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Abstract: Lysosomes—that is, acidic organelles known for degradation/recycling—move through
the cytoplasm alternating between bursts of active transport and short, diffusive motions or even
pauses. While their mobility is essential for lysosomes’ fusogenic and non-fusogenic interactions
with target organelles, their movements have not been characterized in adequate detail. Here, large-
scale statistical analysis of lysosomal movement trajectories reveals that lysosome trajectories in all
examined cell types—both cancer and noncancerous ones—are superdiffusive and characterized by
heavy-tailed distributions of run and flight lengths. Consideration of Akaike weights for various
potential models (lognormal, power law, truncated power law, stretched exponential, and exponential)
indicates that the experimental data are best described by the lognormal distribution, which, in
turn, can be related to one of the space-search strategies particularly effective when “thorough”
search needs to balance search for rare target(s) (organelles). In addition, automated, wavelet-based
analysis allows for co-tracking the motions of lysosomes and the cargos they carry—particularly
the nanoparticle aggregates known to cause selective lysosome disruption in cancerous cells. The
methods we describe here could help study nanoparticle assemblies, viruses, and other objects
transported inside various vesicle types, as well as coordinated movements of organelles/particles
in the cytoplasm. Custom-written code that includes integrated workflow for our analyses is made
available for academic use.

Keywords: lysosome transport; cancer lysosomes; mixed-charge nanoparticles; lysosome-nanoparticle
co-movement; confocal reflection microscopy; continuous wavelet transform; maximum-likelihood
estimates; lognormal distribution

1. Introduction

Lysosomes are acidic (pH ~ 4.2–5.5), membrane-bound terminal compartments for
degradation and recycling of cargos delivered to them through endocytosis and au-
tophagy [1]. Lysosomes also function as docking sites for signaling complexes [2,3], engage
in physical contacts with other organelles [2,4], and repair plasma membrane through
lysosomal exocytosis [5,6]. Malignant transformation results in alterations in the function
and composition of lysosomes—cancer lysosomes are larger [7], and with few exceptions,
have lower pH [8], increased proteolytic activity, altered membrane composition and spa-
tial distribution, and display enhanced secretion of their contents, notably protons, H+,
and proteases, towards extracellular space [9,10]. Since the resulting acidification and
proteolytic remodeling of the tumor microenvironment drives invasion, there is hope that
inhibition of excessive lysosomal exocytosis could limit cancer metastasis [11,12].
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To perform these diverse functions, both cancer and healthy cells’ lysosomes rely on
their vigorous movements throughout the cytoplasm [1,2]. As for most organelles, lyso-
somes move in a “stop-and-go” manner where periods of fast, directional runs alternate
with short, random movements and pauses [13,14]. The rapid, long-range directional
“runs/flights” are due to active, ATP-dependent transport of lysosomes by kinesin (to-
wards the periphery) and dynein (towards cell center) motors along the microtubule (MT)
tracks [15]. The short movements and pauses are due to constraints imposed by MT
intersection points [16], other organelles [4], lysosome interactions with actin-based mo-
tors [17], or their transport along a subset of detyrosinated MTs [18]. These movements
are often characterized by mean square displacement (MSD), which has time dependence
tα [17,19,20], where exponent α indicates the type of movement: α < 1 subdiffusive, con-
strained movement; α ∼= 1 passive transport by pure diffusion; α ≥ 2 ballistic/directional
movement; and 1 < α < 2 superdiffusive movements observed in complex environments
and sometimes indicating Lévy walks. Moreover, the detailed character of movement and,
in some cases, the nature of the underlying mechanisms can be inferred by studying the
distributions of persistent motions (runs and flights) using maximum likelihood estimates
(MLE) to fit experimental data and comparing multiple competing models [21–25]. Even
though the intermittent nature of lysosomal transport is easy to recognize visually, the
proper assignment of transition points between active and diffusive trajectory segments,
and thus the construction of run/flight statistics (expressed as the so-called cumulative
distribution functions, CDFs), is not trivial. Such assignments are performed either man-
ually [26], or by speed correlation index [27], trajectory asymmetry [28], temporal MSD
analysis [18,29–31], multimodal and “self-similar” sub-trajectory analysis [32,33], Hurst
exponent estimation [34], or with wavelet analysis [35,36]. The latter approach is a partic-
ularly excellent choice because it is highly effective at detecting transient heterogeneous
changes in dynamics embedded in particle trajectory data. For example, Granick’s team
applied a wavelet-based approach to show that exponentially distributed “runs” of EGF (or
LDL)-containing endosomes self-organize into “flights” that are drawn from a truncated
power-law distribution, thus consistent with Lévy walks [24]. While intriguing, these stud-
ies have not yet been extended to other vesicle types, and patterns of lysosome movements
have not been previously studied in such detail. In addition, one outstanding question
concerns the movement characteristics of lysosomes in cancer versus healthy, normal cells.
It remains unclear if cancer-associated lysosome alterations (cf. above) also lead to a change
in lysosome movement patterns.

In this context, we [37,38] and others [39,40] have exploited the differences between
normal and cancer cells’ lysosomes (cf. above) to target the latter selectively. In particular,
our own strategy has been to target the lysosomes with gold nanoparticles, AuNPs, that are
engineered to precipitate in regions of specific pH. We showed that such NPs coated with
mixtures of positively and negatively charged ligands at precisely defined proportions,
so-called mixed-charge nanoparticles (MCNPs) [41,42], assemble into micron-size crystals
inside the low-pH cancer lysosomes, ultimately inducing selective cancer cell death [37,38].
The aggregation of the same nanoparticles is limited in noncancerous cells; instead, they
accumulate in higher-pH autolysosomes and are cleared via exocytosis. Unlike cationic
amphiphilic drugs (CADs) [40], MCNPs do not induce robust permeabilization of cancer
lysosome membranes but rather increase cancer lysosome sizes, displace signaling proteins
from their membranes, and sensitize them to damage [37].

In the course of this work, we performed multiple high-resolution imaging studies
tracking the trajectories of individual lysosomes in normal vs. cancer cells, both in the
absence and in the presence of MCNPs cargos [37]. In the end, we assembled a uniquely
diverse and large collection of 60,431 lysosomal trajectories coming from five cell types
(sampled every 200 ms for 3–5 min), and containing 67,764 periods of active transport.
Qualitative analysis suggested disrupted cancer lysosome transport by MCNPs, but was
not accompanied by any quantitative analyses of pathway structure [37]. Here, we perform
such analyses with two overriding objectives in mind: (1) to perform a rigorous statistical
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comparison of movement patterns of untreated cancer and normal cells’ lysosomes; and
(2) to quantitatively assess the effect of MCNP cargos on lysosome transport in cancer
versus normal cells. To address the latter question, we developed a method based on
continuous wavelet transform (CWT) for detecting particles/vesicles that undergo conjoint
movement; to address the former, we implemented the detection of active motion that
is also based on CWT [35]. The results of these analyses not only confirm the previously
established superdiffusive nature of lysosomal motions in both normal and cancer cells,
but also indicate that these motions are typically characterized by lognormal distribution
of run/flight lengths, which may point to the efficiency in which lysosomes “patrol” the
cytoplasm to find target organelles, such as endosomes, phagosomes, and autophagosomes.
Of note, the appropriateness of the lognormal fit is corroborated by the evaluation of other
possible models (i.e., power law, truncated power law, stretched exponential, and exponen-
tial). The methods we describe here can be extended to study in-cell motions of other types
of synthetic particles or viruses [43], as well as coordinated organelle movements [4] or
“cargo” transport by hitchhiking onto other motor-driven organelles [44–46]. Such analyses
will be facilitated by the house-written code for our integrated workflow—this code is
made available to academic users at https://github.com/conspol/cwt-active-comovement,
accessed on 10 January 2022.

2. Materials and Methods
2.1. Cell Culture, Nanoparticle Treatments, and Confocal Microscopy

The cell culture, confocal imaging, and mixed-charge nanoparticle (NP) synthesis were
previously described in [37]. Briefly, mouse embryonic fibroblasts (MEF) were a gift from X.
Tong (Northwestern University Medical School, Chicago, IL, USA). Human fibrosarcoma
HT1080 (CCL-121), human breast epithelial cells MCF-10A (CRL-10317), and human breast
adenocarcinomas MDA-MB-231 (HTB-26) and MCF7 (HTB-22) were purchased from Amer-
ican Type Culture Collection (ATCC). MEF and HT1080 cells were cultured in Dulbecco’s
modified Eagle medium (DMEM, 11995-065, Thermo Fisher Scientific, Waltham, MA, USA)
with 10% fetal bovine serum (FBS, TMS013BKR, Merck Millipore, Burlington, MA, USA)
and 25µg mL−1 gentamycin. MCF-10A cells were cultured in DMEM/F12 (11330-032,
Thermo Fisher Scientific, Waltham, MA, USA) with 5% horse serum, 20 ng mL−1 epidermal
growth factor, 10µg mL−1 insulin, 0.5 mg mL−1 hydrocortisone, 100 ng mL−1 cholera toxin,
and penicillin/streptomycin (10,000 U mL−1 penicillin and 10,000µg mL−1 streptomycin).
MCF-7 were cultured in RPMI with 10% FBS and 25µg mL−1 gentamycin. MCF-10A, MCF-
7, HT-1080 and MEF cells were cultured in a 5% CO2 atmosphere at 37 ◦C. MDA-MB-231
were cultured in L-15 medium (21083027, Thermo Fisher Scientific, Waltham, MA, USA)
with 10% FBS and 25µg mL−1 gentamycin at 37 ◦C without CO2. All cell lines used in this
study were free of mycoplasma.

NP synthesis and characterization were described in references [37,47]. Briefly, NPs
with Au cores of average diameter d≈ 5.3 nm (from TEM) were coated with mixtures of neg-
atively charged 11-mercaptoundecanoic acid (MUA, 450561, Merck Sigma-Aldrich, Burling-
ton, MA, USA) and positively charged N,N,N-trimethyl(11-mercaptoundecyl)ammonium
chloride (TMA, FT#006 ProChimia Surfaces, Gdansk, Poland) ligands. Out of several
ligand-layer compositions, the “80:20” particles caused the death of cancer cells most
selectively—these mixed-charge nanoparticles (MCNPs) had the on-particle ratio of TMA
to MUA ligands of 80:20 [41] and zeta potential, ζ ~ +21.4 ± 3.6 mV [37]. Accordingly,
most of the analyses described here are based on the “80:20” MCNPs, although, as controls,
purely cationic NPs coated with only TMA ligands were also considered; these NPs had
ζ ~ +27.5 ± 5.1 mV. The hydrodynamic diameters of all ligand-stabilized particles were
DH ≈ 7.8 nm (from DLS).

For imaging, cells were cultured on glass-bottom cell culture dishes (P35G-1.5-20-C,
MatTek, Ashland, MA, USA) coated with fibronectin (25µg mL−1). Subconfluent cells
were then cultured without NPs (Control/no-NPs), or continuously exposed to 80:20 or
TMA NPs (50 nM) for 8 h (for HT-1080 and MEF), or 24 h (for MCF-10A, MDA-MB-231

https://github.com/conspol/cwt-active-comovement


Cells 2022, 11, 270 4 of 23

and MCF-7) at 37 ◦C. The NP concentrations/exposure times were chosen to allow NP
aggregation inside cells’ lysosomes but not induce cell death during lysosome tracking
experiments. Overall, at higher concentrations and/or longer exposure times, TMA NPs
are toxic, while 80:20 NPs are selectively cytotoxic only towards cancer cells. A detailed
description of the cell responses is provided in [37]. Both cancer and noncancerous cells
readily internalized both types of nanoparticles, though 80:20 nanoparticles aggregated
more readily in lysosomes than TMAs. NP clusters—larger in cancer cells and smaller
in noncancerous cells—were imaged label-free with confocal reflection microscopy as
described previously [37,47].

Acidic lysosomal organelles were labeled with 50 nM LysoTracker Red DND-99 (L7528,
ThermoFisher Scientific, Waltham, MA, USA) for the last 30 min of NP exposure time. Live
cells were imaged immediately with a Nikon A1R confocal microscope using ×60, 1.4 NA
(numerical aperture) or ×100, 1.45 NA oil immersion objectives. The confocal reflection
mode for observing aggregates of Au NPs was set up to use the 638 nm laser, and the
reflection/scattering signals were collected at 663–738 nm. LysoTracker Red DND-99 was
excited using a 561 nm laser line, and the emission was collected at 560–618 nm. Collecting
a wide range of emissions for the Reflection channel was due to the constraints of the
available filters/configuration options with standard PMT detectors of the Nikon A1R
microscope. Time-series images of lysosomes and Au NP aggregates were collected with
resonant scanner mode at time-steps/frames ~200 ms (5.11 fps) for total time ~3–5 min
yielding movies with ~900–1540 time-steps/frames. All cells were imaged in their complete
cell culture medium with the temperature, and CO2 concentrations maintained using a
stage-fitted incubator and gas mixer (Live Cell Instruments, Seoul, Korea) as described
previously [37,47].

2.2. Image Processing and Tracking

All image post-processing and particle tracking steps were performed with NIS-
Elements AR (Nikon, Tokyo, Japan) software v4.50 or v5.02. To reduce the noise from
images acquired with a resonant scanner, the rolling average (using menu ND Image
Average) was computed over five consecutive images. Particle detection and tracking were
performed using NIS-Elements’ particle tracking module. Gaps of a maximum of 3 frames
were allowed. The trajectories that spanned less than 20 frames (~4 s) were excluded
from the analysis. Trajectories were exported and analyzed with a house-written code
(cf. next section).

2.3. Movement Analysis
2.3.1. Continuous Wavelet Transform

Coordinates of each axis (x and y) of all particles’ (lysosomes or NP aggregates)
trajectories were processed via continuous wavelet transform (CWT):

C(t0, a) =
1
a

∫
R

s(t)ψ(
t− t0

a
)dt

where s(t) is a time series (in our case, coordinates over time), and ψ is a wavelet function
having scale (width) a, centered at time t0. We used the Haar wavelet, which is a “square-
shaped” function of a form:

ψ(t) =


1, 0 ≤ t < 1/2
−1, 1

2 ≤ t < 1
0, otherwise

Using scales 1 to 50, we obtained 50-by-t “maps” of wavelet coefficients C(t, a) (for
examples, refer to Figure 1c). The coefficients C(t, a) were then used in two types of
analysis: extraction of periods of active transport by lysosomes and detection of conjoint
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movement of lysosomes with NP aggregates. For more information about the wavelet
transform, please see Discussion and references therein.

Figure 1. Schematic of the analysis of lysosome movement patterns and lysosome-nanoparticle co-
transport. (a) A snapshot of a time-series of an MCF-10A cell with lysosomes marked by Lysotracker
Red and imaged with fluorescence and gold nanoparticle aggregates (Au NPs) imaged label-free
in confocal reflection mode (CRM). See also Supplementary Movies S1 and S2. (b) Both lysosomes
and Au NP aggregates are tracked by a single-particle tracking module in NIS-Elements software.
(c) Multiscale wavelet coefficients are computed by continuous wavelet transform (CWT) for x
and y coordinates of trajectories. (d) Shows an example of lysosome trajectory segmented using
CWT-based active transport detection. The color indicates intervals of diffusive motion (grey) and
directional, active transport—several “runs” (colored) that often join to form directional “flights”
(dashed lines connect the beginnings with ends of such flights). (e) CWT results are also used
to detect co-transported lysosomes and Au NP aggregates. (f) Classifications performed by the
previous stages of the workflow are used in the statistical data analysis, investigating lysosome mean
square displacements (MSD) and persistence lengths for runs (l) and flights (L). See the Section 2 for
more details.
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2.3.2. Active Transport Detection

CWT-based active transport detection for intracellular vesicles is described in [35]. We
followed the method without modifications and performed parameter tuning as prescribed
by the authors. Briefly, after surveying the wavelet transform coefficients for lysosomal
trajectories, we set the initial wavelet scale ã such that the effects of the smallest movements
and noise are reduced, but the information was not lost due to the merging of bands. First
and last ã/2 time points were removed since the movement information at these times
was not represented correctly after CWT due to edge effects. We then applied a universal
threshold, projected from the wavelet scale a = 2, calculated as:

δ = rσ2
√

2 ln Nã/2

where N is the number of data points in the trajectory (excluding ã time steps), r is the
pre-factor (initially set to 1) and σ2 is an estimate of the standard deviation of noise on the
scale of 2:

σ2 =
mediani(|C(i, 2)|)

0.6745
where C(i, 2) is the wavelet coefficient at the time point i of scale 2. The time points with
scale ã wavelet coefficients C(i, ã) above the threshold were classified as active “runs.”
After the calculations, we visually inspected the result of classification for the chosen ã
and compared the assignment to the trajectories’ mean square displacements (MSD). The
choice of ã was not sensitive to small changes, and the outcome of classification was on
the conservative (having false-negative errors) side, as expected [35]. We then decreased
the pre-factor r until the amount of false negative classifications diminished. For our data,
with ã = 20 and r = 0.8 the amount of false negative errors was minimized, while false
positives errors were not found by visual inspection.

To determine persistent “flights,” we followed the error-radius method described
elsewhere [24,48]. In brief, runs were merged into flights if the run’s coordinate points lay
within some “corridor” whose width adapted to the given trajectory. The corridor width
equal to 1.27 of the run’s maximum width (perpendicular to the line connecting start- and
end-points of the run), but not smaller than 0.4 µm, was chosen for our data by minimizing
the autocorrelation of turning angles between the resulting flights. Additionally, to ensure
that very short runs are not erroneously merged with runs having a very wide spread
(i.e., with large corridor width), runs with turning angles (between the start-stop lines of
consequent runs) larger than 120◦ were filtered out.

Percent of time spent in active transport (for Figure 2d) was computed as a ratio of
time while lysosomes performed “runs” vs. total time of tracks with first and last ã/2
points of each track excluded to avoid bias (since active motion detection algorithm did not
consider those points).

The code for performing these analyses is available as a part of our workflow posted
at https://github.com/conspol/cwt-active-comovement, accessed on 10 January 2022.

https://github.com/conspol/cwt-active-comovement
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Figure 2. Lysosome movements are superdiffusive and fit the lognormal distribution. (a) Log-log
plots of the lysosomes’ mean square displacements (MSD) versus time, MSD ∝ tα, with all trajectories
for all cells from one type pooled together where α > 1 indicates superdiffusive lysosome movements
for all cell types. See Supplementary Movie S1. Box-plots showing (b) exponent α and (c) diffusion
coefficient, D, and (d) % time spent in active motion. Data are displayed as box-and-whisker plots;
boxes delineate the lower and upper quartiles of the data, middle lines show median values, dashed
lines show mean values for each cell type, colored dots are data points for each analyzed cell, and
whiskers show upper and lower extremes. For (b–d), all trajectories in each analyzed cell were pooled
together, and mean values for each cell were computed. The latter are shown as data points in the
box plots. MCF-10A (n = 8 cells, l = 5260 lysosome trajectories), MDA-MB-231 (n = 4, l = 1076); MCF-7
(n = 4, l = 1756), MEF (n = 5, l = 5781), and HT-1080 (n = 8, l = 7953). (e–h) The complementary
cumulative distribution functions, CCDFs, for run and flight lengths detected with wavelet analysis
and plotted on a log-log scale; insets highlight the difference on a linear scale, which otherwise is
not as apparent in this region of the logarithmically scaled plots. Noncancerous breast epithelial
MCF-10A cell line is compared against MDA-MB-231 and MCF-7 breast adenocarcinomas. Mouse
embryonic fibroblasts (MEF) are compared against the HT-1080 fibrosarcoma cell line. Asterisk
denotes statistically significant differences between run/flight lengths for cancer cells compared
with noncancerous counterparts determined by a Cramer–von Mises criterion (* p < 0.01). Only the
significant differences are shown. The number of cells and runs/flights analyzed were as follows:
MCF-10A (r = 5742 runs, f = 4830 flights), MDA-MB-231 (r = 1683, f = 1384), MCF-7 (r = 3410, f = 2829),
MEF (r = 6156, f = 5060), and HT-1080 (r = 8697, f = 7189). The statistical parameters are shown in
Table 1, and model fits are shown in Figure A1.
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Table 1. Statistical analysis of lysosome movements in cancer and noncancerous cells. The exponent
α and diffusion coefficient D values were computed from mean square displacement (MSD) versus
time plots shown in Figure 2a. Data = mean± s.d. n = 4–8 cells (see below). The fit parameters for run
and flight lengths—from lognormal (or stretched exponential where appropriate) distributions—and
Akaike weights for all model comparisons are shown (see Section 2 for details). LN = lognormal,
P = power law, TP = truncated power law, SE = stretched exponential, E = exponential. The strongest
supported model is indicated in bold. Complementary cumulative distribution functions (CCDFs)
for run (l) and flight (L) lengths shown in Figure 2e–h for all cell types fit lognormal distributions,
except MCF-10A for which the CCDF for L fits stretched exponential distribution. See also Figure A1
for model fits. The number of cells and lysosome trajectories analyzed were as follows: MCF-10A
(n = 8 cells, l = 5260 lysosome trajectories), MDA-MB-231 (n = 4, l = 1076), MCF-7 (n = 4, l = 1756),
MEF (n = 5, l = 5781), and HT-1080 (n = 8, l = 7953).

Cell Type MSD (a)
D

(µm2/s) Fit Parameters
Akaike Weights

LN P TP SE E

MCF-10A 1.29 ± 0.05 0.022 ± 0.004 Runs: µ = −0.193; σ = 0.804
Flights: λ = 0.840; β = 1.037

1
0

0
<0.01

<0.01
<0.01

<0.01
0.83

<0.01
0.17

MDA-MB-231 1.31 ± 0.05 0.029 ± 0.006 Runs: µ = −0.147; σ = 0.833
Flights: µ = 0.028; σ = 0.838

0.99
1

<0.01
<0.01

<0.01
<0.01

<0.01
<0.01

<0.01
<0.01

MCF-7 1.35 ± 0.04 0.029 ± 0.010 Runs: µ = −0.013; σ = 0.834
Flights: µ = 0.151; σ = 0.838

1
1

0
0

0
<0.01

<0.01
<0.01

<0.01
<0.01

MEF 1.36 ± 0.09 0.018 ± 0.003 Runs: µ = −0.175; σ = 0.856
Flights: µ = −0.155; σ = 0.929

1
0.99

0
0

<0.01
<0.01

<0.01
<0.01

<0.01
<0.01

HT-1080 1.34 ± 0.06 0.015 ± 0.003 Runs: µ = −0.183; σ = 0.802
Flights: µ = −0.019; σ = 0.829

1
1

0
0

0
0

<0.01
<0.01

<0.01
<0.01

2.3.3. Co-Movement Detection

We first identified the time overlaps for every lysosome-NP aggregate pair in the cell.
Then, we isolated the CWT coefficients corresponding to the overlap time for each pair that
had the overlap, thus obtaining a pair of same-sized matrices. For each pair (one pair for
each axis, x and y), we calculated Pearson’s correlation coefficient:

Pj =
cov(Xwav, Ywav)

σXwav σYwav

where j is trajectories’ axis (x or y), Xwav and Ywav are wavelet time and scale axes. We
considered the movements correlated if both Px and Py were larger than 0.7. The lysosome–
NPs pair was considered co-moving if the movements of the two particles were correlated,
and the average of their center-to-center distance over time was below 1 µm.

2.4. Statistical Data Analysis

The data were statistically analyzed using Python code (also available at https://
github.com/conspol/cwt-active-comovement, accessed on 10 January 2022). Fits were
performed using routines from SciPy [49] and “power law” [50] packages. MSD curves
were fit in the time range from 0 to 4 s (where lines are mostly straight; effects of a limited
cellular space start to manifest on longer timescales, evident by downward regions on
MSD curves in Figure 2a). The parameters for power law and exponential distribution
fits were obtained using analytical expressions for corresponding maximum likelihood
estimators [21]; for lognormal, stretched exponential, and exponentially truncated power
law distributions, numerical maximum likelihood estimation was used. Equations of the
distributions’ probability density functions are in Appendix B Table A1. Comparisons
of similarity of run and flight length distributions were performed using a two-sample
Cramer–von Mises test. To find significant differences between populations, the Wilcoxon–

https://github.com/conspol/cwt-active-comovement
https://github.com/conspol/cwt-active-comovement
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Mann–Whitney test was used everywhere, except when comparing parameters of lysosomal
tracks classified as co-moving with NP aggregates vs. the rest of them—in this case, we
used a two-tailed paired Student’s t-test.

3. Results
3.1. Lysosomal Movements Are Characterized by a Heavy-Tailed, Lognormal Distribution of
Run/Flight Lengths

We compared lysosomal movement trajectories in five cell types—noncancerous breast
epithelial MCF-10A cells versus MDA-MB-231 and MCF-7 breast adenocarcinomas, and
mouse embryonic fibroblasts (MEF) versus HT-1080 fibrosarcoma cells. Lysosomes were
labeled with Lysotracker Red dye (Figure 1a) and imaged with a confocal microscope at a
rate of 5.11 frames per second (fps) for periods of 3–5 min, collecting large data sets with
n = 8–41 cells and 6623–19,215 lysosome trajectories per cell type. An example of typical
lysosomal trajectories in MCF-10A cells is shown in Figure 1b (see Supplementary Movie
S1). To quantify lysosome dynamics, we plotted lysosome mean square displacements
(MSD) versus time, t, (MSD ∝ tα) and computed exponents α and diffusion coefficients, D,
for each cell type. MSD plots for all trajectories pooled from all cells of one type are shown
in Figure 2a. A summary from analyzing each cell’s trajectories is shown in Figure 2b. As
expected for lysosomes engaged in stop-and-go motion [16], the overall movements of
lysosomes in all cell types—both cancer and noncancerous ones—were superdiffusive with
exponent α ~ 1.29–1.36 (see Figure 2a,b, Table 1).

To distinguish the active and passive movements, we computed Haar wavelet co-
efficients on the scale of 50 frames and assigned passive/active motion (as described
in [35] and the Section 2). Trajectory segments with active motion were classified as “runs.”
Consecutive “runs” in the same direction were grouped into “flights” (see Materials and
Methods for details). We then proceeded to plot complementary cumulative distribution
functions (CCDFs) of run/flight lengths (Figure 2e–h) and computed the percentage of
time that lysosomes spent in active motion (Figures 2d and A2, cf. next section). Plotting
CCDFs on a log-log scale revealed that these distributions are heavy-tailed. Accordingly,
we compared our experimental data to multiple competing heavy-tailed models using
maximum likelihood estimates (MLE) and Akaike weights to determine the strongest
supported model. The specific models compared were power law and truncated power
law (both indicative of Lévy walks [21,22,24]), lognormal (observed previously in naïve T
lymphocytes migrating in lymph nodes [25,51]), heavy-tailed stretched exponential [21],
and exponential distribution (indicative of diffusive motions). All model comparisons are
shown in Figure A1 in Appendix A and Table 1. These analyses revealed that lysosome
movements in all cell types analyzed, except for MCF-10A, were characterized by heavy-
tailed, lognormal distributions of run/flight lengths. For MCF-10A, the run length data fit
lognormal distribution, while flight length data fit stretched exponential distribution better.

3.2. Tissue Origin and Cancer-Specific Differences in Lysosomal Dynamics

Inspection of the values of diffusion coefficients, D (Figure 2c, Table 1) and percentage
of time spent in active transport (Figure 2d) revealed cell-type-specific differences in
lysosomal dynamics. On one hand, the diffusion coefficients were higher for lysosomes in
cells of epithelial origin (MCF-10A and MDA-MB-231, MCF-7) than those of fibroblast origin
(MEF and HT-1080). Similarly, the former spent roughly twice as much time (on average
12, 15, and 17%, respectively) in active transport than the latter (7 and 9%) (Figure 2d).
The percentage of steps detected in active motion is within the broad range of 5–30%
reported for different vesicles by others [28,29,35]. On the other hand, the differences
between noncancerous and cancer counterparts for the three metrics (α, D, % time in active
transport) were not statistically significant (Figure 2a–d). However, closer inspection of
CCDFs revealed differences in the distributions of run and flight lengths between cancer
and noncancerous cell lines (Figure 2e–h). Here, the differences were cancer-specific—MDA-
MB-231/MCF-7 cells’ lysosomes had slightly longer run/flight lengths than MCF-10A cells’
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lysosomes. Conversely, MEF cells’ lysosomes had longer run/flight lengths than HT-1080
cells’ lysosomes (see Figure A2). The biological significance of these small differences is
unclear. Nevertheless, these results illustrate the importance of cell line choices for studies
designed to identify cancer-specific changes.

3.3. Wavelet-Based Approach for Detection of Lysosome-Nanoparticle Co-Movement

Next, we turned our attention to the co-movement of lysosomes with nanoparticle
cargos. The first objective was to automatically extract the trajectories of lysosomes that
carry NP cargos. Our CWT-based co-movement detection method recognized up to 27% of
lysosomes inside NP-treated cells as cargo-bearing.

Figure 1e shows images and trajectories of a typical lysosome-NP aggregate pair. In
this and similar pairs, the lysosomes and the NP aggregates are transported together over
the long time interval, with significant overlap between the fluorescence (Lysosome/red)
and CRM channels (Au NP cluster, green; overlap shown in yellow), and are correctly
classified by our method as co-moving. While this case is affirming, we present more
challenging examples of the classification in Figure 3. The panels on the left (Figure 3) show
a case of nanoparticle cargo transported together with a lysosome over a shorter distance
and with minor overlap between the two channels. The panels to the right show a different
example where particles have small average center-to-center distances and minor overlap
between the two channels in selected frames but do not move together. Our algorithm
classified both examples correctly—the first as co-moving and the second as not co-moving.
In the first case, the average center-to-center distance (plotted in Figure 3b) was 0.3 µm,
and in the second case, it was 0.8 µm, dropping to 0.3 µm at some points (Figure 3e).
The distances are comparable, yet after inspecting the images for the second case (as
shown in Figure 3d), it becomes apparent that the movements of the two particles are
independent. This example shows that the center-to-center distances alone would not reject
the false-positive co-movement detections—with a threshold too small, many object pairs
with larger sizes would not be recognized as co-moving. Correlation coefficients between
CWT data help clarify the situation—the co-moving pair has correlations of 0.74 and 0.97,
while the independently moving pair has −0.01 and 0.07, for x and y axes, respectively
(please refer to Figure 3c,f for the pairwise x-axis CWT coefficients maps), which leads to
correct classification.

3.4. Mixed-Charge Gold Nanoparticles Selectively Disrupt Lysosomal Transport in Cancer Cells

Mixed-charge nanoparticles selectively kill cancer cells through a lysosome-dependent
mechanism [37]. We hypothesized that the crystallization of MCNPs in cancer lysosomes
disrupted the transport of cargo-carrying lysosomes selectively in cancer cells. Here, we
substantiated this hypothesis by quantifying various lysosome dynamics metrics in cancer
and noncancerous cells exposed to 80:20 MCNPs. As a control, we also tested the effects
of purely cationic TMA NP cargos, which were non-selectively toxic towards normal and
cancer cells. With the method for detecting co-moving lysosome/NP pairs established
in Section 3.3 above, we could use lysosome and NP trajectory data to automatically sort
lysosomes in each cell into two groups—those carrying NP cargos and those without
cargos—and analyze their trajectories separately. As predicted, we observed more pro-
nounced inhibition of lysosome dynamics by mixed-charge 80:20 NPs in cancer cells than
in normal cells (Figures 4, 5 and A2; data for MCF-7 are shown separately in Figure A3).
The specific metrics affected by exposure to 80:20 NPs were cancer-specific—MDA-MB-231
lysosomes had lower diffusion coefficients, D (Figure 4) spent less time in active transport
(Figure 5), and had smaller average run and flight lengths (Figure A2). Interestingly, in the
case of HT 1080 cells with 80:20 NPs vs. no NPs, α and D values decreased (Figure 4), while
the time spent in active motion and run/flight lengths (Figures 5 and A2) did not change
significantly. We found one possible explanation for that by considering angles between
consecutive active runs (irrespective of what was happening between the runs or their
belonging to active flights), as shown in Figure A4. In 80:20 NP treated cells, the proportion
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of runs in the same direction as a preceding run (around 0◦ in Figure A4) decreased, and
the active motion in the backward direction (around 180◦) became more prevalent than
in untreated cells. This phenomenon could decrease the overall displacements from the
starting point and, in turn, result in lower MSD parameters while not affecting the time
spent in active transport.

Figure 3. Examples of classification by the co-movement detection method. Lysosome–NP cluster
pairs are correctly classified as moving together (a–d) and separately (d–f). (a,d) are lysosome (red)
and NP-aggregate (green) experimental images prepared by combining images from the correspond-
ing microscope channels. Arrows indicate the objects from the analyzed pair; the scale bars are
1 µm. (b,e) are center-to-center distances of the pairs. (c,f) demonstrate CWT coefficient maps for
trajectories’ x-axes. Inset box with Px values show the Pearson’s correlation coefficient between
lysosomal and NPs-aggregate CWT coefficient maps. For clarity, data only from the 0-70 s time
interval (out of 300 s) are shown on (e,f). See Supplementary Movie S2.

When considering co-movements, typically, the effect of 80:20 NPs was general—
that is, both lysosomes with cargos and those without detectable cargos were affected
to a similar extent (Figure 4, compare ‘Lyso NP−‘ versus ‘Lyso NP+’ groups). Note that
the ’Lyso NP−’ group may contain up to 20% of false-positives (lysosomes with cargos
that escape detection, cf. Discussion), while the ‘Lyso NP+’ group did not contain any
false-negatives. Yet another explanation—supported by TEM images and uptake of 50–
100 nm-sized aggregates and their gradual coalescence into larger aggregates in cancer
cells [37]—is that lysosomes in the ‘Lyso NP−‘ group contain smaller NP aggregates that
are not detectable with confocal reflection microscopy. Still another possibility is that
disrupted lysosomal transport results from the general effects of 80:20 NPs on cellular
homeostasis (cf. Section 4).

Notably, lysosome transport disruption by 80:20 NPs occurred selectively in cancer
cells. The effects of 80:20 NPs on the same metrics in noncancerous MCF-10A and MEF
cells were marginal. One notable exception is the diffusion coefficient which was decreased
for lysosomes without cargos and not affected in lysosomes with cargos for MCF-10A
cells (Figure 4b). Conversely, D values for MEF cells’ lysosomes without cargos were
unaffected, while lysosomes with NP cargos had lower diffusion coefficients (Figure 4b).
These differences in diffusion coefficients certainly warrant a more detailed investigation of
the heterogeneity of individual lysosomes/their trajectories in future studies. Importantly,
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however, the active transport in noncancerous cells was not inhibited by 80:20 NP cargos.
Specifically, α exponent, % time spent in active transport, average run/flight lengths were
similar in MCF-10A and MEF cells with or without 80:20 NP treatment (Figures 5 and A2).

Figure 4. Cell type-specific effects of nanoparticle cargos on lysosome movement parameters. MCF-
10A non-cancerous breast epithelial cells vs. MDA-MB-231 breast adenocarcinoma and normal
mouse embryonic fibroblasts (MEF) vs. HT-1080 fibrosarcoma were untreated (Control), or treated
with mixed-charge 80:20 or purely cationic TMA NPs. Trajectories for all lysosomes from each cell
were pooled together to compute (a) exponent α and (b) diffusion coefficient D. For NP-treated
samples, wavelet-based co-movement algorithm (see Materials and Methods) was used to further
subdivide lysosomes into those carrying NP cargos (Lyso NP+) and those without detectable NP
cargos (Lyso NP−). Data are displayed as box-and-whisker plots; boxes delineate the lower and
upper quartiles of the data, middle lines show median values, dashed lines show mean vales, colored
dots show lysosome dynamics parameters for each cell and whiskers show upper and lower extremes.
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Asterisk or ‘ns’ indicated in the lower part of the plots indicate presence or absence of statistically
significant differences, respectively, between parameters for lysosomes with or without cargos
determined with two-tailed paired Student’s t test (* p < 0.05). Similarly, asterisk or ‘ns’ above the box
plots indicate statistical significance of the difference between lysosomes from cells treated with NPs
(white and grey boxes) versus all lysosomes in untreated, control cells (colored boxes) determined
using Wilcoxon–Mann–Whitney test. (* p < 0.05). The analyses were based on the following number
of cells and lysosome trajectories: MCF-10A/Control (n = 8 cells, l = 5260 lysosome trajectories);
MCF-10A/80-20 (n = 10): NP− (l = 4177), NP+ (l = 597); MCF-10A/TMA (n = 12): NP− (l = 3769),
NP+ (l = 303); MDA-MB-231/Control (n = 4, l = 1076); MDA-MB-231/80-20 (n = 17): NP− (l = 2771),
NP+ (l = 260); MDA-MB-231/TMA (n = 14): NP− (l = 1618), NP+ (l = 116); MEF/Control (n = 5,
l = 5781); MEF/80–20 (n = 6): NP− (l = 6272), NP+ (l = 131); MEF/TMA (n = 3): NP− (l = 5304), NP+
(l = 36); and HT-1080/Control (n = 8, l = 7953); HT/80–20 (n = 11): NP− (l = 4294), NP+ (l = 304);
HT/TMA (n = 4): NP− (l = 2283), NP+ (l = 79).

Figure 5. The effect of nanoparticle cargos on lysosome active transport. Time spent in active
transport was computed after identifying active and passive trajectory segments with a wavelet-
based approach. Note that for NP-treated samples, a wavelet-based co-movement algorithm (see
Materials and Methods) was used to further subdivide lysosomes into those carrying NP cargos (Lyso
NP+) and those without detectable cargos (Lyso NP−). Asterisk or ‘ns’ indicated in the lower part of
the plots indicate presence or absence of statistically significant differences, respectively, between
parameters for lysosomes with or without cargos determined with two-tailed paired Student’s t
test (* p < 0.05). Similarly, asterisk or ‘ns’ above the box plots indicate statistical significance of
the difference between lysosomes from cells treated with NPs (white and grey boxes) versus all
lysosomes in untreated, control cells (colored boxes) determined using Wilcoxon–Mann–Whitney test.
(* p < 0.05). All experimental details, statistical tests, and numbers of trajectories and cells analyzed
are identical to Figure 4.

Consistent with their accumulation in lysosomes in MDA-MB-231 cells, purely cationic
TMA NPs and 80:20 NPs had very similar effects of cancer lysosome dynamics. Unexpect-
edly, TMA NPs had more disruptive effects on lysosome transport in MEF cells than in
HT-1080. Lysosome trajectory sorting using co-movement analysis (cf. above) revealed
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α < 1, indicating subdiffusive, constrained motions and lower D values specifically for
lysosomes with TMA NP cargos (Figure 4a,b).

Overall, these results are consistent with TMA NPs being indiscriminately toxic and
80:20 NPs being selectively toxic towards cancer cells as reported previously in [37].

4. Discussion

In light of the recent and dramatic shift in the understanding of lysosomes not merely
as cell’s “recycle bins” but organelles with diverse functionality [1–3,6,52], the study of
lysosomal motions and localization patterns appears timely and important. We discov-
ered that the distribution of lysosomal transport lengths—both active runs and persistent
flights—for the most part follows the heavy-tailed lognormal distribution (logarithm of
which is normally distributed, hence the name). Such distributions are often found in na-
ture and can result from multiplicative or branching random processes [53,54]. Lognormal
distribution is often compared with another heavy-tailed distribution family—power law
and its truncated version. In the context of movement patterns, power law-distributed steps
indicate that the object moves according to a Lévy walk process [55] and might be following
an optimal search strategy for finding rare targets [23]. In the context of organelles, Lévy
walks have been used to describe endosomal transport [24]. Our findings that motions of
lysosomes follow lognormal distribution point to a different model. Specifically, it has been
shown that lognormal distribution might arise from a movement strategy that balances
the number of total (repeated) target encounters with a wider search for new targets [25].
Given the variety and importance of contacts between lysosomes and other organelles [2],
we see intriguing prospects in quantifying such interactions (for which our co-movement
detection tool can be readily used) and painting a comprehensive picture of lysosomal
behavior in the cell.

Changes in lysosomal sizes observed during cell differentiation [32], malignant trans-
formation [7], or due to other perturbations [26] could affect lysosome dynamics parameters.
Bandyopadhyay et al. showed that osmotic swelling of lysosomes lowers diffusive compo-
nent, but does not affect the active transport of lysosomes in epithelial cells [26]. Durso et al.
showed more complex dependencies in differentiating neuronal stem cells [32]. We did not
observe similar correlations in untreated cells—lysosomes of similar average sizes could
have D values differing two-fold (for example, HT-1080 vs. MDA-MB-231, see Appendix B,
Table A2). Contrary to lysosomes swollen by sucrose treatment [26], larger lysosomes in
MCF-7 had the highest D values. We did observe some decrease in D values for enlarged
lysosomes due to the accumulation of 80:20 MCNPs (Figure 4b). Still, lower D values were
also apparent in MCF-10A cells which internalized 80:20 NPs but did not have enlarged
lysosomes, suggesting more complex regulation of lysosomal transport.

In the context of cytoskeleton elements underlying the active movement of lysosomes,
the transport parameters could be affected by the density of microtubule (MT) intersections
(providing roadblocks to continuous vesicle movement) and/or varying proportions of
subclasses of MTs with different dynamic properties. The precise quantification of the
former is challenging even with super resolution approaches due to the high density of
the MT network and has only been studied in detail in selected epithelial cells [16,56].
However, it is particularly interesting that the MT assembly and disassembly rates are
lower, and rescue frequencies are higher in epithelial cells than in fibroblast cells [57,58]. In
other words, the MT network is more stable in epithelial cells. In addition, subpopulations
of MTs with distinct dynamic properties have been detected in both epithelial cells [59]
and fibroblast cells [58]. The meta-stable, longer-lasting MTs are typically characterized
by the presence of various posttranslational modifications (PMTs) of α-tubulin, including
detyrosination and acetylation of α-tubulin. For example, Mohan et al. showed that,
in BS-C-1 epithelial cells, ~35% of MTs are detyrosinated, ~70% are acetylated, while
~50% of MTs contained both detyrosinated and acetylated α-tubulin [18]. Lysosomes and
their target organelles were enriched on detyrosinated MTs in a manner dependent on
motor protein kinesin-1. Furthermore, the movements of lysosomes on such detyrosinated
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MTs were impaired (resulting in shorter run lengths), facilitating lysosome contacts with
target organelles [18]. In a different study, Hao et al. showed that Golgi-associated MTs
had fewer intersections with other MTs, were stabilized with limited acetylation and
detyrosination contributions, and provided stable tracks for fast polarized cargo transport
to the leading edge of migrating epithelial cells [56]. It would be interesting to examine
if higher D values and more time spent in active transport for cells of epithelial origin
observed in our experiments were due to lysosome transport along specific subsets of such
stabilized MT tracks and if they rely on specific kinesin motor proteins [60]. It would also
be interesting to study if NP cargos alter the type of MT tracks (and motor proteins) used
for lysosome transport.

In the research concerning cargo transport and co-transport on the level of individual
organelles, the most widespread techniques to detect such events from microscopy images
are manual detection [61], pointwise trajectory correlation [62], and colocalization-based [45,
46,63,64] methods. However, the manual approach is not feasible for large-scale studies
such as ours—simple pointwise correlation might not be representative enough since
it does not consider the scale of movements, while the colocalization is based on the
assumption that there is an overlap between the objects in images. In our experiments,
fluorescence quenching by Au NPs aggregates [65] interferes with the Lysotracker dye
intensity. In addition, lysosomes and NP aggregates were occasionally observed to move
together in the absence of overlap between fluorescence (for lysosomes) and reflection (for
NP aggregates) channels (see example in Figure 3a). The latter corresponds to lysosome-
autolysosome pairs in TEM images (shown in Figure 6 in [37]) engaging in limited fusion
interactions of the “kiss-and-run” type. A colocalization-based approach would miss such
interactions. Moreover, one of the main goals of our present study was to find lysosomes
that carry cargo in a crowded cellular environment, where spurious colocalization may
arise without co-transport, e.g., when one object is below another. For these reasons, we
ruled out colocalization as a metric in our study—that, and the fact that the center-to-center
distance alone was not sufficient to reliably isolate cargo-carrying lysosomes, prompted the
development of our co-movement detection method.

Wavelet transform-based analysis is a widely employed tool across all scientific and
engineering disciplines dealing with time-series data [66–69], with successful examples
in the analysis of endosomal [24] and lysosomal motion [36]. Since CWT is essentially a
convolution of wavelet kernel taken with multiple sizes, the resulting coefficients represent
features on multiple scales. In the case of time-series data, scales represent frequencies,
and CWT preserves time information about the amplitude of these frequencies in time
(in contrast to Fourier transform, which gives information about the amplitude of certain
frequencies, but not about the time of its occurrence). This makes wavelets instrumental in
detecting correlation patterns in the data [70,71], specifically in tracking and co-movement
analysis [72–74]. For our data, arguments can be made that both high- and low-frequency
motions can indicate whether the objects are moving together or not: Brownian motion and
fast individual steps of active movement appear at higher frequencies, while long-range
transport and drift of object pairs belong to the lower frequency range. We found that
Pearson’s correlation between CWT coefficients on multiple scales is an effective measure
since all frequencies are taken into account, and correlations of multiple motion modes
affect the classification results.

After a manual survey of our classification results, we could not identify false-positive
detections of co-moving pairs; the number of false-negatives (that is, pairs that appeared
to be moving together but were not classified as such) varied between populations, but
was typically below ~20%, which was satisfactory for our goal of isolating the certainly co-
moving lysosome–NP aggregate pairs. Predictably, lower correlation and higher distance
thresholds decreased the number of false-negatives but at the cost of occasional false-
positive detections—hence, we set the thresholds at higher values to keep the subpopulation
of co-moving pairs as “clean” as possible. This way, our imaging and data processing
protocols allowed the extraction and analysis of bona fide parameters for cargo-bearing
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lysosomes from the rest of the tracks, and comparison with their counterparts, which
represent mostly (though not exclusively) lysosomes without cargos (cf. Discussion below).

The presence of some cargo-bearing lysosomes in Lyso NP− group (cf. Discussion
above) may partly explain similar effects of 80:20 NPs on lysosome dynamics parame-
ters in Lyso NP− and Lyso NP+ groups (cf. Section 3.4 and Figures 4 and 5). A more
likely explanation, however—supported by TEM images and uptake of 50–100 nm-sized
aggregates and their gradual coalescence into larger aggregates in cancer cells [37]—is that
lysosomes in ‘Lyso NP−‘ group contain smaller NP aggregates that are not detectable with
confocal reflection microscopy. More sensitive detection of NP cargos via superresolution
reflectance imaging [75] or dark-field microscopy [76] could help resolve these questions.
It is also conceivable that 80:20 NPs could affect all cancer lysosomes through general
perturbations of cells’ homeostasis, such as nutrient deprivation through inhibitions of
lysosomal degradative capacity. Cell starvation is known to decrease cytoplasmic pH,
which induces juxtanuclear accumulation of lysosomes where they are more likely to come
in contact and fuse with autophagosomes [77]—in this scenario, lysosome motions would
be constrained. As mentioned above, however, the Lyso NP+ group identified with co-
movement algorithm contains a pure population of lysosomes with NP cargos, making this
data exceptionally reliable.

5. Conclusions

In summary, we devised an algorithmic workflow with which to extract and quan-
tify the motion patterns of cellular organelles in addition to those of organelles carrying
particulate cargos. Here, we applied this workflow to study a large body of lysosomal
trajectories, confirming superdiffusivity of lysosomes’ motions but also discovering the
previously unreported lognormal distribution characterizing lysosomal transport lengths.
In this context, the hypothesized connection between this lognormal distribution and lyso-
somes’ “patrolling” strategy (possibly balancing the number of repeated encounters with
the efficiency of search for new targets) appears exciting and certainly merits additional
research and verification. In the meantime, we hope that the codes we make available will
stimulate similar analyses of additional cell types and organelles other than lysosomes.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/cells11020270/s1: Movie S1—Lysosome trajectories in MCF-10A
cell. An overlay of differential interference contrast (DIC) channel showing cell outline, Lysotracker
Red channel showing lysosomes, and lysosomal trajectories of an example MCF-10A cell in the
absence of nanoparticle treatment. Time, h:m:s. Scale bar, 10 µm. See more examples in Supplemen-
tary material of [37]; Movie S2—Lysosome and nanoparticle aggregate co-movement analysis. An
overlay of fluorescence (Lysotracker Red = lysosomes, red) and reflection (Au NPs, green) channels
in MCF-10A cell treated with 80:20 NPs; example region from a single cell is shown. Time, h:m:s.
Scale bar, 2 µm. See more examples in Supplementary material of [37].
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Appendix A

Figure A1. CCDFs of datasets with corresponding distribution fits. Subpanels show curves for run
(a–c,g,h) and flight (d–f,i,j) lengths for MCF-10A (a,d), MDA-MB-231(b,e), MCF-7 (c,f), MEF (g,i),
and HT1080 (h,j) cells. Data CCDF curves are in burgundy dotted lines; best-fit distributions are
plotted in solid lines, while competing distributions are in dashed lines.

https://github.com/conspol/cwt-active-comovement
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Figure A2. The effect of nanoparticle cargos on the average run (a) and flight (b) lengths. The notation
of the box plots and experimental source data are identical to the main-text Figures 4 and 5. Asterisk
or ‘ns’ indicated in the lower part of the plots indicate presence or absence of statistically significant
differences, respectively, between parameters for lysosomes with or without cargos determined
with two-tailed paired Student’s t test (* p < 0.05). Similarly, asterisk or ‘ns’ above the box plots
indicate statistical significance of the difference between lysosomes from cells treated with NPs
(white and grey boxes) versus all lysosomes in untreated, control cells (colored boxes) determined
using Wilcoxon–Mann–Whitney test (* p < 0.05). The analyses were based on the following number
of cells and lysosome trajectories: MCF-10A/Control (n = 8 cells, l = 5260 lysosome trajectories);
MCF-10A/80-20 (n = 10): NP− (l = 4177), NP+ (l = 597); MCF-10A/TMA (n = 12): NP− (l = 3769),
NP+ (l = 303); MDA-MB-231/Control (n = 4, l = 1076); MDA-MB-231/80-20 (n = 17): NP− (l = 2771),
NP+ (l = 260); MDA-MB-231/TMA (n = 14): NP− (l = 1618), NP+ (l = 116); MEF/Control (n = 5,
l = 5781); MEF/80–20 (n = 6): NP− (l = 6272), NP+ (l = 131); MEF/TMA (n = 3): NP− (l = 5304), NP+
(l = 36); and HT-1080/Control (n = 8, l = 7953); HT/80–20 (n = 11): NP− (l = 4294), NP+ (l = 304);
HT/TMA (n = 4): NP− (l = 2283), NP+ (l = 79).
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Figure A3. The effect of nanoparticle treatment on lysosomal motion parameters for MCF-7 cells.
for all lysosomes from each cell were pooled together to compute (a) exponent α and (b) diffusion
coefficient D, (c) percentage of time spent in active transport, and (d,e) average run and flight lengths.
For more details, see Figure 4 caption. Asterisk or ‘ns’ indicated in the lower part of the plots
indicate presence or absence of statistically significant differences, respectively, between parameters
for lysosomes with or without cargos determined with two-tailed paired Student’s t test (* p < 0.05).
Similarly, asterisk or ‘ns’ above the box plots indicate statistical significance of the difference between
lysosomes from cells treated with NPs (white and grey boxes) versus all lysosomes in untreated,
control cells (colored boxes) determined using Wilcoxon–Mann–Whitney test (* p < 0.05). Number of
cells and trajectories used: Control (n = 4 cells, l = 1756 lysosome trajectories); 80–20 (n = 4): NP−
(l = 369), NP+ (l = 31).

Figure A4. Distribution of turning angles between consecutive active runs in HT 1080 cells.
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Appendix B

Table A1. Distributions used in model comparison. Here, x is observed data, a is the minimal data
point, Γ is upper incomplete gamma function, er f c is complementary error function, and µ, λ, σ, β

are parameters of the corresponding distributions.

Distribution Name Probability Density Function p(x)

Power law x−µ

a1−µ (µ− 1)

Truncated power law x−µe−λx λ1−µ

Γ(1−µ, λa)

Log-normal 1
x exp

[
− (ln x−µ)2

2σ2

]√
2

πσ2

[
erfc( a−µ√

2σ
)
]−1

Stretched exponential βλxβ−1eλ(aβ−xβ)

Exponential λeλ(a−x)

Table A2. Lysosomal diameters in all cell types. Lysosome sizes in all cell types analyzed in the
present study without or with 80:20 NP treatment were quantified from confocal midplane images
of Lysotracker-stained organelles. Data = mean ± s.d. A two-tailed Student’s t-test with unequal
variances between control and NP-treated groups. * p < 0.05; ns = not significant. Data are from
Borkowska et al., 2020 [37].

Cell Type/Treatment Lysosomal Diameter [µm] Lysosomes, l Cells, n

MEF 0.65 ± 0.23 525 7
MEF + 80:20 NPs 0.71 ± 0.25 * 759 6
HT-1080 0.67 ± 0.24 707 6
HT-1080 + 80:20 NPs 0.99 ± 0.34 * 539 11
MCF-10A 0.54 ± 0.20 316 10
MCF-10A + 80:20 NPs 0.57 ± 0.22 ns 340 12
MDA-MB-231 0.67 ± 0.30 418 16
MDA-MB-231 + 80:20 NPs 1.00 ± 0.49 * 235 10
MCF-7 0.80 ± 0.35 250 11
MCF-7 + 80:20 NPs 1.42 ± 0.92 * 239 11
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