The 20th Anniversary of Pharmaceuticals—How Artificial Intelligence Is Reshaping Pharmaceuticals Technology

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Pharmaceutical Technology".

Deadline for manuscript submissions: 20 June 2024 | Viewed by 6426

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
INSERM (French National Institute of Health and Medical Research) U1026, The Laboratory of the Bioengineering of Tissues (BioTis), University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux, France
Interests: photodynamic therapy; cancer; clinical evaluation; photosensitizer; dosimetry; fluorescencer; Dosimetry; fluorescence
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As Editor-in-Chief of the Section Pharmaceutical Technology of Pharmaceuticals, I am pleased to invite you to submit high-quality and relevant manuscripts on research activities in pharmaceutical technology for this Special Issue entitled “The 20th Anniversary of Pharmaceuticals—Recent Advances in Drug-Delivery Systems”. All research will be included in a book dedicated to the 20th anniversary of our journal. Manuscripts focusing on all the different main fields of pharmaceutical technology are welcome: drug-delivery strategies, drug analysis, process technology, innovative instrumentation, drug manufacturing, management and analysis of data, and test and quality control research, artificial intelligence.

Prof. Dr. Serge Mordon
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drug delivery
  • drug analysis
  • pharmaceutical technology
  • controlled release and sustained release
  • formula design
  • artificial intelligence

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 11040 KiB  
Article
Assessment of Some Unsymmetrical Porphyrins as Promising Molecules for Photodynamic Therapy of Cutaneous Disorders
by Andreea Mihaela Burloiu, Gina Manda, Dumitru Lupuliasa, Radu Petre Socoteanu, Dragos Paul Mihai, Ionela Victoria Neagoe, Laurentiu-Iliuta Anghelache, Mihaela Surcel, Mihai Anastasescu, Laura Olariu, Cerasela Elena Gîrd, Stefania Felicia Barbuceanu, Luis Filipe Vieira Ferreira and Rica Boscencu
Pharmaceuticals 2024, 17(1), 62; https://doi.org/10.3390/ph17010062 - 29 Dec 2023
Viewed by 1052
Abstract
In order to select for further development novel photosensitizers for photodynamic therapy in cutaneous disorders, three unsymmetrical porphyrins, namely 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.2), 5-(2-hydroxy-5-methoxyphenyl)-10,15,20-tris-(4-carboxymethylphenyl) porphyrin (P3.2), and 5-(2,4-dihydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P4.2), along with their fully symmetrical counterparts 5,10,15,20-tetrakis-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.1) and 5,10,15,20-tetrakis-(4-carboxymethylphenyl) porphyrin (P3.1) were [...] Read more.
In order to select for further development novel photosensitizers for photodynamic therapy in cutaneous disorders, three unsymmetrical porphyrins, namely 5-(4-hydroxy-3-methoxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.2), 5-(2-hydroxy-5-methoxyphenyl)-10,15,20-tris-(4-carboxymethylphenyl) porphyrin (P3.2), and 5-(2,4-dihydroxyphenyl)-10,15,20-tris-(4-acetoxy-3-methoxyphenyl) porphyrin (P4.2), along with their fully symmetrical counterparts 5,10,15,20-tetrakis-(4-acetoxy-3-methoxyphenyl) porphyrin (P2.1) and 5,10,15,20-tetrakis-(4-carboxymethylphenyl) porphyrin (P3.1) were comparatively evaluated. The absorption and fluorescence properties, as well as atomic force microscopy measurements were performed to evaluate the photophysical characteristics as well as morphological and textural properties of the mentioned porphyrins. The cellular uptake of compounds and the effect of photodynamic therapy on the viability, proliferation, and necrosis of human HaCaT keratinocytes, human Hs27 skin fibroblasts, human skin SCL II squamous cell carcinoma, and B16F10 melanoma cells were assessed in vitro, in correlation with the structural and photophysical properties of the investigated porphyrins, and with the predictions regarding diffusion through cell membranes and ADMET properties. All samples were found to be isotropic and self-similar, with slightly different degrees of aggregability, had a relatively low predicted toxicity (class V), and a predicted long half-life after systemic administration. The in vitro study performed on non-malignant and malignant skin-relevant cells highlighted that the asymmetric P2.2 porphyrin qualified among the five investigated porphyrins to be a promising photosensitizer candidate for PDT in skin disorders. P2.2 was shown to accumulate well within cells, and induced by PDT a massive decrease in the number of metabolically active skin cells, partly due to cell death by necrosis. P2.2 had in this respect a better behavior than the symmetric P.2.1 compound and the related asymmetric compound P4.2. The strong action of P2.2-mediated PDT on normal skin cells might be an important drawback for further development of this compound. Meanwhile, the P3.1 and P3.2 compounds were not able to accumulate well in skin cells, and did not elicit significant PDT in vitro. Taken together, our experiments suggest that P2.2 can be a promising candidate for the development of novel photosensitizers for PDT in skin disorders. Full article
Show Figures

Figure 1

18 pages, 18183 KiB  
Article
Biological Potential and Bioaccessibility of Encapsulated Curcumin into Cetyltrimethylammonium Bromide Modified Cellulose Nanocrystals
by Francisca Casanova, Carla F. Pereira, Alessandra B. Ribeiro, Pedro M. Castro, Ricardo Freixo, Eva Martins, Diana Tavares-Valente, João C. Fernandes, Manuela E. Pintado and Óscar L. Ramos
Pharmaceuticals 2023, 16(12), 1737; https://doi.org/10.3390/ph16121737 - 17 Dec 2023
Viewed by 1065
Abstract
Curcumin is a natural phenolic compound with important biological functions. Despite its demonstrated efficacy in vitro, curcumin biological activities in vivo are dependent on its bioaccessibility and bioavailability, which have been highlighted as a crucial challenge. Cetyltrimethylammonium bromide-modified cellulose nanocrystals (CNC-CTAB) have been [...] Read more.
Curcumin is a natural phenolic compound with important biological functions. Despite its demonstrated efficacy in vitro, curcumin biological activities in vivo are dependent on its bioaccessibility and bioavailability, which have been highlighted as a crucial challenge. Cetyltrimethylammonium bromide-modified cellulose nanocrystals (CNC-CTAB) have been shown to be effective in curcumin encapsulation, as they have the potential to enhance biological outcomes. This study evaluated the biological effects of curcumin encapsulated within CNC-CTAB structures, namely its antioxidant, anti-inflammatory and antimicrobial properties, as well as the release profile under digestion conditions and intestinal permeability. Encapsulated curcumin demonstrated antioxidant and anti-inflammatory properties, effectively reducing reactive oxygen species and cytokine production by intestinal cells. The delivery system exhibited antimicrobial properties against Campylobacter jejuni bacteria, further suggesting its potential in mitigating intestinal inflammation. The system showed the ability to protect curcumin from degradation and facilitate its interaction with the intestinal epithelium, highlighting the potential of CNC-CTAB as carrier to enhance curcumin intestinal biological functions. Full article
Show Figures

Figure 1

12 pages, 2366 KiB  
Article
Comparing the Performance of Raman and Near-Infrared Imaging in the Prediction of the In Vitro Dissolution Profile of Extended-Release Tablets Based on Artificial Neural Networks
by Dorián László Galata, Szilveszter Gergely, Rebeka Nagy, János Slezsák, Ferenc Ronkay, Zsombor Kristóf Nagy and Attila Farkas
Pharmaceuticals 2023, 16(9), 1243; https://doi.org/10.3390/ph16091243 - 01 Sep 2023
Cited by 2 | Viewed by 1025
Abstract
In this work, the performance of two fast chemical imaging techniques, Raman and near-infrared (NIR) imaging is compared by utilizing these methods to predict the rate of drug release from sustained-release tablets. Sustained release is provided by adding hydroxypropyl methylcellulose (HPMC), as its [...] Read more.
In this work, the performance of two fast chemical imaging techniques, Raman and near-infrared (NIR) imaging is compared by utilizing these methods to predict the rate of drug release from sustained-release tablets. Sustained release is provided by adding hydroxypropyl methylcellulose (HPMC), as its concentration and particle size determine the dissolution rate of the drug. The chemical images were processed using classical least squares; afterwards, a convolutional neural network was applied to extract information regarding the particle size of HPMC. The chemical images were reduced to an average HPMC concentration and a predicted particle size value; these were used as inputs in an artificial neural network with a single hidden layer to predict the dissolution profile of the tablets. Both NIR and Raman imaging yielded accurate predictions. As the instrumentation of NIR imaging allows faster measurements than Raman imaging, this technique is a better candidate for implementing a real-time technique. The introduction of chemical imaging in the routine quality control of pharmaceutical products would profoundly change quality assurance in the pharmaceutical industry. Full article
Show Figures

Figure 1

Review

Jump to: Research

22 pages, 3781 KiB  
Review
A Bibliometric Analysis of 3D Printing in Personalized Medicine Research from 2012 to 2022
by Aile Xue, Wenjie Li, Wenxiu Tian, Minyue Zheng, Lan Shen and Yanlong Hong
Pharmaceuticals 2023, 16(11), 1521; https://doi.org/10.3390/ph16111521 - 26 Oct 2023
Viewed by 1896
Abstract
In recent years, the 3D printing of personalized drug formulations has attracted the attention of medical practitioners and academics. However, there is a lack of data-based analyses on the hotspots and trends of research in this field. Therefore, in this study, we performed [...] Read more.
In recent years, the 3D printing of personalized drug formulations has attracted the attention of medical practitioners and academics. However, there is a lack of data-based analyses on the hotspots and trends of research in this field. Therefore, in this study, we performed a bibliometric analysis to summarize the 3D printing research in the field of personalized drug formulation from 2012 to 2022. This study was based on the Web of Science Core Collection Database, and a total of 442 eligible publications were screened. Using VOSviewer and online websites for bibliometric analysis and scientific mapping, it was observed that annual publications have shown a significant growth trend over the last decade. The United Kingdom and the United States, which account for 45.5% of the total number of publications, are the main drivers of this field. The International Journal of Pharmaceutics and University College London are the most prolific and cited journals and institutions. The researchers with the most contributions are Basit, Abdul W. and Goyanes Alvaro. The keyword analysis concluded that the current research hotspots are “drug release” and “drug dosage forms”. In conclusion, 3D printing has broad application prospects in the field of personalized drugs, which will bring the pharmaceutical industry into a new era of innovation. Full article
Show Figures

Figure 1

Back to TopTop