-7 (

**c**,

**f**), MEF (

**g**,

**i**), and HT1080 (

**h**,

**j**) cells. Data CCDF curves are in burgundy dotted lines; best-fit distributions are plotted in solid lines, while competing distributions are in dashed lines.

**Figure A2.**The effect of nanoparticle cargos on the average run (

**a**) and flight (

**b**) lengths. The notation of the box plots and experimental source data are identical to the main-text Figure 4 and Figure 5. Asterisk or ‘ns’ indicated in the lower part of the plots indicate presence or absence of statistically significant differences, respectively, between parameters for lysosomes with or without cargos determined with two-tailed paired Student’s t test (* p < 0.05). Similarly, asterisk or ‘ns’ above the box plots indicate statistical significance of the difference between lysosomes from cells treated with NPs (white and grey boxes) versus all lysosomes in untreated, control cells (colored boxes) determined using Wilcoxon–Mann–Whitney test (* p < 0.05). The analyses were based on the following number of cells and lysosome trajectories: MCF-10A/Control (n = 8 cells, l = 5260 lysosome trajectories); MCF-10A/80-20 (n = 10): NP− (l = 4177), NP+ (l = 597); MCF-10A/TMA (n = 12): NP− (l = 3769), NP+ (l = 303); MDA-MB-231/Control (n = 4, l = 1076); MDA-MB-231/80-20 (n = 17): NP− (l = 2771), NP+ (l = 260); MDA-MB-231/TMA (n = 14): NP− (l = 1618), NP+ (l = 116); MEF/Control (n = 5, l = 5781); MEF/80–20 (n = 6): NP− (l = 6272), NP+ (l = 131); MEF/TMA (n = 3): NP− (l = 5304), NP+ (l = 36); and HT-1080/Control (n = 8, l = 7953); HT/80–20 (n = 11): NP− (l = 4294), NP+ (l = 304); HT/TMA (n = 4): NP− (l = 2283), NP+ (l = 79).

**Figure A3.**The effect of nanoparticle treatment on lysosomal motion parameters for MCF-7 cells. for all lysosomes from each cell were pooled together to compute (

**a**) exponent $\alpha $ and (

**b**) diffusion coefficient D, (

**c**) percentage of time spent in active transport, and (

**d**,

**e**) average run and flight lengths. For more details, see Figure 4 caption. Asterisk or ‘ns’ indicated in the lower part of the plots indicate presence or absence of statistically significant differences, respectively, between parameters for lysosomes with or without cargos determined with two-tailed paired Student’s t test (* p < 0.05). Similarly, asterisk or ‘ns’ above the box plots indicate statistical significance of the difference between lysosomes from cells treated with NPs (white and grey boxes) versus all lysosomes in untreated, control cells (colored boxes) determined using Wilcoxon–Mann–Whitney test (* p < 0.05). Number of cells and trajectories used: Control (n = 4 cells, l = 1756 lysosome trajectories); 80–20 (n = 4): NP− (l = 369), NP+ (l = 31).

## Appendix B

**Table A1.**Distributions used in model comparison. Here, $x$ is observed data, $a$ is the minimal data point, $\mathsf{\Gamma}$ is upper incomplete gamma function, $erfc$ is complementary error function, and $\mu ,\lambda ,\sigma ,\beta $ are parameters of the corresponding distributions.

Distribution Name | Probability Density Function p(x) |
---|---|

Power law | $\frac{{x}^{-\mu}}{{a}^{1-\mu}}\left(\mu -1\right)$ |

Truncated power law | ${x}^{-\mu}{e}^{-\lambda x}\frac{{\lambda}^{1-\mu}}{\mathsf{\Gamma}\left(1-\mu ,\lambda a\right)}$ |

Log-normal | $\frac{1}{x}\mathrm{exp}\left[-\frac{{\left(\mathrm{ln}x-\mu \right)}^{2}}{2{\sigma}^{2}}\right]\sqrt{\frac{2}{\pi {\sigma}^{2}}}{\left[\mathrm{erfc}(\frac{a-\mathsf{\mu}}{\sqrt{2}\sigma})\right]}^{-1}$ |

Stretched exponential | $\beta \lambda {x}^{\beta -1}{e}^{\lambda \left({a}^{\beta}-{x}^{\beta}\right)}$ |

Exponential | $\mathsf{\lambda}{e}^{\mathsf{\lambda}\left(a-x\right)}$ |

**Table A2.**Lysosomal diameters in all cell types. Lysosome sizes in all cell types analyzed in the present study without or with 80:20 NP treatment were quantified from confocal midplane images of Lysotracker-stained organelles. Data = mean ± s.d. A two-tailed Student’s t-test with unequal variances between control and NP-treated groups. * p < 0.05;

^{ns}= not significant. Data are from Borkowska et al., 2020 [37].

Cell Type/Treatment | Lysosomal Diameter [μm] | Lysosomes, l | Cells, n |
---|---|---|---|

MEF | 0.65 ± 0.23 | 525 | 7 |

MEF + 80:20 NPs | 0.71 ± 0.25 * | 759 | 6 |

HT-1080 | 0.67 ± 0.24 | 707 | 6 |

HT-1080 + 80:20 NPs | 0.99 ± 0.34 * | 539 | 11 |

MCF-10A | 0.54 ± 0.20 | 316 | 10 |

MCF-10A + 80:20 NPs | 0.57 ± 0.22 ^{ns} | 340 | 12 |

MDA-MB-231 | 0.67 ± 0.30 | 418 | 16 |

MDA-MB-231 + 80:20 NPs | 1.00 ± 0.49 * | 235 | 10 |

MCF-7 | 0.80 ± 0.35 | 250 | 11 |

MCF-7 + 80:20 NPs | 1.42 ± 0.92 * | 239 | 11 |

## References

- Saftig, P.; Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat. Rev. Mol. Cell Biol.
**2009**, 10, 623–635. [Google Scholar] [CrossRef] - Ballabio, A.; Bonifacino, J.S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol.
**2020**, 21, 101–118. [Google Scholar] [CrossRef] [PubMed] - Lawrence, R.E.; Zoncu, R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat. Cell Biol.
**2019**, 21, 133–142. [Google Scholar] [CrossRef] [PubMed] - Ba, Q.; Raghavan, G.; Kiselyov, K.; Yang, G. Whole-Cell Scale Dynamic Organization of Lysosomes Revealed by Spatial Statistical Analysis. Cell Rep.
**2018**, 23, 3591–3606. [Google Scholar] [CrossRef] [PubMed] - Tancini, B.; Buratta, S.; Delo, F.; Sagini, K.; Chiaradia, E.; Pellegrino, R.M.; Emiliani, C.; Urbanelli, L. Lysosomal Exocytosis: The Extracellular Role of an Intracellular Organelle. Membranes
**2020**, 10, 406. [Google Scholar] [CrossRef] [PubMed] - Singh, R.K.; Haka; Abigail, S. Lyosome exocytosis and membrane repair. In Lysosomes: Biology, Diseases, and Therapeutics; Maxfield, F.R., Willard, J.M., Lu, S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 63–85. [Google Scholar]
- Glunde, K.; Guggino, S.E.; Solaiyappan, M.; Pathak, A.P.; Ichikawa, Y.; Bhujwalla, Z.M. Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia
**2003**, 5, 533–545. [Google Scholar] [CrossRef][Green Version] - Webb, B.A.; Aloisio, F.M.; Charafeddine, R.A.; Cook, J.; Wittmann, T.; Barber, D.L. pHLARE: A new biosensor reveals decreased lysosome pH in cancer cells. Mol. Biol. Cell
**2021**, 32, 131–142. [Google Scholar] [CrossRef] [PubMed] - Hamalisto, S.; Jaattela, M. Lysosomes in cancer-living on the edge (of the cell). Curr. Opin. Cell Biol.
**2016**, 39, 69–76. [Google Scholar] [CrossRef] [PubMed] - Machado, E.R.; Annunziata, I.; van de Vlekkert, D.; Grosveld, G.C.; d’Azzo, A. Lysosomes and Cancer Progression: A Malignant Liaison. Front. Cell Dev. Biol.
**2021**, 9, 642494. [Google Scholar] [CrossRef] - Kallunki, T.; Olsen, O.D.; Jaattela, M. Cancer-associated lysosomal changes: Friends or foes? Oncogene
**2013**, 32, 1995–2004. [Google Scholar] [CrossRef][Green Version] - Zhitomirsky, B.; Assaraf, Y.G. Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis. Oncotarget
**2017**, 8, 45117–45132. [Google Scholar] [CrossRef][Green Version] - Wang, B.; Kuo, J.; Granick, S. Bursts of active transport in living cells. Phys. Rev. Lett.
**2013**, 111, 208102. [Google Scholar] [CrossRef][Green Version] - Cabukusta, B.; Neefjes, J. Mechanisms of lysosomal positioning and movement. Traffic
**2018**, 19, 761–769. [Google Scholar] [CrossRef] - Cordonnier, M.N.; Dauzonne, D.; Louvard, D.; Coudrier, E. Actin filaments and myosin I alpha cooperate with microtubules for the movement of lysosomes. Mol. Biol. Cell
**2001**, 12, 4013–4029. [Google Scholar] [CrossRef] - Balint, S.; Verdeny Vilanova, I.; Sandoval Alvarez, A.; Lakadamyali, M. Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. Proc. Natl. Acad. Sci. USA
**2013**, 110, 3375–3380. [Google Scholar] [CrossRef][Green Version] - Caspi, A.; Granek, R.; Elbaum, M. Enhanced diffusion in active intracellular transport. Phys. Rev. Lett.
**2000**, 85, 5655–5658. [Google Scholar] [CrossRef] - Mohan, N.; Sorokina, E.M.; Verdeny, I.V.; Alvarez, A.S.; Lakadamyali, M. Detyrosinated microtubules spatially constrain lysosomes facilitating lysosome-autophagosome fusion. J. Cell Biol.
**2019**, 218, 632–643. [Google Scholar] [CrossRef][Green Version] - Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep.
**2000**, 339, 1–77. [Google Scholar] [CrossRef] - Qian, H.; Sheetz, M.P.; Elson, E.L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J.
**1991**, 60, 910–921. [Google Scholar] [CrossRef][Green Version] - Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-Law Distributions in Empirical Data. SIAM Rev.
**2009**, 51, 661–703. [Google Scholar] [CrossRef][Green Version] - Huda, S.; Weigelin, B.; Wolf, K.; Tretiakov, K.V.; Polev, K.; Wilk, G.; Iwasa, M.; Emami, F.S.; Narojczyk, J.W.; Banaszak, M.; et al. Levy-like movement patterns of metastatic cancer cells revealed in microfabricated systems and implicated in vivo. Nat. Commun.
**2018**, 9, 4539. [Google Scholar] [CrossRef] [PubMed][Green Version] - Reynolds, A. Liberating Levy walk research from the shackles of optimal foraging. Phys. Life Rev.
**2015**, 14, 59–83. [Google Scholar] [CrossRef] [PubMed] - Chen, K.; Wang, B.; Granick, S. Memoryless self-reinforcing directionality in endosomal active transport within living cells. Nat. Mater.
**2015**, 14, 589–593. [Google Scholar] [CrossRef] [PubMed] - Fricke, G.M.; Letendre, K.A.; Moses, M.E.; Cannon, J.L. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search. PLoS Comput. Biol.
**2016**, 12, e1004818. [Google Scholar] [CrossRef] - Bandyopadhyay, D.; Cyphersmith, A.; Zapata, J.A.; Kim, Y.J.; Payne, C.K. Lysosome transport as a function of lysosome diameter. PLoS ONE
**2014**, 9, e86847. [Google Scholar] [CrossRef][Green Version] - Bouzigues, C.; Dahan, M. Transient directed motions of GABA(A) receptors in growth cones detected by a speed correlation index. Biophys. J.
**2007**, 92, 654–660. [Google Scholar] [CrossRef][Green Version] - Huet, S.; Karatekin, E.; Tran, V.S.; Fanget, I.; Cribier, S.; Henry, J.P. Analysis of transient behavior in complex trajectories: Application to secretory vesicle dynamics. Biophys. J.
**2006**, 91, 3542–3559. [Google Scholar] [CrossRef][Green Version] - Arcizet, D.; Meier, B.; Sackmann, E.; Radler, J.O.; Heinrich, D. Temporal analysis of active and passive transport in living cells. Phys. Rev. Lett.
**2008**, 101, 248103. [Google Scholar] [CrossRef][Green Version] - Ahmed, W.W.; Williams, B.J.; Silver, A.M.; Saif, T.A. Measuring nonequilibrium vesicle dynamics in neurons under tension. Lab Chip
**2013**, 13, 570–578. [Google Scholar] [CrossRef] - Zhao, H.; Zhou, Q.; Xia, M.; Feng, J.; Chen, Y.; Zhang, S.; Zhang, X. Characterize Collective Lysosome Heterogeneous Dynamics in Live Cell with a Space- and Time-Resolved Method. Anal. Chem.
**2018**, 90, 9138–9147. [Google Scholar] [CrossRef] - Durso, W.; Martins, M.; Marchetti, L.; Cremisi, F.; Luin, S.; Cardarelli, F. Lysosome Dynamic Properties during Neuronal Stem Cell Differentiation Studied by Spatiotemporal Fluctuation Spectroscopy and Organelle Tracking. Int. J. Mol. Sci.
**2020**, 21, 3397. [Google Scholar] [CrossRef] - Marchetti, L.; Callegari, A.; Luin, S.; Signore, G.; Viegi, A.; Beltram, F.; Cattaneo, A. Ligand signature in the membrane dynamics of single TrkA receptor molecules. J. Cell Sci.
**2013**, 126, 4445–4456. [Google Scholar] [CrossRef][Green Version] - Han, D.; Korabel, N.; Chen, R.; Johnston, M.; Gavrilova, A.; Allan, V.J.; Fedotov, S.; Waigh, T.A. Deciphering anomalous heterogeneous intracellular transport with neural networks. eLife
**2020**, 9, e52224. [Google Scholar] [CrossRef] - Chen, K.; Wang, B.; Guan, J.; Granick, S. Diagnosing heterogeneous dynamics in single-molecule/particle trajectories with multiscale wavelets. ACS Nano
**2013**, 7, 8634–8644. [Google Scholar] [CrossRef][Green Version] - Koslover, E.F.; Chan, C.K.; Theriot, J.A. Disentangling Random Motion and Flow in a Complex Medium. Biophys. J.
**2016**, 110, 700–709. [Google Scholar] [CrossRef][Green Version] - Borkowska, M.; Siek, M.; Kolygina, D.V.; Sobolev, Y.I.; Lach, S.; Kumar, S.; Cho, Y.K.; Kandere-Grzybowska, K.; Grzybowski, B.A. Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells. Nat. Nanotechnol.
**2020**, 15, 331–341. [Google Scholar] [CrossRef] - Siek, M.; Kandere-Grzybowska, K.; Grzybowski, B.A. Mixed-Charge, pH-Responsive Nanoparticles for Selective Interactions with Cells, Organelles, and Bacteria. Acc. Mater. Res.
**2020**, 1, 188–200. [Google Scholar] [CrossRef] - Rebecca, V.W.; Nicastri, M.C.; McLaughlin, N.; Fennelly, C.; McAfee, Q.; Ronghe, A.; Nofal, M.; Lim, C.Y.; Witze, E.; Chude, C.I.; et al. A Unified Approach to Targeting the Lysosome’s Degradative and Growth Signaling Roles. Cancer Discov.
**2017**, 7, 1266–1283. [Google Scholar] [CrossRef][Green Version] - Petersen, N.H.; Olsen, O.D.; Groth-Pedersen, L.; Ellegaard, A.M.; Bilgin, M.; Redmer, S.; Ostenfeld, M.S.; Ulanet, D.; Dovmark, T.H.; Lonborg, A.; et al. Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell
**2013**, 24, 379–393. [Google Scholar] [CrossRef][Green Version] - Pillai, P.P.; Kowalczyk, B.; Kandere-Grzybowska, K.; Borkowska, M.; Grzybowski, B.A. Engineering Gram Selectivity of Mixed-Charge Gold Nanoparticles by Tuning the Balance of Surface Charges. Angew. Chem. Int. Ed. Engl.
**2016**, 55, 8610–8614. [Google Scholar] [CrossRef] - Pillai, P.P.; Huda, S.; Kowalczyk, B.; Grzybowski, B.A. Controlled pH stability and adjustable cellular uptake of mixed-charge nanoparticles. J. Am. Chem. Soc.
**2013**, 135, 6392–6395. [Google Scholar] [CrossRef] - Maier, O.; Marvin, S.A.; Wodrich, H.; Campbell, E.M.; Wiethoff, C.M. Spatiotemporal dynamics of adenovirus membrane rupture and endosomal escape. J. Virol.
**2012**, 86, 10821–10828. [Google Scholar] [CrossRef][Green Version] - Guo, Y.; Li, D.; Zhang, S.; Yang, Y.; Liu, J.J.; Wang, X.; Liu, C.; Milkie, D.E.; Moore, R.P.; Tulu, U.S.; et al. Visualizing Intracellular Organelle and Cytoskeletal Interactions at Nanoscale Resolution on Millisecond Timescales. Cell
**2018**, 175, 1430–1442. [Google Scholar] [CrossRef][Green Version] - Liao, Y.C.; Fernandopulle, M.S.; Wang, G.; Choi, H.; Hao, L.; Drerup, C.M.; Patel, R.; Qamar, S.; Nixon-Abell, J.; Shen, Y.; et al. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether. Cell
**2019**, 179, 147–164. [Google Scholar] [CrossRef][Green Version] - Mogre, S.S.; Christensen, J.R.; Niman, C.S.; Reck-Peterson, S.L.; Koslover, E.F. Hitching a Ride: Mechanics of Transport Initiation through Linker-Mediated Hitchhiking. Biophys. J.
**2020**, 118, 1357–1369. [Google Scholar] [CrossRef] - Kolygina, D.V.; Siek, M.; Borkowska, M.; Ahumada, G.; Barski, P.; Witt, D.; Jee, A.Y.; Miao, H.; Ahumada, J.C.; Granick, S.; et al. Mixed-Charge Nanocarriers Allow for Selective Targeting of Mitochondria by Otherwise Nonselective Dyes. ACS Nano
**2021**, 15, 11470–11490. [Google Scholar] [CrossRef] - de Jager, M.; Weissing, F.J.; Herman, P.M.; Nolet, B.A.; van de Koppel, J. Levy walks evolve through interaction between movement and environmental complexity. Science
**2011**, 332, 1551–1553. [Google Scholar] [CrossRef][Green Version] - Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods
**2020**, 17, 261–272. [Google Scholar] [CrossRef][Green Version] - Alstott, J.; Bullmore, E.; Plenz, D. Powerlaw: A Python package for analysis of heavy-tailed distributions. PLoS ONE
**2014**, 9, e85777. [Google Scholar] [CrossRef][Green Version] - Mrass, P.; Oruganti, S.R.; Fricke, G.M.; Tafoya, J.; Byrum, J.R.; Yang, L.; Hamilton, S.L.; Miller, M.J.; Moses, M.E.; Cannon, J.L. ROCK regulates the intermittent mode of interstitial T cell migration in inflamed lungs. Nat. Commun.
**2017**, 8, 1010. [Google Scholar] [CrossRef][Green Version] - Davidson, S.M.; Vander Heiden, M.G. Critical Functions of the Lysosome in Cancer Biology. Annu. Rev. Pharm. Toxicol.
**2017**, 57, 481–507. [Google Scholar] [CrossRef] - Limpert, E.; Stahel, W.A.; Abbt, M. Log-normal distributions across the sciences: Keys and clues. Bioscience
**2001**, 51, 341–352. [Google Scholar] [CrossRef] - Gunning, C.E.; Wearing, H.J. Probabilistic measures of persistence and extinction in measles (meta)populations. Ecol. Lett.
**2013**, 16, 985–994. [Google Scholar] [CrossRef][Green Version] - Klafter, J.; Blumen, A.; Shlesinger, M.F. Stochastic pathway to anomalous diffusion. Phys. Rev. A Gen. Phys.
**1987**, 35, 3081–3085. [Google Scholar] [CrossRef] - Hao, H.; Niu, J.; Xue, B.; Su, Q.P.; Liu, M.; Yang, J.; Qin, J.; Zhao, S.; Wu, C.; Sun, Y. Golgi-associated microtubules are fast cargo tracks and required for persistent cell migration. EMBO Rep.
**2020**, 21, e48385. [Google Scholar] [CrossRef] - Wadsworth, P.; McGrail, M. Interphase microtubule dynamics are cell type-specific. J. Cell Sci.
**1990**, 95, 23–32. [Google Scholar] [CrossRef] - Shelden, E.; Wadsworth, P. Observation and quantification of individual microtubule behavior in vivo: Microtubule dynamics are cell-type specific. J. Cell Biol.
**1993**, 120, 935–945. [Google Scholar] [CrossRef] - Schulze, E.; Kirschner, M. New features of microtubule behaviour observed in vivo. Nature
**1988**, 334, 356–359. [Google Scholar] [CrossRef] - Cai, D.W.; McEwen, D.P.; Martens, J.R.; Meyhofer, E.; Verhey, K.J. Single Molecule Imaging Reveals Differences in Microtubule Track Selection Between Kinesin Motors. PLoS Biol.
**2009**, 7, e1000216. [Google Scholar] [CrossRef][Green Version] - De Pace, R.; Britt, D.J.; Mercurio, J.; Foster, A.M.; Djavaherian, L.; Hoffmann, V.; Abebe, D.; Bonifacino, J.S. Synaptic Vesicle Precursors and Lysosomes Are Transported by Different Mechanisms in the Axon of Mammalian Neurons. Cell Rep.
**2020**, 31, 107775. [Google Scholar] [CrossRef] - Verdeny-Vilanova, I.; Wehnekamp, F.; Mohan, N.; Sandoval Alvarez, A.; Borbely, J.S.; Otterstrom, J.J.; Lamb, D.C.; Lakadamyali, M. 3D motion of vesicles along microtubules helps them to circumvent obstacles in cells. J. Cell Sci.
**2017**, 130, 1904–1916. [Google Scholar] [CrossRef][Green Version] - Kamata, H.; Tsukasaki, Y.; Sakai, T.; Ikebe, R.; Wang, J.; Jeffers, A.; Boren, J.; Owens, S.; Suzuki, T.; Higashihara, M.; et al. KIF5A transports collagen vesicles of myofibroblasts during pleural fibrosis. Sci. Rep.
**2017**, 7, 4556. [Google Scholar] [CrossRef][Green Version] - Varela, J.A.; Aberg, C.; Simpson, J.C.; Dawson, K.A. Trajectory-based co-localization measures for nanoparticle-cell interaction studies. Small
**2015**, 11, 2026–2031. [Google Scholar] [CrossRef] - Kang, K.A.; Wang, J.; Jasinski, J.B.; Achilefu, S. Fluorescence manipulation by gold nanoparticles: From complete quenching to extensive enhancement. J. Nanobiotechnol.
**2011**, 9, 16. [Google Scholar] [CrossRef][Green Version] - Quiroga, R.Q.; Nadasdy, Z.; Ben-Shaul, Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput.
**2004**, 16, 1661–1687. [Google Scholar] [CrossRef][Green Version] - Clemson, P.; Lancaster, G.; Stefanovska, A. Reconstructing Time-Dependent Dynamics. Proc. IEEE
**2016**, 104, 223–241. [Google Scholar] [CrossRef][Green Version] - Ivanov, P.C.; Rosenblum, M.G.; Peng, C.K.; Mietus, J.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature
**1996**, 383, 323–327. [Google Scholar] [CrossRef] - Yang, H. Detection and characterization of dynamical heterogeneity in an event series using wavelet correlation. J. Chem. Phys.
**2008**, 129, 074701. [Google Scholar] [CrossRef][Green Version] - Chavez, M.; Cazelles, B. Detecting dynamic spatial correlation patterns with generalized wavelet coherence and non-stationary surrogate data. Sci. Rep.
**2019**, 9, 7389. [Google Scholar] [CrossRef] - Skidmore, F.; Korenkevych, D.; Liu, Y.; He, G.; Bullmore, E.; Pardalos, P.M. Connectivity brain networks based on wavelet correlation analysis in Parkinson fMRI data. NeuroSci. Lett.
**2011**, 499, 47–51. [Google Scholar] [CrossRef] - Vacha, L.; Barunik, J. Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis. Energy Econ.
**2012**, 34, 241–247. [Google Scholar] [CrossRef][Green Version] - Huang, S.P.; An, H.Z.; Gao, X.Y.; Huang, X. Time-frequency featured co-movement between the stock and prices of crude oil and gold. Phys. A
**2016**, 444, 985–995. [Google Scholar] [CrossRef] - Shang, S.; Ding, R.; Zheng, K.; Jensen, C.S.; Kalnis, P.; Zhou, X. Personalized trajectory matching in spatial networks. VLDB J.
**2013**, 23, 449–468. [Google Scholar] [CrossRef] - Guggenheim, E.J.; Khan, A.; Pike, J.; Chang, L.; Lynch, I.; Rappoport, J.Z. Comparison of Confocal and Super-Resolution Reflectance Imaging of Metal Oxide Nanoparticles. PLoS ONE
**2016**, 11, e0159980. [Google Scholar] [CrossRef] - Liu, M.; Wang, F.; Zhang, X.; Mao, X.; Wang, L.; Tian, Y.; Fan, C.; Li, Q. Tracking endocytosis and intracellular distribution of spherical nucleic acids with correlative single-cell imaging. Nat. Protoc.
**2021**, 16, 383–404. [Google Scholar] [CrossRef] - Korolchuk, V.I.; Saiki, S.; Lichtenberg, M.; Siddiqi, F.H.; Roberts, E.A.; Imarisio, S.; Jahreiss, L.; Sarkar, S.; Futter, M.; Menzies, F.M.; et al. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol.
**2011**, 13, 453–460. [Google Scholar] [CrossRef]

**Figure 1.**Schematic of the analysis of lysosome movement patterns and lysosome-nanoparticle co-transport. (

**a**) A snapshot of a time-series of an MCF-10A cell with lysosomes marked by Lysotracker Red and imaged with fluorescence and gold nanoparticle aggregates (Au NPs) imaged label-free in confocal reflection mode (CRM). See also Supplementary Movies S1 and S2. (

**b**) Both lysosomes and Au NP aggregates are tracked by a single-particle tracking module in NIS-Elements software. (

**c**) Multiscale wavelet coefficients are computed by continuous wavelet transform (CWT) for x and y coordinates of trajectories. (

**d**) Shows an example of lysosome trajectory segmented using CWT-based active transport detection. The color indicates intervals of diffusive motion (grey) and directional, active transport—several “runs” (colored) that often join to form directional “flights” (dashed lines connect the beginnings with ends of such flights). (

**e**) CWT results are also used to detect co-transported lysosomes and Au NP aggregates. (

**f**) Classifications performed by the previous stages of the workflow are used in the statistical data analysis, investigating lysosome mean square displacements (MSD) and persistence lengths for runs (l) and flights (L). See the Section 2 for more details.

**Figure 2.**Lysosome movements are superdiffusive and fit the lognormal distribution. (

**a**) Log-log plots of the lysosomes’ mean square displacements (MSD) versus time, MSD ∝ t

^{α}, with all trajectories for all cells from one type pooled together where α > 1 indicates superdiffusive lysosome movements for all cell types. See Supplementary Movie S1. Box-plots showing (

**b**) exponent α and (

**c**) diffusion coefficient, D, and (

**d**) % time spent in active motion. Data are displayed as box-and-whisker plots; boxes delineate the lower and upper quartiles of the data, middle lines show median values, dashed lines show mean values for each cell type, colored dots are data points for each analyzed cell, and whiskers show upper and lower extremes. For (

**b**–

**d**), all trajectories in each analyzed cell were pooled together, and mean values for each cell were computed. The latter are shown as data points in the box plots. MCF-10A (n = 8 cells, l = 5260 lysosome trajectories), MDA-MB-231 (n = 4, l = 1076); MCF-7 (n = 4, l = 1756), MEF (n = 5, l = 5781), and HT-1080 (n = 8, l = 7953). (

**e**–

**h**) The complementary cumulative distribution functions, CCDFs, for run and flight lengths detected with wavelet analysis and plotted on a log-log scale; insets highlight the difference on a linear scale, which otherwise is not as apparent in this region of the logarithmically scaled plots. Noncancerous breast epithelial MCF-10A cell line is compared against MDA-MB-231 and MCF-7 breast adenocarcinomas. Mouse embryonic fibroblasts (MEF) are compared against the HT-1080 fibrosarcoma cell line. Asterisk denotes statistically significant differences between run/flight lengths for cancer cells compared with noncancerous counterparts determined by a Cramer–von Mises criterion (* p < 0.01). Only the significant differences are shown. The number of cells and runs/flights analyzed were as follows: MCF-10A (r = 5742 runs, f = 4830 flights), MDA-MB-231 (r = 1683, f = 1384), MCF-7 (r = 3410, f = 2829), MEF (r = 6156, f = 5060), and HT-1080 (r = 8697, f = 7189). The statistical parameters are shown in Table 1, and model fits are shown in Figure A1.

**Figure 3.**Examples of classification by the co-movement detection method. Lysosome–NP cluster pairs are correctly classified as moving together (

**a**–

**d**) and separately (

**d**–

**f**). (

**a**,

**d**) are lysosome (red) and NP-aggregate (green) experimental images prepared by combining images from the corresponding microscope channels. Arrows indicate the objects from the analyzed pair; the scale bars are $1\mathsf{\mu}\mathrm{m}$. (

**b**,

**e**) are center-to-center distances of the pairs. (

**c**,

**f**) demonstrate CWT coefficient maps for trajectories’ x-axes. Inset box with ${P}_{x}$ values show the Pearson’s correlation coefficient between lysosomal and NPs-aggregate CWT coefficient maps. For clarity, data only from the 0-70 s time interval (out of 300 s) are shown on (

**e**,

**f**). See Supplementary Movie S2.

**Figure 4.**Cell type-specific effects of nanoparticle cargos on lysosome movement parameters. MCF-10A non-cancerous breast epithelial cells vs. MDA-MB-231 breast adenocarcinoma and normal mouse embryonic fibroblasts (MEF) vs. HT-1080 fibrosarcoma were untreated (Control), or treated with mixed-charge 80:20 or purely cationic TMA NPs. Trajectories for all lysosomes from each cell were pooled together to compute (

**a**) exponent $\alpha $ and (

**b**) diffusion coefficient D. For NP-treated samples, wavelet-based co-movement algorithm (see Materials and Methods) was used to further subdivide lysosomes into those carrying NP cargos (Lyso NP+) and those without detectable NP cargos (Lyso NP−). Data are displayed as box-and-whisker plots; boxes delineate the lower and upper quartiles of the data, middle lines show median values, dashed lines show mean vales, colored dots show lysosome dynamics parameters for each cell and whiskers show upper and lower extremes. Asterisk or ‘ns’ indicated in the lower part of the plots indicate presence or absence of statistically significant differences, respectively, between parameters for lysosomes with or without cargos determined with two-tailed paired Student’s t test (* p < 0.05). Similarly, asterisk or ‘ns’ above the box plots indicate statistical significance of the difference between lysosomes from cells treated with NPs (white and grey boxes) versus all lysosomes in untreated, control cells (colored boxes) determined using Wilcoxon–Mann–Whitney test. (* p < 0.05). The analyses were based on the following number of cells and lysosome trajectories: MCF-10A/Control (n = 8 cells, l = 5260 lysosome trajectories); MCF-10A/80-20 (n = 10): NP− (l = 4177), NP+ (l = 597); MCF-10A/TMA (n = 12): NP− (l = 3769), NP+ (l = 303); MDA-MB-231/Control (n = 4, l = 1076); MDA-MB-231/80-20 (n = 17): NP− (l = 2771), NP+ (l = 260); MDA-MB-231/TMA (n = 14): NP− (l = 1618), NP+ (l = 116); MEF/Control (n = 5, l = 5781); MEF/80–20 (n = 6): NP− (l = 6272), NP+ (l = 131); MEF/TMA (n = 3): NP− (l = 5304), NP+ (l = 36); and HT-1080/Control (n = 8, l = 7953); HT/80–20 (n = 11): NP− (l = 4294), NP+ (l = 304); HT/TMA (n = 4): NP− (l = 2283), NP+ (l = 79).

**Figure 5.**The effect of nanoparticle cargos on lysosome active transport. Time spent in active transport was computed after identifying active and passive trajectory segments with a wavelet-based approach. Note that for NP-treated samples, a wavelet-based co-movement algorithm (see Materials and Methods) was used to further subdivide lysosomes into those carrying NP cargos (Lyso NP+) and those without detectable cargos (Lyso NP−). Asterisk or ‘ns’ indicated in the lower part of the plots indicate presence or absence of statistically significant differences, respectively, between parameters for lysosomes with or without cargos determined with two-tailed paired Student’s t test (* p < 0.05). Similarly, asterisk or ‘ns’ above the box plots indicate statistical significance of the difference between lysosomes from cells treated with NPs (white and grey boxes) versus all lysosomes in untreated, control cells (colored boxes) determined using Wilcoxon–Mann–Whitney test. (* p < 0.05). All experimental details, statistical tests, and numbers of trajectories and cells analyzed are identical to Figure 4.

**Table 1.**Statistical analysis of lysosome movements in cancer and noncancerous cells. The exponent α and diffusion coefficient D values were computed from mean square displacement (MSD) versus time plots shown in Figure 2a. Data = mean ± s.d. n = 4–8 cells (see below). The fit parameters for run and flight lengths—from lognormal (or stretched exponential where appropriate) distributions—and Akaike weights for all model comparisons are shown (see Section 2 for details). LN = lognormal, P = power law, TP = truncated power law, SE = stretched exponential, E = exponential. The strongest supported model is indicated in bold. Complementary cumulative distribution functions (CCDFs) for run (l) and flight (L) lengths shown in Figure 2e–h for all cell types fit lognormal distributions, except MCF-10A for which the CCDF for L fits stretched exponential distribution. See also Figure A1 for model fits. The number of cells and lysosome trajectories analyzed were as follows: MCF-10A (n = 8 cells, l = 5260 lysosome trajectories), MDA-MB-231 (n = 4, l = 1076), MCF-7 (n = 4, l = 1756), MEF (n = 5, l = 5781), and HT-1080 (n = 8, l = 7953).

Cell Type | MSD (a) | D (μm ^{2}/s)
| Fit Parameters | Akaike Weights | ||||
---|---|---|---|---|---|---|---|---|

LN | P | TP | SE | E | ||||

MCF-10A | 1.29 ± 0.05 | 0.022 ± 0.004 | Runs: μ = −0.193; σ = 0.804 Flights: λ = 0.840; β = 1.037 | 10 | 0 <0.01 | <0.01 <0.01 | <0.010.83 | <0.01 0.17 |

MDA-MB-231 | 1.31 ± 0.05 | 0.029 ± 0.006 | Runs: μ = −0.147; σ = 0.833 Flights: μ = 0.028; σ = 0.838 | 0.991 | <0.01 <0.01 | <0.01 <0.01 | <0.01 <0.01 | <0.01 <0.01 |

MCF-7 | 1.35 ± 0.04 | 0.029 ± 0.010 | Runs: μ = −0.013; σ = 0.834 Flights: μ = 0.151; σ = 0.838 | 11 | 0 0 | 0 <0.01 | <0.01 <0.01 | <0.01 <0.01 |

MEF | 1.36 ± 0.09 | 0.018 ± 0.003 | Runs: μ = −0.175; σ = 0.856 Flights: μ = −0.155; σ = 0.929 | 10.99 | 0 0 | <0.01 <0.01 | <0.01 <0.01 | <0.01 <0.01 |

HT-1080 | 1.34 ± 0.06 | 0.015 ± 0.003 | Runs: μ = −0.183; σ = 0.802 Flights: μ = −0.019; σ = 0.829 | 11 | 0 0 | 0 0 | <0.01 <0.01 | <0.01 <0.01 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Polev, K.; Kolygina, D.V.; Kandere-Grzybowska, K.; Grzybowski, B.A.
Large-Scale, Wavelet-Based Analysis of Lysosomal Trajectories and Co-Movements of Lysosomes with Nanoparticle Cargos. *Cells* **2022**, *11*, 270.
https://doi.org/10.3390/cells11020270

**AMA Style**

Polev K, Kolygina DV, Kandere-Grzybowska K, Grzybowski BA.
Large-Scale, Wavelet-Based Analysis of Lysosomal Trajectories and Co-Movements of Lysosomes with Nanoparticle Cargos. *Cells*. 2022; 11(2):270.
https://doi.org/10.3390/cells11020270

**Chicago/Turabian Style**

Polev, Konstantin, Diana V. Kolygina, Kristiana Kandere-Grzybowska, and Bartosz A. Grzybowski.
2022. "Large-Scale, Wavelet-Based Analysis of Lysosomal Trajectories and Co-Movements of Lysosomes with Nanoparticle Cargos" *Cells* 11, no. 2: 270.
https://doi.org/10.3390/cells11020270