molecules-logo

Journal Browser

Journal Browser

Advances in Anti-infective Drug Discovery

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Medicinal Chemistry".

Deadline for manuscript submissions: closed (30 September 2022) | Viewed by 8185

Special Issue Editors


E-Mail Website
Guest Editor
Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
Interests: microfungi; macrofungi; antibacterial activity; antifungal activity; natural products
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković"—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
Interests: antibiofilm activity; mechanisms of activity; antimicrobials; resistant pathogens; natural products
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nowadays, we are witnessing the global emergence of antibiotic resistance, which is urging the need for discoveries of novel antibiotics. Furthermore, during recent decades, we have gained an insight into one of the most important microbial abilities that enhance its resistance: the ability to establish biofilms. The current panel of antimicrobial drugs is mainly inefficient in eliminating these pathogenic groupings.

There is worldwide demand for the discovery of novel molecules with the ability to inhibit the growth of pathogenic microorganisms and at the same time not be toxic to hostile environments. However, despite abundant research in this field, we are still searching for adequate antimicrobial therapies with different products representing an appealing alternative to the currently available antimicrobials.

We invite investigators to contribute original research articles, as well as review articles, that could serve as a step towards the development of novel anti-infective therapeutics. This Special Issue will cover the following topics, including, but not limited to:

  • novel antibacterial and antifungal products;
  • advances in the anti-infective studies of well-known products;
  • drug-resistant pathogens;
  • mechanisms of antimicrobial activities;
  • anti-virulence activities;
  • antibiofilm agents;
  • studies on model organisms for infectious disease.

Dr. Marina Sokovic
Dr. Marija Ivanov
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2551 KiB  
Article
Hesperetin—Between the Ability to Diminish Mono- and Polymicrobial Biofilms and Toxicity
by Tamara Carević, Marina Kostić, Biljana Nikolić, Dejan Stojković, Marina Soković and Marija Ivanov
Molecules 2022, 27(20), 6806; https://doi.org/10.3390/molecules27206806 - 11 Oct 2022
Cited by 4 | Viewed by 1135
Abstract
Hesperetin is the aglycone of citrus flavonoid hesperidin. Due to the limited information regarding hesperetin antimicrobial potential and emerging need for novel antimicrobials, we have studied its antimicrobial activity (microdilution assay), antibiofilm activity with different assays in two models (mono- and polymicrobial biofilm), [...] Read more.
Hesperetin is the aglycone of citrus flavonoid hesperidin. Due to the limited information regarding hesperetin antimicrobial potential and emerging need for novel antimicrobials, we have studied its antimicrobial activity (microdilution assay), antibiofilm activity with different assays in two models (mono- and polymicrobial biofilm), and toxicity (MTT and brine shrimp lethality assays). Hesperetin inhibited growth of all Candida isolates (minimal inhibitory concentration, MIC, 0.165 mg/mL), while it’s inhibitory potential towards Staphylococcus aureus was lower (MIC 4 mg/mL). Hesperetin (0.165 mg/mL) reduced ability of Candida to form biofilms and moderately reduced exopolysaccharide levels in biofilm matrix. Effect on the eradication of 24 h old C. albicans biofilms was promising at 1.320 mg/mL. Inhibition of staphylococcal biofilm formation required higher concentrations of hesperetin (<50% inhibition with MIC 4 mg/mL). Establishment of polymicrobial C. albicans-S. aureus biofilm was significantly inhibited with the lowest examined hesperetin concentration (1 mg/mL) in crystal violet and CFU assays. Hesperetin toxicity was examined towards MRC-5 fibroblasts (IC50 0.340 mg/mL) and in brine shrimp lethality assay (LC50 > 1 mg/mL). Hesperetin is efficient in combating growth and biofilm formation of Candida species. However, its antibacterial application should be further examined due to the cytotoxic effects provoked in the antibacterial concentrations. Full article
(This article belongs to the Special Issue Advances in Anti-infective Drug Discovery)
Show Figures

Figure 1

13 pages, 1490 KiB  
Article
Poly-(lactic-co-glycolic) Acid Nanoparticles Entrapping Pterostilbene for Targeting Aspergillus Section Nigri
by Anastasia Orekhova, Cleofe Palocci, Laura Chronopoulou, Giulia De Angelis, Camilla Badiali, Valerio Petruccelli, Simone D’Angeli, Gabriella Pasqua and Giovanna Simonetti
Molecules 2022, 27(17), 5424; https://doi.org/10.3390/molecules27175424 - 25 Aug 2022
Cited by 4 | Viewed by 1296
Abstract
Poly-(lactic-co-glycolic) acid (PLGA) is a biodegradable, biosafe, and biocompatible copolymer. The Aspergillus section Nigri causes otomycosis localized in the external auditory canal. In this research, Aspergillus brasiliensis, a species belonging to the Nigri section, was tested. Coumarin 6 and pterostilbene [...] Read more.
Poly-(lactic-co-glycolic) acid (PLGA) is a biodegradable, biosafe, and biocompatible copolymer. The Aspergillus section Nigri causes otomycosis localized in the external auditory canal. In this research, Aspergillus brasiliensis, a species belonging to the Nigri section, was tested. Coumarin 6 and pterostilbene loaded in poly-(lactic-co-glycolic) acid nanoparticles (PLGA-coumarin6-NPs and PLGA-PTB-NPs) were tested for fungal cell uptake and antifungal ability against A. brasiliensis biofilm, respectively. Moreover, the activity of PLGA-PTB-NPs in inhibiting the A. brasiliensis infection was tested using Galleria mellonella larvae. The results showed a fluorescence signal, after 50 nm PLGA-coumarin6-NPs treatment, inside A. brasiliensis hyphae and along the entire thickness of the biofilm matrix, which was indicative of an efficient NP uptake. Regarding antifungal activity, a reduction in A. brasiliensis biofilm formation and mature biofilm with PLGA-PTB-NPs has been demonstrated. Moreover, in vivo experiments showed a significant reduction in mortality of infected larvae after injection of PLGA-PTB-NPs compared to free PTB at the same concentration. In conclusion, the PLGA-NPs system can increase the bioavailability of PTB in Aspergillus section Nigri biofilm by overcoming the biofilm matrix barrier and delivering PTB to fungal cells. Full article
(This article belongs to the Special Issue Advances in Anti-infective Drug Discovery)
Show Figures

Graphical abstract

17 pages, 2746 KiB  
Article
Semi-Synthesis of N-Aryl Amide Analogs of Piperine from Piper nigrum and Evaluation of Their Antitrypanosomal, Antimalarial, and Anti-SARS-CoV-2 Main Protease Activities
by Rattanaporn Wansri, Aye Chan Khine Lin, Jutharat Pengon, Sumalee Kamchonwongpaisan, Nitipol Srimongkolpithak, Roonglawan Rattanajak, Patcharin Wilasluck, Peerapon Deetanya, Kittikhun Wangkanont, Kowit Hengphasatporn, Yasuteru Shigeta, Jatupol Liangsakul, Aphinya Suroengrit, Siwaporn Boonyasuppayakorn, Taksina Chuanasa, Wanchai De-eknamkul, Supot Hannongbua, Thanyada Rungrotmongkol and Supakarn Chamni
Molecules 2022, 27(9), 2841; https://doi.org/10.3390/molecules27092841 - 29 Apr 2022
Cited by 9 | Viewed by 2959
Abstract
Piper nigrum, or black pepper, produces piperine, an alkaloid that has diverse pharmacological activities. In this study, N-aryl amide piperine analogs were prepared by semi-synthesis involving the saponification of piperine (1) to yield piperic acid (2) followed [...] Read more.
Piper nigrum, or black pepper, produces piperine, an alkaloid that has diverse pharmacological activities. In this study, N-aryl amide piperine analogs were prepared by semi-synthesis involving the saponification of piperine (1) to yield piperic acid (2) followed by esterification to obtain compounds 3, 4, and 5. The compounds were examined for their antitrypanosomal, antimalarial, and anti-SARS-CoV-2 main protease activities. The new 2,5-dimethoxy-substituted phenyl piperamide 5 exhibited the most robust biological activities with no cytotoxicity against mammalian cell lines, Vero and Vero E6, as compared to the other compounds in this series. Its half-maximal inhibitory concentration (IC50) for antitrypanosomal activity against Trypanosoma brucei rhodesiense was 15.46 ± 3.09 μM, and its antimalarial activity against the 3D7 strain of Plasmodium falciparum was 24.55 ± 1.91 μM, which were fourfold and fivefold more potent, respectively, than the activities of piperine. Interestingly, compound 5 inhibited the activity of 3C-like main protease (3CLPro) toward anti-SARS-CoV-2 activity at the IC50 of 106.9 ± 1.2 μM, which was threefold more potent than the activity of rutin. Docking and molecular dynamic simulation indicated that the potential binding of 5 in the 3CLpro active site had the improved binding interaction and stability. Therefore, new aryl amide analogs of piperine 5 should be investigated further as a promising anti-infective agent against human African trypanosomiasis, malaria, and COVID-19. Full article
(This article belongs to the Special Issue Advances in Anti-infective Drug Discovery)
Show Figures

Figure 1

23 pages, 7994 KiB  
Article
In Silico and Experimental Investigation of the Biological Potential of Some Recently Developed Carprofen Derivatives
by Florea Dumitrascu, Ana-Maria Udrea, Mino R. Caira, Diana Camelia Nuta, Carmen Limban, Mariana Carmen Chifiriuc, Marcela Popa, Coralia Bleotu, Anamaria Hanganu, Denisa Dumitrescu and Speranta Avram
Molecules 2022, 27(9), 2722; https://doi.org/10.3390/molecules27092722 - 23 Apr 2022
Cited by 6 | Viewed by 2154
Abstract
The efficient regioselective bromination and iodination of the nonsteroidal anti-inflammatory drug (NSAID) carprofen were achieved by using bromine and iodine monochloride in glacial acetic acid. The novel halogenated carprofen derivatives were functionalized at the carboxylic group by esterification. The regioselectivity of the halogenation [...] Read more.
The efficient regioselective bromination and iodination of the nonsteroidal anti-inflammatory drug (NSAID) carprofen were achieved by using bromine and iodine monochloride in glacial acetic acid. The novel halogenated carprofen derivatives were functionalized at the carboxylic group by esterification. The regioselectivity of the halogenation reaction was evidenced by NMR spectroscopy and confirmed by X-ray analysis. The compounds were screened for their in vitro antibacterial activity against planktonic cells and also for their anti-biofilm effect, using Gram-positive bacteria (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212) and Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853). The cytotoxic activity of the novel compounds was tested against HeLa cells. The pharmacokinetic and pharmacodynamic profiles of carprofen derivatives, as well as their toxicity, were established by in silico analyses. Full article
(This article belongs to the Special Issue Advances in Anti-infective Drug Discovery)
Show Figures

Figure 1

Back to TopTop