# Islanding Detection with Reduced Non-Detection Zones and Restoration by Reconfiguration

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

#### Contributions of the Proposed Method

- The Non-Detection Zones, the number of islanded buses and detection time are reduced by the proposed technique.
- A PSO technique is used to perform the reconfiguration by considering the identified vulnerable buses for islanding by the proposed islanding detection method.
- Reliability indices are evaluated for the proposed reconfigured system.
- The Real Time Price (RTP) and time of use are not considered in this work. In future, the interruption cost or feasibility studies can be implemented through the cost of electricity based on RTP.

## 2. Passive Method for Detection of Islanding, Reconfiguration, and Reliability Evaluation

#### 2.1. Proposed Voltage and Frequency (v&f) Variation Technique

#### 2.1.1. PV

#### 2.1.2. Wind

#### 2.1.3. Hydro

#### 2.2. Reconfiguration Using Particle Swarm Optimization (PSO) Technique

#### 2.3. Proposed Method for Reliability Evaluation

## 3. Results and Discussion

#### 3.1. Islanding Detection

#### 3.1.1. Islanding Detection for the 33 Bus System

#### 3.1.2. Islanding Detection for the 118 Bus System

#### 3.2. Reconfiguration and Reliability Evaluation

#### 3.2.1. Evaluation for the 33 Bus System

#### 3.2.2. Evaluation for the 118 Bus System

## 4. Conclusions and Future Scope

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

DG | Distributed Generation |

v&f | voltage and frequency |

PSO | Particle Swarm Optimization |

NDZ | Non-Detection Zone |

ENS | Energy Not Supplied |

SAIDI | System Average Interruption Duration Index |

SAIFI | System Average Interruption Frequency Index |

ASAI | Average Service Availability Index |

BFS | Backward and Forward Sweep |

AENS | Average Energy Not Supplied |

${N}_{pan}$ | Number of panels |

${F}_{fact}$ | Fill Factor |

${C}_{volt}$ | Voltage coefficient |

${K}_{curnt}$ | Current coefficient |

${O}_{Power}$ | Output power |

${V}_{pan}$ | Panel voltage |

${I}_{pan}$ | Panel current |

${I}_{MNPO}$ | The Maximum Net Power Output (MNPO) current |

${V}_{MNPO}$ | The Maximum Net Power Output (MNPO) voltage |

${W}_{rpow}$ | Power (Rated) |

${S}_{rat}$ | Rated speed |

${C}_{in}^{sp}$ | Speed (cut in) |

${C}_{out}^{sp}$ | Speed (cut out) |

${\u03f5}_{Hy}$ | Hydraulic efficiency |

$\varrho $ | Density |

${P}_{he}$ | Effective pressure |

${g}_{ac}$ | Acceleration |

${M}_{1}$ and ${M}_{2}$ | v&f index and threshold |

${S}_{1}$ and ${S}_{2}$ | The phase voltage related to time, frequency and voltage |

${P}_{lo\left(n\right)}$ | (Real power) difference between first bus to next bus |

${P}_{alo\left(n\right)}$ | Actual load |

${N}_{smpl}$ | Samples (Range) |

${V}_{operating\left(N\right)}$ | Operating voltage new |

${V}_{operating}$ | Operating bus voltage |

${b}_{V}$ | Voltage (base) |

${f}_{ch}$ | Change in (f)-frequency |

${V}_{ch}$ | Change in voltage |

${D}_{fr}$ | Calculated frequency |

n | Number of buses |

${G}_{b}$ and ${P}_{\left(be\right)}$ | global best solution and personal best solution |

${V}_{ij}$ | particle velocity |

‘F’ | fitness value or objective function |

${y}_{i}^{t+1}$ | specific place of the particle |

(${K}_{1}$) | acceleration constant |

${r}_{1j}^{t}$ | random numbers |

${n}_{j}$ | customer interruption or customer not served |

${h}_{j}$ | customer hours available services |

${\lambda}_{j}$ | failure rate |

${n}_{t}$ | total number of customer served |

${L}_{b\left(j\right)}$ | total demand |

## References

- Selim, A.; Kamel, S.; Mohamed, A.A.; Elattar, E.E. Optimal Allocation of Multiple Types of Distributed Generations in Radial Distribution Systems Using a Hybrid Technique. Sustainability
**2021**, 13, 6644. [Google Scholar] [CrossRef] - Mohamed, A.A.; Kamel, S.; Selim, A.; Khurshaid, T.; Rhee, S.B. Developing a Hybrid Approach Based on Analytical and Metaheuristic Optimization Algorithms for the Optimization of Renewable DG Allocation Considering Various Types of Loads. Sustainability
**2021**, 13, 4447. [Google Scholar] [CrossRef] - Ji, X.; Zhang, X.; Zhang, Y.; Yin, Z.; Yang, M.; Han, X. Three-Phase Symmetric Distribution Network Fast Dynamic Reconfiguration Based on Timing-Constrained Hierarchical Clustering Algorithm. Symmetry
**2021**, 13, 1479. [Google Scholar] [CrossRef] - Shahid, M.U.; Alquthami, T.; Siddique, A.; Munir, H.M.; Abbas, S.; Abbas, Z. RES Based Islanded DC Microgrid with Enhanced Electrical Network Islanding Detection. Energies
**2021**, 14, 8432. [Google Scholar] [CrossRef] - Lopez, J.R.; Ibarra, L.; Ponce, P.; Molina, A. A Decentralized Passive Islanding Detection Method Based on the Variations of Estimated Droop Characteristics. Energies
**2021**, 14, 7759. [Google Scholar] [CrossRef] - Abokhalil, A.G.; Awan, A.B.; Al-Qawasmi, A.R. Comparative Study of Passive and Active Islanding Detection Methods for PV Grid-Connected Systems. Sustainability
**2018**, 10, 1798. [Google Scholar] [CrossRef][Green Version] - Bukhari, S.B.A.; Mehmood, K.K.; Wadood, A.; Park, H. Intelligent Islanding Detection of Microgrids Using Long Short-Term Memory Networks. Energies
**2021**, 14, 5762. [Google Scholar] [CrossRef] - Montoya, O.D.; Arias-Londoño, A.; Grisales-Noreña, L.F.; Barrios, J.Á.; Chamorro, H.R. Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model. Symmetry
**2021**, 13, 1124. [Google Scholar] [CrossRef] - Bakhshi-Jafarabadi, R.; Sadeh, J.; Rakhshani, E.; Popov, M. High power quality maximum power point tracking-based islanding detection method for grid-connected photovoltaic systems. Int. J. Electr. Power Energy Syst.
**2021**, 131, 107103. [Google Scholar] [CrossRef] - Yafaoui, A.; Wu, B.; Kouro, S. Improved active frequency drift anti-islanding detection method for grid connected photovoltaic systems. IEEE Trans. Power Electron.
**2011**, 2, 2367–2375. [Google Scholar] [CrossRef] - Ma, J.; Mi, C.; Zheng, S.; Wang, T.; Lan, X.; Wang, Z.; Thorp, J.S.; Phadke, A.G. Application of voltage harmonic distortion positive feedback for islanding detection. Electr. Power Compon. Syst.
**2013**, 41, 641–652. [Google Scholar] [CrossRef] - Somalwar, R.; Kadwane, S.G.; Mohanta, D.K. Harmonics-based enhanced passive islanding method for grid-connected system. Electr. Power Compon. Syst.
**2017**, 45, 1554–1563. [Google Scholar] [CrossRef] - Zarei, M.; Zangeneh, A. Multi-objective optimization model for distribution network reconfiguration in the presence of distributed generations. Int. Trans. Electr. Energy Syst.
**2017**, V27, e2425. [Google Scholar] [CrossRef] - Mohammadzadeh Niaki, A.H.; Afsharnia, S. A new passive islanding detection method and its performance evaluation for multi-DG systems. Electr. Power Syst. Res.
**2014**, 110, 180–187. [Google Scholar] [CrossRef] - Sivanagaraju, S.; Visali, N.; Sankar, V.; Ramana, T. Enhancing voltage stability of radial distribution systems by network reconfiguration. Electr. Power Compon. Syst.
**2005**, V33, 539–550. [Google Scholar] [CrossRef] - Awad, A.S.A.; El-Fouly, T.H.M.; Salama, M.M.A. Optimal distributed generation allocation and load shedding for improving distribution system reliability. Electr. Power Compon. Syst.
**2014**, 42, 576–584. [Google Scholar] [CrossRef] - Cheng, S.; Wei, Z.; Shang, D.; Zhao, Z.; Chen, H. Charging Load Prediction and Distribution Network Reliability Evaluation Considering Electric Vehicles’ Spatial-Temporal Transfer Randomness. IEEE Access
**2020**, 8, 124084–124096. [Google Scholar] [CrossRef] - He, J.; Guan, X. Uncertainty sensitivity analysis for reliability problems with parametric distributions. IEEE Trans. Reliab.
**2017**, 6, 712–721. [Google Scholar] [CrossRef] - Jikeng, L.; Xudong, W.; Ling, Q. Reliability evaluation for the distribution system with distributed generation. Eur. Trans. Electr. Power
**2011**, 21, 895–909. [Google Scholar] [CrossRef] - Dong, W.; Li, S.; Zhang, H.; Yu, X.; Hu, T. Sensitivity-based reliability coordination for power systems considering wind power reserve based on hybrid correlation control method for wind power forecast error. Int. Trans. Electr. Energy Syst.
**2020**, 30, e12307. [Google Scholar] [CrossRef] - Zhu, T.X. A new methodology of analytical formula deduction and sensitivity analysis of EENS in bulk power system reliability assessment. In Proceedings of the 2006 IEEE PES Power Systems Conference and Exposition, Atlanta, GA, USA, 29 October–1 November 2006; pp. 825–831. [Google Scholar]
- Angel, A.R.; Manuel, S.A.-A. Design optimization for reliability improvement in microgrids with wind–tidal–photovoltaic generation. Electr. Power Syst. Res.
**2020**, 188, 106540. [Google Scholar] - Paterakis, N.G.; Mazza, A.; Santos, S.F.; Erdinç, O.; Chicco, G.; Bakirtzis, A.G.; Catalão, J.P.S. Multi-objective reconfiguration of radial distribution systems using reliability indices. IEEE Trans. Power Syst.
**2015**, 31, 1048–1062. [Google Scholar] [CrossRef] - Soroudi, A.; Aien, M.; Ehsan, M. A probabilistic modeling of photo voltaic modules and wind power generation impact on distribution networks. IEEE Syst. J.
**2011**, 6, 254–259. [Google Scholar] - Bhandari, B.; Poudel, S.R.; Lee, K.-T.; Ahn, S.-H. Mathematical modeling of hybrid renewable energy system: A review on small hydro-solar-wind power generation. Int. J. Precis. Eng.-Manuf.-Green Technol.
**2014**, 1, 157–173. [Google Scholar] [CrossRef] - Abd-Elkader, A.G.; Saleh, S.M.; Eiteba, M.B.M. A passive islanding detection strategy for multi-distributed generations. Int. J. Electr. Power Energy Syst.
**2018**, 99, 146–155. [Google Scholar] [CrossRef] - Narayanan, K.; Siddiqui, S.A.; Fozdar, M. Hybrid islanding detection method and priority-based load shedding for distribution networks in the presence of DG units. IET Gener. Transm. Distrib.
**2017**, 11, 586–595. [Google Scholar] - Nikhil, G.; Anil, S.; Niazi, K.R. Distribution network reconfiguration for power quality and reliability improvement using Genetic Algorithms. Int. J. Electr. Power Energy Syst.
**2014**, 54, 664–671. [Google Scholar] - Reddy, A.V.S.; Reddy, M.D. Optimization of network reconfiguration by using Particle swarm optimization. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016; pp. 1–6. [Google Scholar]
- Reddy, C.R.; Reddy, K.H. Islanding Detection Techniques for Grid Integrated Distributed Generation—A Review. Int. J. Renew. Energy Res.
**2019**, 9, 2. [Google Scholar] - Mathworks. Matlab, 2016b; Mathworks: Natick, MA, USA, 2016. [Google Scholar]
- Prakash, D.B.; Lakshminarayana, C. Multiple DG placements in distribution system for power loss reduction using PSO Algorithm. Procedia Technol.
**2016**, 25, 785–792. [Google Scholar] [CrossRef][Green Version] - Pottukkannan, B.; Suvarchala, K.; Muthukannan, P.; Thangaraj, Y. Optimal Allocation of Renewable Distributed Generation in Radial Distribution Network. J. Adv. Res. Dyn. Control. Syst.
**2018**, 10, 11. [Google Scholar] - Jamil, M.R.; Sun, Y.; Faisal, A.N.; Haes, A.H.; Siano, P.; Shafie-khah, M. A novel combined evolutionary algorithm for optimal planning of distributed generators in radial distribution systems. Appl. Sci.
**2019**, 9, 3394. [Google Scholar] [CrossRef][Green Version] - Fang, X.; Li, F.; Wei, Y.; Azim, R.; Xu, Y. Reactive power planning under high penetration of wind energy using Benders decomposition. IET Gener. Transm. Distrib.
**2015**, 9, 1835–1844. [Google Scholar] [CrossRef]

**Figure 1.**Flowchart using v&f index variation method for islanding detection with reconfiguration and reliability evaluation.

**Figure 3.**Voltage and frequency values. (

**a**) Values (Voltage)- 33 bus system. (

**b**) Values (Frequency)- 33 bus system.

**Figure 6.**Voltage and frequency values. (

**a**) Values (Voltage)-118 bus system. (

**b**) Values (Frequency)-118 bus system.

Variables [24] | Ratings |
---|---|

The Maximum Net Power Output (MNPO) current, ${I}_{MNPO}$ | 4.76 A |

The Maximum Net Power Output (MNPO) voltage, ${V}_{MNPO}$ | 17.32 V |

The voltage coefficient, ${C}_{volt}$ | 14.40 mV/${}^{\circ}$C |

Optimal temperature, ${T}_{oper}$ | 43 ${}^{\circ}$C |

The current coefficient, ${K}_{curnt}$ | 1.22 mA/${}^{\circ}$C |

Open circuit voltage, ${V}_{opec}$ | 21.98 V |

Short circuit current, ${I}_{Shcc}$ | 5.32 A |

Variables [24] | Ratings |
---|---|

Power (Rated), ${W}_{rpow}$ | 0.5 MW |

Rated speed, ${S}_{rat}$ | 13 m/s |

Speed (cut in), ${C}_{in}^{sp}$ | 3 m/s |

Speed (cut out), ${C}_{out}^{sp}$ | 25 m/s |

Variables [25] | Ratings |
---|---|

Hydraulic efficiency, ${\u03f5}_{Hy}$ | 75.1% |

Density, $\varrho $ | 1000 Kg/m${}^{3}$ |

Effective pressure, ${P}_{he}$ | 2.25 m |

acceleration, ${g}_{ac}$ | 9.81 m/s${}^{2}$ |

Variables | Ratings (33 Bus System) | Ratings (118 Bus System) |
---|---|---|

${M}_{1}$ and ${M}_{2}$—v&f index and threshold limits | 0.09684 and 0.10504 | 0.099243 and 0.2432 |

${S}_{1}$ and ${S}_{2}$—The phase voltage related to time, frequency and voltage | 1.5925 and 1.226 | 1.6251 and 1.426 |

${P}_{lo\left(n\right)}$—(Real power) difference between first bus to next bus | 7.2 kW | 9.3 kW |

${P}_{alo\left(n\right)}$—Actual load | 20 kW | 23 kW |

${N}_{smpl}$—Samples (Range) | 3335 | 3335 |

${V}_{operating\left(N\right)}$—Operating voltage new | 11.66 kV | 9 kV |

${V}_{operating}$—Operating bus voltage | 0.995 kV | 0.997 kV |

${b}_{V}$—Voltage (base) | 12.66 kV | 11 kv |

${f}_{ch}$—Change in (f)-frequency | 0.36 Hz | 0.39 Hz |

${V}_{ch}$—Change in voltage | 1.226 kV | 1.121 kV |

${D}_{fr}$—Calculated frequency | 59.64 Hz | 59.61 Hz |

n—Number of buses | 33 | 118 |

DGs | Buses | Islanding Detection | ||||||||
---|---|---|---|---|---|---|---|---|---|---|

Voltage Based Method [26] | Frequency Based Method [27] | Proposed Passive Method (Simultaneous Measurement of v&f Variation) | ||||||||

Islanded Bus No | No of Buses Islanded | Time of Detection (Seconds) | Islanded Bus No | No of Buses Islanded | Time of Detection (Seconds) | Islanded Bus No | No of Buses Islanded | Time of Detection (Seconds) | ||

PV | 14, 24, 29 | 24, 29 | 7 | 1.29 | 14, 24, 29 | 10 | 1.95 | 24 | 2 | 1.02 |

Wind | 14, 30 | 14, 30 | 9 | 0.99 | 14, 30 | 9 | 0.98 | 14 | 5 | 0.75 |

Hydro | 13, 24, 30 | 13, 30 | 10 | 0.82 | 24, 30 | 6 | 0.65 | 24 | 2 | 0.60 |

PV-Hydro | 13, 14, 24, 29, 30 | 14, 24, 30 | 11 | 1.054 | 13, 29 | 11 | 1.032 | 24 | 2 | 0.75 |

PV-Wind | 14, 24, 29, 30 | 14, 24, 30 | 11 | 0.62 | 14, 30 | 9 | 0.88 | 14 | 5 | 0.58 |

Wind-Hydro | 31, 14, 24, 30 | 14, 24, 30 | 11 | 1.98 | 14, 30 | 9 | 1.99 | 24 | 2 | 0.75 |

DGs | Buses | Islanding Detection | ||||||||
---|---|---|---|---|---|---|---|---|---|---|

Voltage Based Method [26] | Frequency Based Method [27] | Proposed Passive Method (Simultaneous Measurement of v&f Variation) | ||||||||

Islanded Bus No | No of Buses Islanded | Time of Detection (Seconds) | Islanded Bus No | No of Buses Islanded | Time of Detection (Seconds) | Islanded Bus No | No of Buses Islanded | Time of Detection (Seconds) | ||

PV | 20, 39, 47, 73, 80, 90, 110 | 47, 80 | 14 | 1.39 | 80, 110 | 10 | 1.59 | 110 | 4 | 1.25 |

Wind | 5, 82, 86 | 5, 82, 86 | 12 | 1.75 | 5, 86 | 8 | 1.32 | 5 | 5 | 1.30 |

Hydro | 39, 47, 110 | 39, 47, 110 | 20 | 1.55 | 39, 110 | 12 | 1.55 | 110 | 4 | 1.50 |

PV-Hydro | 20, 80, 90, 110 | 80, 110 | 10 | 1.92 | 80, 110 | 10 | 1.99 | 110 | 4 | 1.79 |

PV-Wind | 5, 39, 44, 47, 82 | 5, 39, 82 | 22 | 0.59 | 5, 82 | 9 | 0.75 | 5 | 5 | 0.55 |

Wind-Hydro | 74, 82, 86, 110 | 86, 110 | 7 | 1.99 | 86, 110 | 7 | 0.99 | 110 | 4 | 0.93 |

33 Bus System | Tie-Switches | Voltage Based Method [26] | Frequency Based Method [27] | Proposed Passive Method (Simultaneous Measurement of v&f Variation) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

ENS | AENS | SAIDI | SAIFI | ASAI | ENS | AENS | SAIDI | SAIFI | ASAI | ENS | AENS | SAIDI | SAIFI | ASAI | |||

Base case | 33, 34, 35, 36, 37 | 27,622.03 | 1315.33 | 0.74 | 3.07 | 1.94 | 23508.5 | 1175.4 | 0.90 | 4.0495 | 1.938 | 4757.41 | 182.977 | 0.35 | 0.945 | 1.714 | |

Reconfiguration (PSO) | PV | 7, 9, 14, 32, 37 | 23,622.03 | 1115.33 | 0.65 | 2.05 | 1.74 | 20508.5 | 975.4 | 0.75 | 3.0295 | 1.638 | 4037.41 | 165.977 | 0.30 | 0.545 | 1.310 |

Hydro | 7, 9, 14, 28, 32 | 23,544.01 | 1055.21 | 0.63 | 2.03 | 1.71 | 20495.3 | 972.1 | 0.72 | 3.0012 | 1.634 | 4021.32 | 162.877 | 0.27 | 0.524 | 1.312 | |

PV-Hydro | 7, 9, 14, 28, 32 | 23,324.03 | 1032.01 | 0.61 | 2.01 | 1.69 | 20325.1 | 970.3 | 0.71 | 2.9911 | 1.532 | 4002.11 | 160.677 | 0.23 | 0.444 | 1.112 | |

Wind-Hydro | 7, 9, 14, 32, 37 | 22,122.13 | 1011.09 | 0.57 | 1.98 | 1.57 | 20100.5 | 960.5 | 0.69 | 2.1121 | 1.501 | 3990.02 | 158.070 | 0.19 | 0.381 | 1.010 |

118 Bus System | Voltage Based Method [26] | Frequency Based Method [27] | Proposed Passive Method (Simultaneous Measurement of v&f Variation) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

ENS | AENS | SAIDI | SAIFI | ASAI | ENS | AENS | SAIDI | SAIFI | ASAI | ENS | AENS | SAIDI | SAIFI | ASAI | ||

Basecase | 29,951.8 | 683.16 | 0.37 | 3.51 | 1.94 | 29,532.3 | 641.5 | 0.29 | 3.47 | 1.90 | 18,257.15 | 279.64 | 0.19 | 0.14 | 1.29 | |

Reconfiguration (PSO) | PV | 28,341.9 | 579.36 | 0.35 | 3.20 | 1.74 | 28,231.3 | 582.5 | 0.27 | 3.21 | 1.64 | 18,157.14 | 219.64 | 0.13 | 0.11 | 1.25 |

Hydro | 25,620.03 | 572.33 | 0.29 | 2.97 | 1.62 | 25,422.3 | 593.3 | 0.23 | 2.99 | 1.52 | 16,727.3 | 167.97 | 0.10 | 0.09 | 1.21 | |

PV-Hydro | 20,142.13 | 553.21 | 0.25 | 2.96 | 1.59 | 20,025.1 | 480.3 | 0.21 | 2.97 | 1.50 | 8102.11 | 163.677 | 0.07 | 0.06 | 1.09 | |

Wind-Hydro | 20,002.01 | 551.01 | 0.23 | 2.16 | 1.56 | 20,000.1 | 477.2 | 0.20 | 2.86 | 1.49 | 8011.21 | 149.544 | 0.04 | 0.03 | 1.06 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ramachandradurai, S.; Krishnan, N.; Sharma, G.; Bokoro, P.N. Islanding Detection with Reduced Non-Detection Zones and Restoration by Reconfiguration. *Energies* **2023**, *16*, 3035.
https://doi.org/10.3390/en16073035

**AMA Style**

Ramachandradurai S, Krishnan N, Sharma G, Bokoro PN. Islanding Detection with Reduced Non-Detection Zones and Restoration by Reconfiguration. *Energies*. 2023; 16(7):3035.
https://doi.org/10.3390/en16073035

**Chicago/Turabian Style**

Ramachandradurai, Sowmya, Narayanan Krishnan, Gulshan Sharma, and Pitshou N. Bokoro. 2023. "Islanding Detection with Reduced Non-Detection Zones and Restoration by Reconfiguration" *Energies* 16, no. 7: 3035.
https://doi.org/10.3390/en16073035