Poly(ionic liquid)/OPBI Composite Membrane with Excellent Chemical Stability for High-Temperature Proton Exchange Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the [HVIM]H2PO4
2.3. Synthesis of P[HVIM]H2PO4
2.4. Preparation of P[HVIM]H2PO4/OPBI Membrane
2.5. Measurements
2.6. Intrinsic Viscosity
2.7. PA Doping Performance
2.8. Oxidation Stability
2.9. Doping Stability of PA and IL
2.10. Proton Conductivity and Fuel Cell Performance
3. Results and Discussion
3.1. Synthesis of the PIL/OPBI Membrane
3.2. Thermal Stability
3.3. PA Doping Behaviors and Mechanical Strength
3.4. Proton Conductivity
3.5. Fuel Cell Performance
3.6. Oxidation Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Butt, O.M.; Ahmad, M.S.; Che, H.S.; Abd Rahim, N. Usage of on-demand oxyhydrogen gas as clean/renewable fuel for combustion applications: A review. Int. J. Green Energy 2021, 18, 1405–1429. [Google Scholar] [CrossRef]
- Drozdz, W.; Bilan, Y.; Rabe, M.; Streimikiene, D.; Pilecki, B. Optimizing biomass energy production at the municipal level to move to low-carbon energy. Sustain. Cities Soc. 2022, 76, 103417. [Google Scholar] [CrossRef]
- Fan, L.X.; Tu, Z.K.; Chan, S.H. Recent development of hydrogen and fuel cell technologies: A review. Energy Rep. 2021, 7, 8421–8446. [Google Scholar] [CrossRef]
- Li, Q.F.; He, R.H.; Jensen, J.O.; Bjerrum, N.J. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem. Mater. 2003, 15, 4896–4915. [Google Scholar] [CrossRef][Green Version]
- Peighambardoust, S.J.; Rowshanzamir, S.; Amjadi, M. Review of the proton exchange membranes for fuel cell applications. Int. J. Hydrog. Energy 2010, 35, 9349–9384. [Google Scholar] [CrossRef]
- Thiam, H.S.; Daud, W.R.W.; Kamarudin, S.K.; Mohammad, A.B.; Kadhum, A.A.H.; Loh, K.S.; Majlan, E.H. Overview on nanostructured membrane in fuel cell applications. Int. J. Hydrog. Energy 2011, 36, 3187–3205. [Google Scholar] [CrossRef]
- Kwon, K.; Yoo, D.Y.; Park, J.O. Experimental factors that influence carbon monoxide tolerance of high-temperature proton-exchange membrane fuel cells. J. Power Sources 2008, 185, 202–206. [Google Scholar] [CrossRef]
- Escorihuela, J.; Olvera-Mancilla, J.; Alexandrova, L.; del Castillo, L.F.; Compan, V. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers 2020, 12, 1861. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, H.M.; Zhong, H.X.; Li, X.F.; Xiao, S.H.; Mai, Z.S. High performance composite membranes with enhanced dimensional stability for use in PEMFC. Int. J. Hydrog. Energy 2010, 35, 4209–4214. [Google Scholar] [CrossRef]
- Lee, S.; Nam, K.H.; Seo, K.; Kim, G.; Han, H. Phase Inversion-Induced Porous Polybenzimidazole Fuel Cell Membranes: An Efficient Architecture for High-Temperature Water-Free Proton Transport. Polymers 2020, 12, 1604. [Google Scholar] [CrossRef]
- Arslan, F.; Bohm, T.; Kerres, J.; Thiele, S. Spatially and temporally resolved monitoring of doping polybenzimidazole membranes with phosphoric acid. J. Membr. Sci. 2021, 625, 119145. [Google Scholar] [CrossRef]
- Rui, Z.Y.; Liu, J.G. Understanding of free radical scavengers used in highly durable proton exchange membranes. Prog. Nat. Sci. Mater. Int. 2020, 30, 732–742. [Google Scholar] [CrossRef]
- El-Kharouf, A.; Chandan, A.; Hattenberger, M.; Pollet, B.G. Proton exchange membrane fuel cell degradation and testing: Review. J. Energy Inst. 2012, 85, 188–200. [Google Scholar] [CrossRef]
- Tang, H.L.; Shen, P.K.; Jiang, S.P.; Fang, W.; Mu, P. A degradation study of Nation proton exchange membrane of PEM fuel cells. J. Power Sources 2007, 170, 85–92. [Google Scholar] [CrossRef]
- Zhao, D.; Yi, B.L.; Zhang, H.M.; Liu, M.L. The effect of platinum in a Nafion membrane on the durability of the membrane under fuel cell conditions. J. Power Sources 2010, 195, 4606–4612. [Google Scholar] [CrossRef]
- Hao, J.; Jiang, Y.; Gao, X.; Xie, F.; Shao, Z.; Yi, B. Degradation reduction of polybenzimidazole membrane blended with CeO2 as a regenerative free radical scavenger. J. Membr. Sci. 2017, 522, 23–30. [Google Scholar] [CrossRef]
- Wang, J.; Dai, Y.; Wan, R.Y.; Wei, W.; Xu, S.C.; Zhai, F.H.; He, R.H. Grafting free radical scavengers onto polyarylethersulfone backbones for superior chemical stability of high temperature polymer membrane electrolytes. Chem. Eng. J. 2021, 413, 127541. [Google Scholar] [CrossRef]
- Donnadio, A.; D’Amato, R.; Marmottini, F.; Panzetta, G.; Pica, M.; Battocchio, C.; Capitani, D.; Ziarelli, F.; Casciola, M. On the evolution of proton conductivity of Aquivion membranes loaded with CeO2 based nanofillers: Effect of temperature and relative humidity. J. Membr. Sci. 2019, 574, 17–23. [Google Scholar] [CrossRef]
- Kim, J.; Chung, K.; Lee, H.; Bae, B.; Cho, E.-B. Mesoporous ceria-silica/poly(arylene ether sulfone) composite membranes for durability of fuel cell electrolyte membrane. Microporous Mesoporous Mater. 2016, 236, 292–300. [Google Scholar] [CrossRef]
- Lee, H.; Han, M.; Choi, Y.-W.; Bae, B. Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability. J. Power Sources 2015, 295, 221–227. [Google Scholar] [CrossRef]
- Park, J.; Kim, D. Effect of cerium/18-crown-6-ether coordination complex OH quencher on the properties of sulfonated poly(ether ether ketone) fuel cell electrolyte membranes. J. Membr. Sci. 2014, 469, 238–244. [Google Scholar] [CrossRef]
- Pearman, B.P.; Mohajeri, N.; Brooker, R.P.; Rodgers, M.P.; Slattery, D.K.; Hampton, M.D.; Cullen, D.A.; Seal, S. The degradation mitigation effect of cerium oxide in polymer electrolyte membranes in extended fuel cell durability tests. J. Power Sources 2013, 225, 75–83. [Google Scholar] [CrossRef]
- Taghizadeh, M.T.; Vatanparast, M. Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells. J. Colloid Interface Sci. 2016, 483, 1–10. [Google Scholar] [CrossRef]
- Weissbach, T.; Peckham, T.J.; Holdcroft, S. CeO2, ZrO2 and YSZ as mitigating additives against degradation of proton exchange membranes by free radicals. J. Membr. Sci. 2016, 498, 94–104. [Google Scholar] [CrossRef]
- Yu, L.; Lin, F.; Xiao, W.; Luo, D.; Xi, J. CNT@polydopamine embedded mixed matrix membranes for high-rate and long-life vanadium flow batteries. J. Membr. Sci. 2018, 549, 411–419. [Google Scholar] [CrossRef]
- Zhao, D.; Yi, B.L.; Zhang, H.M.; Yu, H.M. MnO2/SiO2–SO3H nanocomposite as hydrogen peroxide scavenger for durability improvement in proton exchange membranes. J. Membr. Sci. 2010, 346, 143–151. [Google Scholar] [CrossRef]
- Agnihotri, N.; Mishra, P.C. Mechanism of Scavenging Action of N-Acetylcysteine for the OH Radical: A Quantum Computational Study. J. Phys. Chem. B 2009, 113, 12096–12104. [Google Scholar] [CrossRef]
- Pan, Y.; Zhu, J.; Wang, H.; Zhang, X.; Zhang, Y.; He, C.; Ji, X.; Li, H. Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chem. 2007, 103, 913–918. [Google Scholar] [CrossRef]
- Yamamoto, K.-I.; Matsuda, M.; Okuoka, M.; Yakushiji, T.; Fukuda, M.; Miyasaka, T.; Matsumoto, Y.; Sakai, K. Antioxidation property of vitamin E-coated polysulfone dialysis membrane and recovery of oxidized vitamin E by vitamin C treatment. J. Membr. Sci. 2007, 302, 115–118. [Google Scholar] [CrossRef]
- Yang, N.; Jia, X.; Wang, D.; Wei, C.; He, Y.; Chen, L.; Zhao, Y. Silibinin as a natural antioxidant for modifying polysulfone membranes to suppress hemodialysis-induced oxidative stress. J. Membr. Sci. 2019, 574, 86–99. [Google Scholar] [CrossRef]
- Barati, S.; Abdollahi, M.; Khoshandam, B.; Mehdipourghazi, M. Highly proton conductive porous membranes based on polybenzimidazole/lignin blends for high temperatures proton exchange membranes: Preparation, characterization and morphology-proton conductivity relationship. Int. J. Hydrog. Energy 2018, 43, 19681–19690. [Google Scholar] [CrossRef]
- Duan, X.Q.; Zhao, J.; Song, D.; Wang, N.; Jia, J.; Liu, K.; Zuo, T.T.; Che, Q.T. Preparation and investigation on the low temperature proton exchange membranes with the enhanced proton conductivity at subzero temperature. J. Mol. Liq. 2021, 328, 115377. [Google Scholar] [CrossRef]
- Sun, P.; Li, Z.F.; Wang, S.W.; Yin, X.Y. Performance enhancement of polybenzimidazole based high temperature proton exchange membranes with multifunctional crosslinker and highly sulfonated polyaniline. J. Membr. Sci. 2018, 549, 660–669. [Google Scholar] [CrossRef]
- Wu, Y.N.; Liu, X.T.; Yang, F.; Zhou, L.L.; Yin, B.B.; Wang, P.; Wang, L. Achieving high power density and excellent durability for high temperature proton exchange membrane fuel cells based on crosslinked branched polybenzimidazole and metal-organic frameworks. J. Membr. Sci. 2021, 630, 119288. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, L.; Wang, P.J.; Zhang, F.F.; Yu, S.C.; Shao, Z.G.; Yi, B.L. Ionic-Liquid-Based Proton Conducting Membranes for Anhydrous H2/Cl2 Fuel-Cell Applications. ACS Appl. Mater. Interfaces 2014, 6, 3195–3200. [Google Scholar] [CrossRef]
- Moorthy, S.; Sivasubramanian, G.; Kannaiyan, D.; Deivanayagam, P. Neoteric advancements in polybenzimidazole based polymer electrolytes for high-temperature proton exchange membrane fuel cells—A versatile review. Int. J. Hydrog. Energy 2023, in press. [Google Scholar] [CrossRef]
- Lin, B.C.; Yuan, W.S.; Xu, F.; Chen, Q.; Zhu, H.H.; Li, X.X.; Yuan, N.Y.; Chu, F.Q.; Ding, J.N. Protic ionic liquid/functionalized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cell applications. Appl. Surf. Sci. 2018, 455, 295–301. [Google Scholar] [CrossRef]
- Elwan, H.A.; Zaky, M.T.; Farag, A.S.; Soliman, F.S.; Hassan, M.E.D. A coupled extractive-oxidative process for desulfurization of gasoline and diesel fuels using a bifunctional ionic liquid. J. Mol. Liq. 2017, 248, 549–555. [Google Scholar] [CrossRef]
- Che, Q.T.; Li, Z.Y.; Pan, B.; Duan, X.Q.; Jia, T.T.; Liu, L. Fabrication of layered membrane electrolytes with spin coating technique as anhydrous proton exchange membranes. J. Colloid Interface Sci. 2019, 555, 722–730. [Google Scholar] [CrossRef]
- D’Urso, C.; Oldani, C.; Baglio, V.; Merlo, L.; Arico, A.S. Fuel cell performance and durability investigation of bimetallic radical scavengers in Aquivion perfluorosulfonic acid membranes. Int. J. Hydrog. Energy 2017, 42, 27987–27994. [Google Scholar] [CrossRef]
- Jeong, Y.H.; Oh, K.; Ahn, S.; Kim, N.Y.; Byeon, A.; Park, H.Y.; Lee, S.Y.; Park, H.S.; Yoo, S.J.; Jang, J.H.; et al. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells. J. Power Sources 2017, 363, 365–374. [Google Scholar] [CrossRef]
- Lang, S.; Kazdal, T.J.; Kuhl, F.; Hampe, M.J. Experimental investigation and numerical simulation of the electrolyte loss in a HT-PEM fuel cell. Int. J. Hydrog. Energy 2015, 40, 1163–1172. [Google Scholar] [CrossRef]
- Wong, C.Y.; Wong, W.Y.; Ramya, K.; Khalid, M.; Loh, K.S.; Daud, W.R.W.; Lim, K.L.; Walvekar, R.; Kadhum, A.A.H. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review. Int. J. Hydrog. Energy 2019, 44, 6116–6135. [Google Scholar] [CrossRef]
- Meek, K.M.; Elabd, Y.A. Polymerized ionic liquid block copolymers for electrochemical energy. J. Mater. Chem. A 2015, 3, 24187–24194. [Google Scholar] [CrossRef]
- Yu, J.J.; Dong, C.; Liu, J.H.; Li, C.H.; Fang, J.H.; Guan, R. Crosslinked sulfonated poly (bis-A)-sulfones as proton exchange membrane for PEM fuel cell application. J. Mater. Sci. 2010, 45, 1017–1024. [Google Scholar] [CrossRef]
- Liu, F.X.; Wang, S.; Chen, H.; Li, J.S.; Wang, X.; Mao, T.J.; Wang, Z. The impact of poly (ionic liquid) on the phosphoric acid stability of polybenzimidazole-base HT-PEMs. Renew. Energy 2021, 163, 1692–1700. [Google Scholar] [CrossRef]
- Xiao, Y.M.; Ma, Q.X.; Shen, X.Y.; Wang, S.B.; Xiang, J.; Zhang, L.; Cheng, P.G.; Du, X.J.; Yin, Z.; Tang, N. Facile preparation of polybenzimidazole membrane crosslinked with three-dimensional polyaniline for high-temperature proton exchange membrane. J. Power Sources 2022, 528, 231218. [Google Scholar] [CrossRef]
- Xiao, Y.M.; Shen, X.Y.; Sun, R.X.; Wang, S.B.; Xiang, J.; Zhang, L.; Cheng, P.G.; Du, X.J.; Yin, Z.; Tang, N. Polybenzimidazole membrane crosslinked with quaternized polyaniline as high-temperature proton exchange membrane: Enhanced proton conductivity and stability. J. Membr. Sci. 2022, 660, 120795. [Google Scholar] [CrossRef]
- Xiao, Y.M.; Shen, X.Y.; Sun, R.X.; Wang, S.B.; Xiang, J.; Zhang, L.; Cheng, P.G.; Du, X.J.; Yin, Z.; Tang, N. Enhanced proton conductivity and stability of polybenzimidazole membranes at low phosphoric acid doping levels via constructing efficient proton transport pathways with ionic liquids and carbon nanotubes. J. Power Sources 2022, 543, 231802. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Z.H.; Ding, H.; Fan, Z.W.; Guo, H.; Sun, P.; Li, Z.F. Anchoring Highly Sulfonated Hyperbranched PBI onto oPBI: Fast Proton Conduction with Low Leaching. ACS Appl. Energy Mater. 2022, 5, 10802–10814. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, H.; Zhong, H.; Jin, H.; Li, X.; Xiao, S.; Mai, Z. Properties of Polymer Electrolyte Membranes Based on Poly(Aryl Ether Benzimidazole) and Sulphonated Poly(Aryl Ether Benzimidazole) for High Temperature PEMFCs. Fuel Cells 2010, 10, 754–761. [Google Scholar] [CrossRef]
- Hu, M.S.; Ni, J.P.; Liu, D.Q.; Wang, L. Preparation and Properties of Branched Poly(aryl ether benzimidazole) High Temperature Proton Exchange Membranes. Acta Polym. Sin. 2017, 3, 534–541. [Google Scholar]
- Hooshyari, K.; Javanbakht, M.; Adibi, M. Novel composite membranes based on dicationic ionic liquid and polybenzimidazole mixtures as strategy for enhancing thermal and electrochemical properties of proton exchange membrane fuel cells applications at high temperature. Int. J. Hydrog. Energy 2016, 41, 10870–10883. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Chen, H.; Sun, R.; Zhang, L.; Xiang, J.; Cheng, P.; Han, H.; Wang, S.; Tang, N. Poly(ionic liquid)/OPBI Composite Membrane with Excellent Chemical Stability for High-Temperature Proton Exchange Membrane. Polymers 2023, 15, 3197. https://doi.org/10.3390/polym15153197
Xiao Y, Chen H, Sun R, Zhang L, Xiang J, Cheng P, Han H, Wang S, Tang N. Poly(ionic liquid)/OPBI Composite Membrane with Excellent Chemical Stability for High-Temperature Proton Exchange Membrane. Polymers. 2023; 15(15):3197. https://doi.org/10.3390/polym15153197
Chicago/Turabian StyleXiao, Yiming, Haoran Chen, Ranxin Sun, Lei Zhang, Jun Xiang, Penggao Cheng, Huaiyuan Han, Songbo Wang, and Na Tang. 2023. "Poly(ionic liquid)/OPBI Composite Membrane with Excellent Chemical Stability for High-Temperature Proton Exchange Membrane" Polymers 15, no. 15: 3197. https://doi.org/10.3390/polym15153197