Topical Collection "Magnetic Nanostructured Materials: Synthesis, Characterization and Their Cutting-Edge Applications"

A topical collection in Nanomaterials (ISSN 2079-4991). This collection belongs to the section "Synthesis, Interfaces and Nanostructures".

Viewed by 4479

Editors

Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, “Demokritos”, 15310 Athens, Greece
Interests: magnetic colloidal particles; liquid phase synthesis; L10 chemical ordering; FePt; CoPt; Fe3O4; nanomagnetism; biomedical applications of magnetic nanoparticles; catalysis
Special Issues, Collections and Topics in MDPI journals
Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, “Demokritos”, 15310 Athens, Greece
Interests: Nanoparticles synthesis; Fe3O4; γ-Fe2O3; Biomedical; environmental and catalytic applications of magnetic nanomaterials

Topical Collection Information

In the early 1930s, Frenkel and Dorfman predicted that a particle of ferromagnetic material with a size below a critical limit would possess a single magnetic domain within which magnetic moments of free electrons are aligned in parallel. Since then, there has been a continuously increasing interest in the scientific community for the development and study of magnetic materials in the nanoscale size regime. This enormous interest is mainly due to their prospective applications in many technological areas, including magnetic storage devices, ferrofluids, magnetic resonance imaging, magnetic carriers, magnetic hyperthermia environmental remedation protection, energy and catalysis. Recently, there has additionally been a great interest for the synthesis of 2D magnetic materials, which seem to offer potential for significant improvements in spintronic applications.

The present collection is aimed at presenting the current state-of-the-art in the synthesis of magnetic nanomaterials in both particles and thin-layered forms, as well as their advanced characterization and niche applications. In this collection, we are inviting contributions from leading groups in the field aiming to present a comprehensive view of the progress in this discipline.

Dr. Vasileios Tzitzios
Dr. Georgia Basina
Collection Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • magnetic nanomaterials
  • colloidal particles
  • thin films
  • synthesis
  • nanomagnetism
  • 2D magnetism
  • magnetic characterization
  • composite magnets
  • L10 ordering
  • nanomagnets applications

Published Papers (3 papers)

2023

Jump to: 2022

Article
Self-Heating Flower-like Nanoconstructs with Limited Incorporation of Yttrium in Maghemite: Effect of Chemical Composition on Heating Efficiency, Cytotoxicity and Genotoxicity
Nanomaterials 2023, 13(5), 870; https://doi.org/10.3390/nano13050870 - 26 Feb 2023
Viewed by 1042
Abstract
Partial cation substitution can significantly change the physical properties of parent compounds. By controlling the chemical composition and knowing the mutual relationship between composition and physical properties, it is possible to tailor the properties of materials to those that are superior for desired [...] Read more.
Partial cation substitution can significantly change the physical properties of parent compounds. By controlling the chemical composition and knowing the mutual relationship between composition and physical properties, it is possible to tailor the properties of materials to those that are superior for desired technological application. Using the polyol synthesis procedure, a series of yttrium-substituted iron oxide nanoconstructs, γ-Fe2−xYxO3 (YIONs), was prepared. It was found that Y3+ could substitute Fe3+ in the crystal structures of maghemite (γ-Fe2O3) up to a limited concentration of ~1.5% (γ-Fe1.969Y0.031O3). Analysis of TEM micrographs showed that crystallites or particles were aggregated in flower-like structures with diameters from 53.7 ± 6.2 nm to 97.3 ± 37.0 nm, depending on yttrium concentration. To be investigated for potential applications as magnetic hyperthermia agents, YIONs were tested twice: their heating efficiency was tested and their toxicity was investigated. The Specific Absorption Rate (SAR) values were in the range of 32.6 W/g to 513 W/g and significantly decreased with increased yttrium concentration in the samples. Intrinsic loss power (ILP) for γ-Fe2O3 and γ-Fe1.995Y0.005O3 were ~8–9 nH·m2/Kg, which pointed to their excellent heating efficiency. IC50 values of investigated samples against cancer (HeLa) and normal (MRC-5) cells decreased with increased yttrium concentration and were higher than ~300 μg/mL. The samples of γ-Fe2−xYxO3 did not show a genotoxic effect. The results of toxicity studies show that YIONs are suitable for further in vitro/in vivo studies toward to their potential medical applications, while results of heat generation point to their potential use in magnetic hyperthermia cancer treatment or use as self-heating systems for other technological applications such as catalysis. Full article
Show Figures

Figure 1

Article
Exploring the Magnetic and Electrocatalytic Properties of Amorphous MnB Nanoflakes
Nanomaterials 2023, 13(2), 300; https://doi.org/10.3390/nano13020300 - 11 Jan 2023
Viewed by 932
Abstract
Two-dimensional (2D) metal borides are a class of ceramic materials with diverse structural and topological properties. These diverse material properties of metal borides are what forms the basis of their interdisciplinarity and their applicability in various research fields. In this study, we highlight [...] Read more.
Two-dimensional (2D) metal borides are a class of ceramic materials with diverse structural and topological properties. These diverse material properties of metal borides are what forms the basis of their interdisciplinarity and their applicability in various research fields. In this study, we highlight which fundamental and practical parameters need to be taken into consideration when designing nanomaterials for specific applications. A simple one-pot chemical reduction method was applied for the synthesis of manganese mono-boride nanoflakes at room temperature. How the specific surface area and boron-content of the as-synthesized manganese mono-boride nanoflakes influence their magnetic and electrocatalytic properties is reported. The sample with the highest specific surface area and boron content demonstrated the best magnetic and electrocatalytic properties in the HER. Whereas the sample with the lowest specific surface area and boron content exhibited the best electric conductivity and electrocatalytic properties in the OER. Full article
Show Figures

Figure 1

2022

Jump to: 2023

Article
Sublayer-Enhanced Growth of Highly Ordered Mn5Ge3 Thin Film on Si(111)
Nanomaterials 2022, 12(24), 4365; https://doi.org/10.3390/nano12244365 - 07 Dec 2022
Viewed by 1212
Abstract
Mn5Ge3 epitaxial thin films previously grown mainly on Ge substrate have been synthesized on Si(111) using the co-deposition of Mn and Ge at a temperature of 390 °C. RMS roughness decreases by almost a factor of two in the transition [...] Read more.
Mn5Ge3 epitaxial thin films previously grown mainly on Ge substrate have been synthesized on Si(111) using the co-deposition of Mn and Ge at a temperature of 390 °C. RMS roughness decreases by almost a factor of two in the transition from a completely polycrystalline to a highly ordered growth mode. This mode has been stabilized by changing the ratio of the Mn and Ge evaporation rate from the stoichiometric in the buffer layer. Highly ordered Mn5Ge3 film has two azimuthal crystallite orientations, namely Mn5Ge3 (001) [1-10] and Mn5Ge3 (001) [010] matching Si(111)[-110]. Lattice parameters derived a (7.112(1) Å) and c (5.027(1) Å) are close to the bulk values. Considering all structural data, we proposed a double buffer layer model suggesting that all layers have identical crystal structure with P6₃/mcm symmetry similar to Mn5Ge3, but orientation and level of Si concentration are different, which eliminates 8% lattice mismatch between Si and Mn5Ge3 film. Mn5Ge3 film on Si(111) demonstrates no difference in magnetic properties compared to other reported films. TC is about 300 K, which implies no significant excess of Mn or Si doping. It means that the buffer layer not only serves as a platform for the growth of the relaxed Mn5Ge3 film, but is also a good diffusion barrier. Full article
Show Figures

Figure 1

Back to TopTop