molecules-logo

Journal Browser

Journal Browser

Extracts from Plants: Bioactivity, Constituents and Molecular Docking Study

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 16010

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pharmaceutical Sciences, School of Pharmacy, Marshall University, Huntington, WV 25701, USA
Interests: pharmaceutical sciences; cell biology; molecular biology; cancer biology; drug resistance; chemoprevention

E-Mail Website
Guest Editor
Pharmacology Department, The National University of Malaysia, Kuala Lumpur, Malaysia
Interests: natural product development; phytomedicine; pharmacoepidemiology; clinical pharmacology; addiction pharmacology; bone metabolism

E-Mail Website
Guest Editor
Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
Interests: phytomedicine; functional food; nutraceutical; natural product development for diabetes; cancer; hyperlipidemia; fatty liver; immunity

Special Issue Information

Dear Colleagues,

Extracts from plants have been a source of medicinal products for thousands of years and have remained an important basis for modern drug discovery. We share the world with nearly 400,000 plant species, but only around 30,000 of these species have at least one documented use in food, medicine, poison, animal feed, building materials, etc. Less than 20,000 (5%) species are known for medicinal purposes. The potential for new chemical or pharmaceutical property discovery, or new innovative use of existing known extracts, is incalculable. These pharmaceutical discoveries have been dominated by the isolation of bioactive compounds in plants. However, in recent decades, the potential of multiple synergistic compounds in a plant working together to produce the desired pharmaceutical effect has ignited the use of standardized raw extracts in experimentation. Further identification of constituents and molecular docking study should also be continuously pursued. The potential pharmaceutical value of plant extracts must be continuously explored.

The aim of this Special Issue is to bring together scientific evidence to demonstrate the pharmaceutical value of plant extracts via their bioactivity, the identification or discovery of pharmaceutical constituents and molecular docking study. Systematic reviews are also encouraged.  

Dr. Ruhul Amin
Prof. Dr. Isa Naina Mohamed
Prof. Dr. Md Moklesur Rahman Sarker
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • phytomedicine
  • phytochemistry
  • medicinal plants
  • natural products
  • nutraceutical
  • biochemistry
  • plant extract constituents
  • organic chemistry
  • bioactivity
  • plant extract activity
  • molecular docking study
  • bioactive compounds
  • drug discovery
  • nutrition

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 7651 KiB  
Article
Recovery of Polyphenols Using Pressurized Hot Water Extraction (PHWE) from Black Rosehip Followed by Encapsulation for Increased Bioaccessibility and Antioxidant Activity
by Kadriye Nur Kasapoğlu, Evren Demircan, Mine Gültekin-Özgüven, Johanita Kruger, Jan Frank, Ayla Arslaner and Beraat Özçelik
Molecules 2022, 27(20), 6807; https://doi.org/10.3390/molecules27206807 - 11 Oct 2022
Cited by 4 | Viewed by 1633
Abstract
In this work, pressurized hot water extraction (PHWE) of hydrophilic polyphenols from black rosehip fruit was maximized using response surface methodology for simultaneous optimization in terms of extraction yield, total antioxidant capacity, total (poly)phenols, catechin, total monomeric anthocyanins, and cyanidin-3-O-glucoside. Extraction [...] Read more.
In this work, pressurized hot water extraction (PHWE) of hydrophilic polyphenols from black rosehip fruit was maximized using response surface methodology for simultaneous optimization in terms of extraction yield, total antioxidant capacity, total (poly)phenols, catechin, total monomeric anthocyanins, and cyanidin-3-O-glucoside. Extraction parameters, including temperature (X1: 40–80 °C) and the solvent-to-solid ratio (X2: 10–40 mL/g), were investigated as independent variables. Experimentally obtained values were fitted to a second-order polynomial model, and optimal conditions were determined using multiple regression analysis and analysis of variance. The black rosehip extract (BRE) obtained at optimized PHWE conditions was further encapsulated in biopolymer-coated liposomes and spray dried to enhance its processing and digestive stability. After reconstitution, the fabricated particles had an average size of 247–380 nm and a zeta-potential of 15–45 mV. Moreover, encapsulation provided remarkable protection of the phenolics under in vitro gastrointestinal digestion conditions, resulting in up to a 5.6-fold more phenolics in the bioaccessible fraction, which also had 2.9–8.6-fold higher antioxidant activity compared to the nonencapsulated BRE. In conclusion, PHWE in combination with a biopolymer coating is a potent method for the production of stable and safe edible natural extracts for the delivery of (poly)phenolic compounds in food and dietary supplements. Full article
Show Figures

Figure 1

23 pages, 9068 KiB  
Article
Phenolic Constituents from Wendlandia tinctoria var. grandis (Roxb.) DC. Stem Deciphering Pharmacological Potentials against Oxidation, Hyperglycemia, and Diarrhea: Phyto-Pharmacological and Computational Approaches
by Mamtaz Farzana, Md. Jamal Hossain, Ahmed M. El-Shehawi, Md. Al Amin Sikder, Mohammad Sharifur Rahman, Muhammad Abdullah Al-Mansur, Sarah Albogami, Mona M. Elseehy, Arpita Roy, M. Aftab Uddin and Mohammad A. Rashid
Molecules 2022, 27(18), 5957; https://doi.org/10.3390/molecules27185957 - 13 Sep 2022
Cited by 5 | Viewed by 2646
Abstract
Wendlandia tinctoria var. grandis (Roxb.) DC. (Family: Rubiaceae) is a semi-evergreen shrub distributed over tropical and subtropical Asia. The present research intended to explore the pharmacological potential of the stem extract of W. tinctoria, focusing on the antioxidant, hypoglycemic, and antidiarrheal properties, [...] Read more.
Wendlandia tinctoria var. grandis (Roxb.) DC. (Family: Rubiaceae) is a semi-evergreen shrub distributed over tropical and subtropical Asia. The present research intended to explore the pharmacological potential of the stem extract of W. tinctoria, focusing on the antioxidant, hypoglycemic, and antidiarrheal properties, and to isolate various secondary metabolites as mediators of such activities. A total of eight phenolic compounds were isolated from the dichloromethane soluble fraction of the stem extract of this plant, which were characterized by electrospray ionization (ESI) mass spectrometric and 1H NMR spectroscopic data as liquiritigenin (1), naringenin (2), apigenin (3), kaempferol (4), glabridin (5), ferulic acid (6), 4-hydroxybenzoic acid (7), and 4-hydroxybenzaldehyde (8). The dichloromethane soluble fraction exhibited the highest phenolic content (289.87 ± 0.47 mg of GAE/g of dried extract) and the highest scavenging activity (IC50 = 18.83 ± 0.07 µg/mL) against the DPPH free radical. All of the isolated compounds, except 4-hydroxybenzaldehyde, exerted a higher antioxidant effect (IC50 = 6.20 ± 0.10 to 16.11 ± 0.02 μg/mL) than the standard butylated hydroxytoluene (BHT) (IC50 = 17.09 ± 0.01 μg/mL). Significant hypoglycemic and antidiarrheal activities of the methanolic crude extract at both doses (200 mg/kg bw and 400 mg/kg bw) were observed in a time-dependent manner. Furthermore, the computational modeling study supported the current in vitro and in vivo findings, and the isolated constituents had a higher or comparable binding affinity for glutathione reductase and urase oxidase enzymes, glucose transporter 3 (GLUT 3), and kappa-opioid receptor, inferring potential antioxidant, hypoglycemic, and antidiarrheal properties, respectively. This is the first report of all of these phenolic compounds being isolated from this plant species and even the first demonstration of the plant stem extract’s antioxidant, hypoglycemic, and antidiarrheal potentials. According to the current findings, the W. tinctoria stem could be a potential natural remedy for treating oxidative stress, hyperglycemia, and diarrhea. Nevertheless, further extensive investigation is crucial for thorough phytochemical screening and determining the precise mechanisms of action of the plant-derived bioactive metabolites against broad-spectrum molecular targets. Full article
Show Figures

Figure 1

26 pages, 7672 KiB  
Article
Chemical and Pharmacological Profiling of Wrightia coccinea (Roxb. Ex Hornem.) Sims Focusing Antioxidant, Cytotoxic, Antidiarrheal, Hypoglycemic, and Analgesic Properties
by Tabassum Jannat, Md. Jamal Hossain, Ahmed M. El-Shehawi, Md. Ruhul Kuddus, Mohammad A. Rashid, Sarah Albogami, Ibrahim Jafri, Mohamed El-Shazly and Mohammad Rashedul Haque
Molecules 2022, 27(13), 4024; https://doi.org/10.3390/molecules27134024 - 22 Jun 2022
Cited by 13 | Viewed by 3159
Abstract
The aim of the study was to conduct phytochemical and pharmacological investigations of Wrightia coccinea (Roxb. ex Hornem.) Sims via several in vitro, in vivo, and in silico models. A total of four compounds were identified and isolated from the methanol extract of [...] Read more.
The aim of the study was to conduct phytochemical and pharmacological investigations of Wrightia coccinea (Roxb. ex Hornem.) Sims via several in vitro, in vivo, and in silico models. A total of four compounds were identified and isolated from the methanol extract of the bark and the methanol extract of the seed pulp of W. coccinea through successive chromatographic techniques and were characterized as 3β-acetyloxy-olean-12-en-28-ol (1), wrightiadione (2), 22β-hydroxylupeol (3), and β-sitosterol (4) by spectroscopic analysis. The aqueous fraction of the bark and chloroform fraction of the fruits provided the most potent antioxidant capacity (IC50 = 7.22 and 4.5 µg/mL, respectively) in DPPH free radical scavenging assay compared with the standard ascorbic acid (IC50 = 17.45 µg/mL). The methanol bark extract and the methanol fruit coat extract exerted anti-diarrheal activity by inhibiting 74.55 ± 0.67% and 77.78 ± 1.5% (mean ± SEM) of the diarrheal episode in mice, respectively, after four hours of loading the samples. In the hypoglycemic test, the methanol bark extract and the methanol fruit coat extract (400 mg/kg) produced a significant (p < 0.05) reduction in the blood glucose level in mice. Both doses of the plant extracts (200 mg/kg and 400 mg/kg) used in the study induced a significant (p < 0.05) increase in pain reaction time. The in vitro and in vivo findings were supported by the computational studies. The isolated compounds exhibited higher binding affinity compared with the standard drugs towards the active binding sites of glutathione reductase, epidermal growth factor receptor (EGFR), kappa opioid receptor, glucose transporter 3 (GLUT 3), Mu opioid receptor, and cyclooxygenase 2 (COX-2) proteins due to their potent antioxidant, cytotoxic, anti-diarrheal, hypoglycemic, and central and peripheral analgesic properties, respectively. The current findings concluded that W. coccinea might be a potential natural source for managing oxidative stress, diarrhea, hyperglycemia, and pain. Further studies are warranted for extensively phytochemical screening and establishing exact mechanisms of action. Full article
Show Figures

Figure 1

17 pages, 3292 KiB  
Article
Molecular Docking and Molecular Dynamics Studies of Antidiabetic Phenolic Compound Isolated from Leaf Extract of Englerophytum magalismontanum (Sond.) T.D.Penn.
by Oyinlola Oluwunmi Olaokun, Sizakele Annousca Manonga, Muhammad Sulaiman Zubair, Saipul Maulana and Nqobile Monate Mkolo
Molecules 2022, 27(10), 3175; https://doi.org/10.3390/molecules27103175 - 16 May 2022
Cited by 5 | Viewed by 2090
Abstract
Englerophytum magalismontanum, a medicinal plant with ethnopharmacology use, has a dearth of information regarding its antidiabetic properties. This study evaluated the crude methanol leaf extract of E. magalismontanum and its fractions for total phenolic content, antioxidant activity, and digestive enzymes (α-amylase and [...] Read more.
Englerophytum magalismontanum, a medicinal plant with ethnopharmacology use, has a dearth of information regarding its antidiabetic properties. This study evaluated the crude methanol leaf extract of E. magalismontanum and its fractions for total phenolic content, antioxidant activity, and digestive enzymes (α-amylase and α-glucosidase) inhibitory activity using standard methods. The total phenolic content (56.53 ± 1.94 mg GAE/g dry extract) and DPPH Trolox antioxidant equivalent (TAE) (1.51 ± 0.66 µg/mL) of the methanol fraction were the highest among the fractions. The IC50 values of the methanol fraction against α-amylase (10.76 ± 1.33 µg/mL) and α-glucosidase (12.25 ± 1.05 µg/mL) activities were also high. Being the most active, the methanol fraction was subjected to bio-assay guided column chromatography-based enzyme inhibition to obtain a pure compound. The phenolic compound isolated and identified as naringenin inhibited α-amylase and α-glucosidase with IC50 of 5.81 ± 2.14 µg/mL and 4.77 ± 2.99 µg/mL, respectively. This is the first study to isolate naringenin from E. magalismontanum extract. The molecular docking and molecular dynamics studies demonstrated naringenin as a promising lead compound in comparison to acarbose for the treatment of diabetes through the inhibition of α-glucosidase activity. Full article
Show Figures

Figure 1

Review

Jump to: Research

31 pages, 6385 KiB  
Review
Ethnobotanical Uses, Phytochemistry, Toxicology, and Pharmacological Properties of Euphorbia neriifolia Linn. against Infectious Diseases: A Comprehensive Review
by Arifa Sultana, Md. Jamal Hossain, Md. Ruhul Kuddus, Mohammad A. Rashid, Miss Sharmin Zahan, Saikat Mitra, Arpita Roy, Safaet Alam, Md. Moklesur Rahman Sarker and Isa Naina Mohamed
Molecules 2022, 27(14), 4374; https://doi.org/10.3390/molecules27144374 - 08 Jul 2022
Cited by 15 | Viewed by 5031
Abstract
Medicinal plants have considerable potential as antimicrobial agents due to the presence of secondary metabolites. This comprehensive overview aims to summarize the classification, morphology, and ethnobotanical uses of Euphorbia neriifolia L. and its derived phytochemicals with the recent updates on the pharmacological properties [...] Read more.
Medicinal plants have considerable potential as antimicrobial agents due to the presence of secondary metabolites. This comprehensive overview aims to summarize the classification, morphology, and ethnobotanical uses of Euphorbia neriifolia L. and its derived phytochemicals with the recent updates on the pharmacological properties against emerging infectious diseases, mainly focusing on bacterial, viral, fungal, and parasitic infections. The data were collected from electronic databases, including Google Scholar, PubMed, Semantic Scholar, ScienceDirect, and SpringerLink by utilizing several keywords like ‘Euphorbia neriifolia’, ‘phytoconstituents’, ‘traditional uses’, ‘ethnopharmacological uses’, ‘infectious diseases’, ‘molecular mechanisms’, ‘COVID-19’, ‘bacterial infection’, ‘viral infection’, etc. The results related to the antimicrobial actions of these plant extracts and their derived phytochemicals were carefully reviewed and summarized. Euphol, monohydroxy triterpene, nerifoliol, taraxerol, β-amyrin, glut-5-(10)-en-1-one, neriifolione, and cycloartenol are the leading secondary metabolites reported in phytochemical investigations. These chemicals have been shown to possess a wide spectrum of biological functions. Different extracts of E. neriifolia exerted antimicrobial activities against various pathogens to different extents. Moreover, major phytoconstituents present in this plant, such as quercetin, rutin, friedelin, taraxerol, epitaraxerol, taraxeryl acetate, 3β-friedelanol, 3β-acetoxy friedelane, 3β-simiarenol, afzelin, 24-methylene cycloarenol, ingenol triacetate, and β-amyrin, showed significant antimicrobial activities against various pathogens that are responsible for emerging infectious diseases. This plant and the phytoconstituents, such as flavonoids, monoterpenoids, diterpenoids, triterpenoids, and alkaloids, have been found to have significant antimicrobial properties. The current evidence suggests that they might be used as leads in the development of more effective drugs to treat emerging infectious diseases, including the 2019 coronavirus disease (COVID-19). Full article
Show Figures

Figure 1

Back to TopTop