molecules-logo

Journal Browser

Journal Browser

Biological Sample Analysis by Liquid Chromatography II

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Analytical Chemistry".

Deadline for manuscript submissions: closed (31 August 2020) | Viewed by 22392

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

The analysis of biological compounds in biological samples such as blood plasma, urine, and tissue is essential to clarify biological phenomena. The analysis of drug and its metabolites after in vivo administration is also important. Separation is considered one of the most important analytical methods. Chromatographic methods, especially HPLC, appear to be the most common, because the techniques allow for the separation of a quite complicated mixtures of analytes.
In this Special Issue, the contribution of original research and review articles regarding separation techniques using liquid chromatography, which is applied to biological fluids, are welcome.

Dr. Makoto Tsunoda
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • HPLC 
  • Sample preparation 
  • Metabolome 
  • Proteome 
  • Blood
  • Plasma
  • Urine 
  • Bioanalysis 
  • Mass spectrometry

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 6208 KiB  
Article
Exploring the Proteomic Alterations from Untreated and Cryoablation and Irradiation Treated Giant Cell Tumors of Bone Using Liquid-Chromatography Tandem Mass Spectrometry
by Rashmi Madda, Chao-Ming Chen, Cheng-Fong Chen, Jir-You Wang, Po-Kuei Wu and Wei-Ming Chen
Molecules 2020, 25(22), 5355; https://doi.org/10.3390/molecules25225355 - 16 Nov 2020
Cited by 1 | Viewed by 2199
Abstract
Giant cell tumors of bone (GCT) are benign tumors that show a locally aggressive nature and affect bones’ architecture. Recently, cryoablation and irradiation treatments have shown promising results in GCT patients with faster recovery and less recurrence and metastasis. Therefore, it became a [...] Read more.
Giant cell tumors of bone (GCT) are benign tumors that show a locally aggressive nature and affect bones’ architecture. Recently, cryoablation and irradiation treatments have shown promising results in GCT patients with faster recovery and less recurrence and metastasis. Therefore, it became a gold standard surgical treatment for patients. Hence, we have compared GCT-untreated, cryoablation, and irradiation-treated samples to identify protein alterations using high-frequency liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Our label-free quantification analysis revealed a total of 107 proteins (p < 0.01) with 26 up-regulated (< 2-folds to 5-fold), and 81 down-regulated (> 0.1 to 0.5 folds) proteins were identified from GCT-untreated and treated groups. Based on pathway analysis, most of the identified up-regulated proteins involved in critical metabolic functions associated with tumor proliferation, angiogenesis, and metastasis. On the other hand, the down-regulated proteins involved in glycolysis, tumor microenvironment, and apoptosis. The observed higher expressions of matrix metalloproteinase 9 (MMP9) and TGF-beta in the GCT-untreated group associated with bones’ osteolytic process. Interestingly, both the proteins showed reduced expressions after cryoablation treatment, and contrast expressions identified in the irradiation treated group. Therefore, these expressions were confirmed by immunoblot analysis. In addition to these, several glycolytic enzymes, immune markers, extracellular matrix (ECM), and heat shock proteins showed adverse expressions in the GCT-untreated group were identified with favorable regulations after treatment. Therefore, the identified expression profiles will provide a better picture of treatment efficacy and effect on the molecular environment of GCT. Full article
(This article belongs to the Special Issue Biological Sample Analysis by Liquid Chromatography II)
Show Figures

Figure 1

15 pages, 1786 KiB  
Article
Liquid Chromatographic Tandem Mass Spectrometric (LC-MS/MS) Determination of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) in the Yolk of Poultry Eggs in Malaysia
by Atiqah Tahziz, Didi Erwandi Mohamad Haron and Mohd Yusmaidie Aziz
Molecules 2020, 25(10), 2335; https://doi.org/10.3390/molecules25102335 - 16 May 2020
Cited by 10 | Viewed by 4752
Abstract
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are widely used in products, and are known for their water and grease repellent properties. The persistence nature and potential toxicity of these substances have raised substantial concerns about health effects. Regarding humans, food consumption has [...] Read more.
Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are widely used in products, and are known for their water and grease repellent properties. The persistence nature and potential toxicity of these substances have raised substantial concerns about health effects. Regarding humans, food consumption has reportedly been a significant source of exposure for both compounds. Hence, this study was performed to develop and validate an analytical method for PFOS and PFOA in egg yolks using liquid chromatographic tandem mass spectrometry (LC-MS/MS) followed by the determination of concentration of both compounds in the yolk of poultry eggs in Malaysia. A total of 47 poultry egg yolk samples were extracted by a simple protein precipitation technique using acetonitrile. The analytical method was developed using LC-MS/MS and validated based on the Food and Drug Administration (FDA)’s Bioanalytical Method Validation guidelines. The results revealed that PFOS was quantitatively detected in six samples, with the concentration range between 0.5 and 1.01 ng g−1. Among these, five samples were from home-produced chicken eggs, and one sample was from a quail egg. The levels of PFOA in all samples were below the quantifiable limit (<0.1 ng g−1). This indicated that the contamination of PFCs in poultry eggs were mostly attributed to the nature of free foraging animals, which had direct contact with the contaminants in soil and feed. In conclusion, a fast and robust analytical method for analyzing PFOS and PFOA in egg yolk samples using LC-MS/MS was successfully developed and validated. The presence of these emerging contaminants in this study signified widespread pollution in the environment. Full article
(This article belongs to the Special Issue Biological Sample Analysis by Liquid Chromatography II)
Show Figures

Figure 1

9 pages, 1183 KiB  
Article
Analysis of Total Thiols in the Urine of a Cystathionine β-Synthase-Deficient Mouse Model of Homocystinuria Using Hydrophilic Interaction Chromatography
by Chun-Fang Chang, Kenji Hamase and Makoto Tsunoda
Molecules 2020, 25(7), 1735; https://doi.org/10.3390/molecules25071735 - 09 Apr 2020
Cited by 3 | Viewed by 2563
Abstract
Homocysteine and related thiols (cysteine, cysteinylglycine, and glutathione) in the urine of a cystathionine β-synthase (CBS)-deficient mouse model were quantified using hydrophilic interaction chromatography with fluorescence detection. Urine samples were incubated with tris(2-carboxyethyl) phosphine to reduce disulfide bonds into thiols. After deproteinization, thiols [...] Read more.
Homocysteine and related thiols (cysteine, cysteinylglycine, and glutathione) in the urine of a cystathionine β-synthase (CBS)-deficient mouse model were quantified using hydrophilic interaction chromatography with fluorescence detection. Urine samples were incubated with tris(2-carboxyethyl) phosphine to reduce disulfide bonds into thiols. After deproteinization, thiols were fluorescently derivatized with ammonium 7-fluoro-2,1,3-benzoxadiazole-4-sulfonate (SBD-F). Homocysteine, cysteine, cysteinylglycine, and glutathione in mouse urine were analyzed using an amide-type column with a mobile phase of acetonitrile/120 mM ammonium formate buffer (pH 3.0) (81:19). The developed method was well-validated. Thiol concentrations in the urine of CBS-wild type (-WT), -heterozygous (-Hetero), and -knockout (-KO) mice were quantified using the developed method. As expected, total homocysteine concentration in CBS-KO mice was significantly higher than that in CBS-WT and CBS-Hetero mice. The developed method shows promise for diagnoses in preclinical and clinical studies. Full article
(This article belongs to the Special Issue Biological Sample Analysis by Liquid Chromatography II)
Show Figures

Figure 1

18 pages, 1318 KiB  
Article
Validation of an HPLC Method for the Simultaneous Quantification of Metabolic Reaction Products Catalysed by CYP2E1 Enzyme Activity: Inhibitory Effect of Cytochrome P450 Enzyme CYP2E1 by Salicylic Acid in Rat Liver Microsomes
by Hassan Salhab, Declan P. Naughton and James Barker
Molecules 2020, 25(4), 932; https://doi.org/10.3390/molecules25040932 - 19 Feb 2020
Cited by 4 | Viewed by 4638
Abstract
Inhibition of cytochrome P450 (CYP) alters the pharmacokinetic parameters of the drug and causes drug–drug interactions. Salicylic acid been used for the treatment of colorectal cancer (CRC) and chemoprevention in recent decades. Thus, the aim of this study was to examine the in [...] Read more.
Inhibition of cytochrome P450 (CYP) alters the pharmacokinetic parameters of the drug and causes drug–drug interactions. Salicylic acid been used for the treatment of colorectal cancer (CRC) and chemoprevention in recent decades. Thus, the aim of this study was to examine the in vitro inhibitory effect of salicylic acid on CYP2E1 activity in rat liver microsomes (RLMs) using high-performance liquid chromatography (HPLC). High-performance liquid chromatography analysis of a CYP2E1 assay was developed on a reversed phase C18 column (SUPELCO 25 cm × 4.6 mm × 5 µm) at 282 nm using 60% H2O, 25% acetonitrile, and 15% methanol as mobile phase. The CYP2E1 assay showed a good linearity (R2 > 0.999), good reproducibility, intra- and inter-day precision (<15%), acceptable recovery and accuracy (80–120%), and low detection (4.972 µM and 1.997 µM) and quantitation limit values (15.068 µM and 6.052 µM), for chlorzoxazone and 6-hydroxychlorzoxazone, respectively. Salicylic acid acts as a mixed inhibitor (competitive and non-competitive inhibition), with Ki (inhibition constant) = 83.56 ± 2.730 µM and concentration of inhibitor causing 50% inhibition of original enzyme activity (IC50) exceeding 100 µM (IC50 = 167.12 ± 5.460 µM) for CYP2E1 enzyme activity. Salicylic acid in rats would have both low and high potential to cause toxicity and drug interactions with other drugs that are substrates for CYP2E1. Full article
(This article belongs to the Special Issue Biological Sample Analysis by Liquid Chromatography II)
Show Figures

Graphical abstract

10 pages, 2647 KiB  
Article
Transforming of Triptolide into Characteristic Metabolites by the Gut Microbiota
by Ran Peng, Shu-Rong Ma, Jie Fu, Pei Han, Li-Bin Pan, Zheng-Wei Zhang, Hang Yu and Yan Wang
Molecules 2020, 25(3), 606; https://doi.org/10.3390/molecules25030606 - 30 Jan 2020
Cited by 8 | Viewed by 2879
Abstract
The importance of the gut microbiota in drug metabolism, especially in that of nonabsorbable drugs, has become known. The aim of this study was to explore the metabolites of triptolide by the gut microbiota. With high-performance liquid chromatography coupled with tandem mass spectrometry [...] Read more.
The importance of the gut microbiota in drug metabolism, especially in that of nonabsorbable drugs, has become known. The aim of this study was to explore the metabolites of triptolide by the gut microbiota. With high-performance liquid chromatography coupled with tandem mass spectrometry and ion trap time-of-flight multistage mass spectrometry (LC-MS/MS and LC/MSn-IT-TOF), four metabolites of triptolide (M1, M2, M3, and M4) were found in the intestinal contents of rats. M1 and M2, were isomeric monocarbonyl-hydroxyl-substituted metabolites with molecular weights of 390. M3 and M4 were isomeric dehydrogenated metabolites with molecular weights of 356. Among the four metabolites, the dehydrogenated metabolites (M3 and M4) were reported in the gut microbiota for the first time. The metabolic behaviors of triptolide in the gut microbiota and liver microsomes of rats were further compared. The monocarbonyl-hydroxyl-substituted metabolites (M1 and M2) were generated in both systems, and another monohydroxylated metabolite (M5) was found only in the liver microsomes. The combined results suggested that the metabolism of triptolide in the gut microbiota was specific, with two characteristic, dehydrogenated metabolites. This investigation might provide a theoretical basis for the elucidation of the metabolism mechanism of triptolide and guide its proper application in clinical administration. Full article
(This article belongs to the Special Issue Biological Sample Analysis by Liquid Chromatography II)
Show Figures

Figure 1

13 pages, 1460 KiB  
Article
Validation of an HPLC Method for the Simultaneous Quantification of Metabolic Reaction Products Catalysed by CYP2C11 Enzymes in Rat Liver Microsomes: In Vitro Inhibitory Effect of Salicylic Acid on CYP2C11 Enzyme
by Hassan Salhab, Declan P. Naughton and James Barker
Molecules 2019, 24(23), 4294; https://doi.org/10.3390/molecules24234294 - 25 Nov 2019
Cited by 3 | Viewed by 4802
Abstract
The inhibitory effect of new chemical entities on rat liver P450 marker activities was investigated in a functional approach towards drug development. Treatment of colorectal cancer (CRC) and chemoprevention using salicylic acid has gained a lot of attention, mainly in the prevention of [...] Read more.
The inhibitory effect of new chemical entities on rat liver P450 marker activities was investigated in a functional approach towards drug development. Treatment of colorectal cancer (CRC) and chemoprevention using salicylic acid has gained a lot of attention, mainly in the prevention of the onset of colon cancer. Thus, an in vitro inhibitory effect of salicylic acid on rat CYP2C11 activity was examined by using high performance liquid chromatography (HPLC). High performance liquid chromatography analysis of a CYP2C11 assay was developed on a reversed phase C18 column (SUPELCO 25 cm × 4.6 mm × 5 µm) at 243 nm using 32% phosphate buffer (pH 3.36) and 68% methanol as a mobile phase. The CYP2C11 assay showed good linearity for all components (R2 > 0.999). Substrates and metabolites were found to be stable for up to 72 h. Additionally, the method demonstrated good reproducibility, intra- and inter-day precision (<15%), acceptable recovery and accuracy (80%–120%), and low detection (1.3501 µM and 3.2757 µM) and quantitation limit values (4.914 µM and 9.927 µM) for 16α-hydroxytestosterone and testosterone, respectively. Salicylic acid acts reversibly as a noncompetitive (weak) inhibitor with Ki = 84.582 ± 2.67 µM (concentration of inhibitor to cause 50% inhibition of original enzyme activity (IC50) = 82.70 ± 2.67 µM) for CYP2C11 enzyme activity. This indicates a low potential to cause toxicity and drug–drug interactions. Full article
(This article belongs to the Special Issue Biological Sample Analysis by Liquid Chromatography II)
Show Figures

Figure 1

Back to TopTop