molecules-logo

Journal Browser

Journal Browser

Bioactive Compounds from Natural Resources

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (28 April 2022) | Viewed by 61455

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmaceutical Sciences, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
Interests: essential oil; biological activities; ethnobotany; phytochemistry; chemometrics

Special Issue Information

Dear Colleagues,

Molecules is scheduling a Special Issue dedicated to bioactive compounds from natural resources in 2022. Based on your research activity in this field of natural product chemistry, bioactivities, quality control and isolation of active constituents, I am writing to you to find out if you would consider submitting a review or original research paper to this Special Issue. Molecules is the leading international open access journal of chemistry with an impact factor of 4.41 and published online by MDPI.

Dr. Guy P.P. Kamatou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Quality control
  • Biological activities
  • Essential oil
  • HPLC
  • GC method
  • Chromatography
  • Isolation of active compounds
  • Ethnobotany

Published Papers (16 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 1026 KiB  
Article
nor 3′-Demethoxyisoguaiacin from Larrea tridentata Is a Potential Alternative against Multidrug-Resistant Bacteria Associated with Bovine Mastitis
by Ana Lizet Morales-Ubaldo, Manases Gonzalez-Cortazar, Adrian Zaragoza-Bastida, Martín A. Meza-Nieto, Benjamín Valladares-Carranza, Abdulrahman A. Alsayegh, Gaber El-Saber Batiha and Nallely Rivero-Perez
Molecules 2022, 27(11), 3620; https://doi.org/10.3390/molecules27113620 - 05 Jun 2022
Cited by 6 | Viewed by 2036
Abstract
Bovine mastitis is one of the most common diseases in dairy cows, and it causes significant economic losses in dairy industries worldwide. Gram-positive and Gram-negative bacteria can cause bovine mastitis, and many of them have developed antimicrobial resistance. There is an urgent need [...] Read more.
Bovine mastitis is one of the most common diseases in dairy cows, and it causes significant economic losses in dairy industries worldwide. Gram-positive and Gram-negative bacteria can cause bovine mastitis, and many of them have developed antimicrobial resistance. There is an urgent need for novel therapeutic options to treat the disease. Larrea tridentata-derived compounds represent an important potential alternative treatment. The aim of the present study was to isolate and characterize antibacterial compounds from Larrea tridentata against multidrug-resistant bacteria associated with bovine mastitis. The L. tridentata hydroalcoholic extract (LTHE) exhibited antibacterial activity. The extract was subjected to a bipartition, giving an aqueous fraction (moderate antibacterial activity) and an organic fraction (higher antibacterial activity). Chromatographic separation of the organic fraction enabled us to obtain four active sub-fractions. Chemical analyses through HPLC techniques were conducted for the LTHE, fractions, and sub-fraction Ltc1-F3, from which we isolated two compounds, characterized by 1H and 13C NMR analyses. Compound nor-3 demethoxyisoguaiacin exhibited the best antibacterial activity against the evaluated bacteria (MIC: 0.01–3.12 mg/mL; MBC: 0.02–3.12 mg/mL). The results indicated that nor-3 demethoxyisoguaiacin can be used as an alternative treatment for multidrug-resistant bacteria associated with mastitis. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Graphical abstract

15 pages, 2544 KiB  
Article
Evaluating Tannins and Flavonoids from Traditionally Used Medicinal Plants with Biofilm Inhibitory Effects against MRGN E. coli
by Niclas Neumann, Miriam Honke, Maria Povydysh, Sebastian Guenther and Christian Schulze
Molecules 2022, 27(7), 2284; https://doi.org/10.3390/molecules27072284 - 31 Mar 2022
Cited by 8 | Viewed by 2904
Abstract
In the search for alternative treatment options for infections with multi-resistant germs, traditionally used medicinal plants are currently being examined more intensively. In this study, the antimicrobial and anti-biofilm activities of 14 herbal drugs were investigated. Nine of the tested drugs were traditionally [...] Read more.
In the search for alternative treatment options for infections with multi-resistant germs, traditionally used medicinal plants are currently being examined more intensively. In this study, the antimicrobial and anti-biofilm activities of 14 herbal drugs were investigated. Nine of the tested drugs were traditionally used in Europe for treatment of local infections. For comparison, another five drugs monographed in the European Pharmacopoeia were used. Additionally, the total tannin and flavonoid contents of all tested drugs were analyzed. HPLC fingerprints were recorded to obtain further insights into the components of the extracts. The aim of the study was to identify herbal drugs that might be useable for treatment of infectious diseases, even with multidrug resistant E. coli, and to correlate the antimicrobial activity with the total content of tannins and flavonoids. The agar diffusion test and anti-biofilm assay were used to evaluate the antimicrobial potential of different extracts from the plants. Colorimetric methods (from European Pharmacopeia) were used for determination of total tannins and flavonoids. The direct antimicrobial activity of most of the tested extracts was low to moderate. The anti-biofilm activity was found to be down to 10 µg mL−1 for some extracts. Tannin contents between 2.2% and 10.4% of dry weight and total flavonoid contents between 0.1% and 1.6% were found. Correlation analysis indicates that the antimicrobial and the anti-biofilm activity is significantly (p < 0.05) dependent on tannin content, but not on flavonoid content. The data analysis revealed that tannin-rich herbal drugs inhibit pathogens in different ways. Thus, some of the tested herbal drugs might be useable for local infections with multi-resistant biofilm-forming pathogens. For some of the tested drugs, this is the first report about anti-biofilm activity, as well as total tannin and flavonoid content. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Figure 1

12 pages, 9485 KiB  
Article
GC–MS Analysis and In Vivo and Ex Vivo Antidiarrheal and Antispasmodic Effects of the Methanolic Extract of Acacia nilotica
by Najeeb Ur Rehman, Mohd Nazam Ansari, Wasim Ahmad and Mohd Amir
Molecules 2022, 27(7), 2107; https://doi.org/10.3390/molecules27072107 - 24 Mar 2022
Cited by 4 | Viewed by 2168
Abstract
This present study evaluated and rationalized the medicinal use of the fruit part of Acacia nilotica methanolic extract. The phytochemicals were detected using gas chromatography–mass spectrometry (GC–MS) while the in vivo antidiarrheal test was done using Swiss albino mice. To determine the details [...] Read more.
This present study evaluated and rationalized the medicinal use of the fruit part of Acacia nilotica methanolic extract. The phytochemicals were detected using gas chromatography–mass spectrometry (GC–MS) while the in vivo antidiarrheal test was done using Swiss albino mice. To determine the details of the mechanism(s) involved in the antispasmodic effect, isolated rat ileum was chosen using different ex vivo assays by maintaining a physiological environment. GC–MS results showed that A. nilotica contained pyrogallol as the major polyphenol present (64.04%) in addition to polysaccharides, polyphenol, amino acid, steroids, fatty acid esters, and triterpenoids. In the antidiarrheal experiment, A. nilotica inhibited diarrheal episodes in mice significantly (p < 0.05) by 40% protection of mice at 200 mg/kg, while 80% protection was observed at 400 mg/kg by the orally administered extract. The highest antidiarrheal effect was observed with loperamide (p < 0.01), used as a control drug. In the ex vivo experiments, A. nilotica inhibited completely in increasing concentrations (0.3 to 10 mg/mL) the carbachol (CCh; 1 µM) and high K+ (80 mM)-evoked spasms in ileum tissues at equal potencies (p > 0.05), similar to papaverine, a dual inhibitor of the phosphodiesterase enzyme (PDE) and Ca++ channels. The dual inhibitory-like effects of A. nilotica on PDE and Ca++ were further validated when A. nilotica extract (1 and 3 mg/mL)-pre-incubated ileum tissues potentiated and shifted isoprenaline relaxation curves towards lower doses (leftward), similar to papaverine, thus confirming the PDE inhibitory-like mechanism whereas its CCB-like effect of the extract was confirmed at 3 and 5 mg/mL by non-specific inhibition of CaCl2-mediated concentration response curves towards the right with suppression of the maximum peaks, similar to verapamil, used as standard CCB. Thus, this study characterized the chemical composition and provides mechanistic support for medicinal use of A. nilotica in diarrheal and hyperactive gut motility disorders. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Figure 1

13 pages, 1480 KiB  
Article
Monoterpene Indole Alkaloids from the Aerial Parts of Rhazya stricta Induce Cytotoxicity and Apoptosis in Human Adenocarcinoma Cells
by Zainab H. Abdul-Hameed, Nahed O. Bawakid, Hajer S. Alorfi, Tariq R. Sobahi, Najla Ali Alburae, Ahmed Abdel-Lateff, Serag Eldin I. Elbehairi, Mohammad Y. Alfaifi, Nabil A. Alhakamy and Walied M. Alarif
Molecules 2022, 27(4), 1422; https://doi.org/10.3390/molecules27041422 - 19 Feb 2022
Cited by 2 | Viewed by 1959
Abstract
Chromatographic investigation of the aerial parts of the Rhazya stricta (Apocynaceae) resulted in the isolation of two new monoterpene indole alkaloids, 6-nor-antirhine-N1-methyl (1) and razyamide (2), along with six known compounds, eburenine (3 [...] Read more.
Chromatographic investigation of the aerial parts of the Rhazya stricta (Apocynaceae) resulted in the isolation of two new monoterpene indole alkaloids, 6-nor-antirhine-N1-methyl (1) and razyamide (2), along with six known compounds, eburenine (3), epi-rhazyaminine (4), rhazizine (5), 20-epi-sitsirikine (6), antirhine (7), and 16-epi-stemmadenine-N-oxide (8). The chemical structures were established by various spectroscopic experiments. Compounds 18 exhibited cytotoxic effects against three cancer cells with IC50 values ranging between 5.1 ± 0.10 and 93.2 ± 9.73 µM against MCF-7; 5.1 ± 0.28 and 290.2 ± 7.50 µM against HepG2, and 3.1 ± 0.17 and 55.7 ± 4.29 µM against HeLa cells. Compound 2 showed the most potent cytotoxic effect against all cancer cell lines (MCF-7, HepG2 and HeLa with IC50 values = 5.1 ± 0.10, 5.1 ± 0.28, and 3.1 ± 0.17 µM, respectively). Furthermore, compound 2 revealed a significant increase in the apoptotic cell population of MCF-7, HepG2, and HeLa cells, with 31.4 ± 0.2%, 29.2 ± 0.5%, and 34.9 ± 0.6%, respectively. Compound 2 decreased the percentage of the phagocytic pathway on HepG2 cells by 15.0 ± 0.1%. These findings can explain the antiproliferative effect of compound 2. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Figure 1

14 pages, 1350 KiB  
Article
In Silico and Ex Vivo Studies on the Spasmolytic Activities of Fenchone Using Isolated Guinea Pig Trachea
by Najeeb Ur Rehman, Mohd Nazam Ansari, Abdul Samad and Wasim Ahmad
Molecules 2022, 27(4), 1360; https://doi.org/10.3390/molecules27041360 - 17 Feb 2022
Cited by 2 | Viewed by 2007
Abstract
Fenchone is a bicyclic monoterpene found in a variety of aromatic plants, including Foeniculum vulgare and Peumus boldus, and is used in the management of airways disorders. This study aimed to explore the bronchodilator effect of fenchone using guinea pig tracheal muscles [...] Read more.
Fenchone is a bicyclic monoterpene found in a variety of aromatic plants, including Foeniculum vulgare and Peumus boldus, and is used in the management of airways disorders. This study aimed to explore the bronchodilator effect of fenchone using guinea pig tracheal muscles as an ex vivo model and in silico studies. A concentration-mediated tracheal relaxant effect of fenchone was evaluated using isolated guinea pig trachea mounted in an organ bath provided with physiological conditions. Sustained contractions were achieved using low K+ (25 mM), high K+ (80 mM), and carbamylcholine (CCh; 1 µM), and fenchone inhibitory concentration–response curves (CRCs) were obtained against these contractions. Fenchone selectively inhibited with higher potency contractions evoked by low K+ compared to high K+ with resultant EC50 values of 0.62 mg/mL (0.58–0.72; n = 5) and 6.44 mg/mL (5.86–7.32; n = 5), respectively. Verapamil (VRP) inhibited both low and high K+ contractions at similar concentrations. Pre-incubation of the tracheal tissues with K+ channel blockers such as glibenclamide (Gb), 4-aminopyridine (4-AP), and tetraethylammonium (TEA) significantly shifted the inhibitory CRCs of fenchone to the right towards higher doses. Fenchone also inhibited CCh-mediated contractions at comparable potency to its effect against high K+ [6.28 mg/mL (5.88–6.42, n = 4); CCh] and [6.44 mg/mL (5.86–7.32; n = 5); high K+]. A similar pattern was obtained with papaverine (PPV), a phosphodiesterase (PDE), and Ca2+ inhibitor which inhibited both CCh and high K+ at similar concentrations [10.46 µM (9.82–11.22, n = 4); CCh] and [10.28 µM (9.18–11.36; n = 5); high K+]. However, verapamil, a standard Ca2+ channel blocker, showed selectively higher potency against high K+ compared to CCh-mediated contractions with respective EC50 values of 0.84 mg/mL (0.82–0.96; n = 5) 14.46 mg/mL (12.24–16.38, n = 4). The PDE-inhibitory action of fenchone was further confirmed when its pre-incubation at 3 and 5 mg/mL potentiated and shifted the isoprenaline inhibitory CRCs towards the left, similar to papaverine, whereas the Ca2+ inhibitory-like action of fenchone pretreated tracheal tissues were authenticated by the rightward shift of Ca2+ CRCs with suppression of maximum response, similar to verapamil, a standard Ca2+ channel blocker. Fenchone showed a spasmolytic effect in isolated trachea mediated predominantly by K+ channel activation followed by dual inhibition of PDE and Ca2+ channels. Further in silico molecular docking studies provided the insight for binding of fenchone with Ca2+ channel (−5.3 kcal/mol) and K+ channel (−5.7), which also endorsed the idea of dual inhibition. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Figure 1

18 pages, 3415 KiB  
Article
In Silico Analysis of Metabolites from Peruvian Native Plants as Potential Therapeutics against Alzheimer’s Disease
by Luis Daniel Goyzueta-Mamani, Haruna Luz Barazorda-Ccahuana, Miguel Angel Chávez-Fumagalli, Karla Lucia F. Alvarez, Jorge Alberto Aguilar-Pineda, Karin Jannet Vera-Lopez and Christian Lacks Lino Cardenas
Molecules 2022, 27(3), 918; https://doi.org/10.3390/molecules27030918 - 28 Jan 2022
Cited by 6 | Viewed by 3537
Abstract
Background: Despite research on the molecular bases of Alzheimer’s disease (AD), effective therapies against its progression are still needed. Recent studies have shown direct links between AD progression and neurovascular dysfunction, highlighting it as a potential target for new therapeutics development. In this [...] Read more.
Background: Despite research on the molecular bases of Alzheimer’s disease (AD), effective therapies against its progression are still needed. Recent studies have shown direct links between AD progression and neurovascular dysfunction, highlighting it as a potential target for new therapeutics development. In this work, we screened and evaluated the inhibitory effect of natural compounds from native Peruvian plants against tau protein, amyloid beta, and angiotensin II type 1 receptor (AT1R) pathologic AD markers. Methods: We applied in silico analysis, such as virtual screening, molecular docking, molecular dynamics simulation (MD), and MM/GBSA estimation, to identify metabolites from Peruvian plants with inhibitory properties, and compared them to nicotinamide, telmisartan, and grapeseed extract drugs in clinical trials. Results: Our results demonstrated the increased bioactivity of three plants’ metabolites against tau protein, amyloid beta, and AT1R. The MD simulations indicated the stability of the AT1R:floribundic acid, amyloid beta:rutin, and tau:brassicasterol systems. A polypharmaceutical potential was observed for rutin due to its high affinity to AT1R, amyloid beta, and tau. The metabolite floribundic acid showed bioactivity against the AT1R and tau, and the metabolite brassicasterol showed bioactivity against the amyloid beta and tau. Conclusions: This study has identified molecules from native Peruvian plants that have the potential to bind three pathologic markers of AD. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Figure 1

18 pages, 1161 KiB  
Article
Evaluation of Total Phenolic and Flavonoid Contents, Antibacterial and Antibiofilm Activities of Hungarian Propolis Ethanolic Extract against Staphylococcus aureus
by Sarra Bouchelaghem, Sourav Das, Romen Singh Naorem, Lilla Czuni, Gábor Papp and Marianna Kocsis
Molecules 2022, 27(2), 574; https://doi.org/10.3390/molecules27020574 - 17 Jan 2022
Cited by 15 | Viewed by 2909
Abstract
Propolis is a natural bee product that is widely used in folk medicine. This study aimed to evaluate the antimicrobial and antibiofilm activities of ethanolic extract of propolis (EEP) on methicillin-resistant and sensitive Staphylococcus aureus (MRSA and MSSA). Propolis samples were collected from [...] Read more.
Propolis is a natural bee product that is widely used in folk medicine. This study aimed to evaluate the antimicrobial and antibiofilm activities of ethanolic extract of propolis (EEP) on methicillin-resistant and sensitive Staphylococcus aureus (MRSA and MSSA). Propolis samples were collected from six regions in Hungary. The minimum inhibitory concentrations (MIC) values and the interaction of EEP-antibiotics were evaluated by the broth microdilution and the chequerboard broth microdilution methods, respectively. The effect of EEP on biofilm formation and eradication was estimated by crystal violet assay. Resazurin/propidium iodide dyes were applied for simultaneous quantification of cellular metabolic activities and dead cells in mature biofilms. The EEP1 sample showed the highest phenolic and flavonoid contents. The EEP1 successfully prevented the growth of planktonic cells of S. aureus (MIC value = 50 µg/mL). Synergistic interactions were shown after the co-exposition to EEP1 and vancomycin at 108 CFU/mL. The EEP1 effectively inhibited the biofilm formation and caused significant degradation of mature biofilms (50–200 µg/mL), as a consequence of the considerable decrement of metabolic activity. The EEP acts effectively as an antimicrobial and antibiofilm agent on S. aureus. Moreover, the simultaneous application of EEP and vancomycin could enhance their effect against MRSA infection. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Graphical abstract

16 pages, 2109 KiB  
Article
Feature-Based Molecular Networks Identification of Bioactive Metabolites from Three Plants of the Polynesian Cosmetopoeia Targeting the Dermal Papilla Cells of the Hair Cycle
by Kristelle Hughes, Raimana Ho, Stéphane Greff, Gaëtan Herbette, Edith Filaire, Edwige Ranouille, Jean-Yves Berthon and Phila Raharivelomanana
Molecules 2022, 27(1), 105; https://doi.org/10.3390/molecules27010105 - 24 Dec 2021
Cited by 4 | Viewed by 2719
Abstract
The term cosmetopoeia refers to the use of plants in folks’ cosmetics. The aerial parts of Bidens pilosa L., the leaves of Calophyllum inophyllum L. and the fruits of Fagraea berteroana A.Gray ex Benth are traditionally used in French Polynesia for hair and [...] Read more.
The term cosmetopoeia refers to the use of plants in folks’ cosmetics. The aerial parts of Bidens pilosa L., the leaves of Calophyllum inophyllum L. and the fruits of Fagraea berteroana A.Gray ex Benth are traditionally used in French Polynesia for hair and skin care. During the hair cycle, dermal papilla cells and their interaction with epithelial cells are essential to promote hair follicle elongation. The aim of our investigations was the identification of metabolites from these three plants and chemical families responsible for their hair growth activity. A bioactivity-based molecular network was produced by mapping the correlation between features obtained from LC-MS/MS data and dermal papilla cell proliferation, using the Pearson correlation coefficient. The analyses pointed out glycosylated flavonols and phenolic acids from B. pilosa and C. inophyllum, along with C-flavonoids, iridoids and secoiridoids from F. berteroana, as potential bioactive molecules involved in the proliferation of hair follicle dermal papilla cells. Our results highlight the metabolites of the plant species potentially involved in the induction of hair follicle growth and support the traditional uses of these plants in hair care. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Graphical abstract

18 pages, 28964 KiB  
Article
Transcriptomics Reveals Host-Dependent Differences of Polysaccharides Biosynthesis in Cynomorium songaricum
by Jie Wang, Hongyan Su, Hongping Han, Wenshu Wang, Mingcong Li, Yubi Zhou, Yi Li and Mengfei Li
Molecules 2022, 27(1), 44; https://doi.org/10.3390/molecules27010044 - 22 Dec 2021
Cited by 4 | Viewed by 2501
Abstract
Cynomorium songaricum is a root holoparasitic herb that is mainly hosted in the roots of Nitraria roborowskii and Nitraria sibirica distributed in the arid desert and saline-alkaline regions. The stem of C. songaricum is widely used as a traditional Chinese medicine and applied [...] Read more.
Cynomorium songaricum is a root holoparasitic herb that is mainly hosted in the roots of Nitraria roborowskii and Nitraria sibirica distributed in the arid desert and saline-alkaline regions. The stem of C. songaricum is widely used as a traditional Chinese medicine and applied in anti-viral, anti-obesity and anti-diabetes, which largely rely on the bioactive components including: polysaccharides, flavonoids and triterpenes. Although the differences in growth characteristics of C. songaricum between N. roborowskii and N. sibirica have been reported, the difference of the two hosts on growth and polysaccharides biosynthesis in C. songaricum as well as regulation mechanism are not limited. Here, the physiological characteristics and transcriptome of C. songaricum host in N. roborowskii (CR) and N. sibirica (CS) were conducted. The results showed that the fresh weight, soluble sugar content and antioxidant capacity on a per stem basis exhibited a 3.3-, 3.0- and 2.1-fold increase in CR compared to CS. A total of 16,921 differentially expressed genes (DEGs) were observed in CR versus CS, with 2573 characterized genes, 1725 up-regulated and 848 down-regulated. Based on biological functions, 50 DEGs were associated with polysaccharides and starch metabolism as well as their transport. The expression levels of the selected 37 genes were validated by qRT-PCR and almost consistent with their Reads Per kb per Million values. These findings would provide useful references for improving the yield and quality of C. songaricum. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Figure 1

13 pages, 877 KiB  
Article
Ursane-Type Triterpenes, Phenolics and Phenolic Derivatives from Globimetula braunii Leaf
by Ayodeji Oluwabunmi Oriola, Adetunji Joseph Aladesanmi, Thomas Oyebode Idowu, Florence O. Akinwumi, Efere Martins Obuotor, Temilolu Idowu and Adebola Omowunmi Oyedeji
Molecules 2021, 26(21), 6528; https://doi.org/10.3390/molecules26216528 - 28 Oct 2021
Cited by 6 | Viewed by 1755
Abstract
Globimetula braunii is a hemi-parasitic plant used in African ethnomedicine for the management of microbial infections, rheumatic pain and tumors amongst others. We report the isolation and characterization of eight compounds with their antioxidant and antimicrobial activities. The air-dried powdered leaf was macerated [...] Read more.
Globimetula braunii is a hemi-parasitic plant used in African ethnomedicine for the management of microbial infections, rheumatic pain and tumors amongst others. We report the isolation and characterization of eight compounds with their antioxidant and antimicrobial activities. The air-dried powdered leaf was macerated in EtOH/H20 (4:1). The extract was solvent-partitioned into n-hexane, EtOAc, n-BuOH and aqueous fractions. The fractions were screened for their antioxidant properties, using DPPH, FRAP, TAC and FIC assays. Antimicrobial analysis was performed using the micro-broth dilution method. The active EtOAc fraction was purified for its putative compounds on a repeated silica gel column chromatography monitored with TLC-bioautography. The isolated compounds were characterized using spectroscopic methods of UV, FT-IR, NMR and MS. Eight compounds (18) were isolated and characterized as 13,27-cycloursane (1), phyllanthone (2), globraunone (3), three phenolics: methyl 3,5-dihydroxy-4-methoxybenzoate (4), methyl 3-methyl-4-hydroxybenzoate (5) and guaiacol (6), as well as two phenol derivatives: 4-formaldehyde phenone (7) and 6-methoxy-2H-inden-5-ol (8). The study identified 4 and 6 as natural antioxidant compounds with potential as antimicrobial agents. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Figure 1

Review

Jump to: Research

19 pages, 5638 KiB  
Review
Review on Chemical Constituents of Schizonepeta tenuifolia Briq. and Their Pharmacological Effects
by Xueying Zhao and Mingwei Zhou
Molecules 2022, 27(16), 5249; https://doi.org/10.3390/molecules27165249 - 17 Aug 2022
Cited by 10 | Viewed by 1980
Abstract
Schizonepeta tenuifolia Briq. is a famous Chinese traditional medicine with antipyretic, anti-inflammatory, analgesic and hemostatic effects. Many chemical components can be isolated and detected by using various analysis methods, including monoterpenes, sesquiterpenes, aldehydes, ketones, quinones, alcohols, phenols, carboxylic acids and esters, etc., in [...] Read more.
Schizonepeta tenuifolia Briq. is a famous Chinese traditional medicine with antipyretic, anti-inflammatory, analgesic and hemostatic effects. Many chemical components can be isolated and detected by using various analysis methods, including monoterpenes, sesquiterpenes, aldehydes, ketones, quinones, alcohols, phenols, carboxylic acids and esters, etc., in which volatile oil was considered to be the main chemical component. In this paper, the chemical constituents and their pharmacological effects were reviewed by summarizing the recent literature, revealing the relationship between them. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Figure 1

35 pages, 2940 KiB  
Review
Evaluation of Biological Activity of Natural Compounds: Current Trends and Methods
by Carlos Barba-Ostria, Saskya E. Carrera-Pacheco, Rebeca Gonzalez-Pastor, Jorge Heredia-Moya, Arianna Mayorga-Ramos, Cristina Rodríguez-Pólit, Johana Zúñiga-Miranda, Benjamin Arias-Almeida and Linda P. Guamán
Molecules 2022, 27(14), 4490; https://doi.org/10.3390/molecules27144490 - 13 Jul 2022
Cited by 23 | Viewed by 4492
Abstract
Natural compounds have diverse structures and are present in different forms of life. Metabolites such as tannins, anthocyanins, and alkaloids, among others, serve as a defense mechanism in live organisms and are undoubtedly compounds of interest for the food, cosmetic, and pharmaceutical industries. [...] Read more.
Natural compounds have diverse structures and are present in different forms of life. Metabolites such as tannins, anthocyanins, and alkaloids, among others, serve as a defense mechanism in live organisms and are undoubtedly compounds of interest for the food, cosmetic, and pharmaceutical industries. Plants, bacteria, and insects represent sources of biomolecules with diverse activities, which are in many cases poorly studied. To use these molecules for different applications, it is essential to know their structure, concentrations, and biological activity potential. In vitro techniques that evaluate the biological activity of the molecules of interest have been developed since the 1950s. Currently, different methodologies have emerged to overcome some of the limitations of these traditional techniques, mainly via reductions in time and costs. These emerging technologies continue to appear due to the urgent need to expand the analysis capacity of a growing number of reported biomolecules. This review presents an updated summary of the conventional and relevant methods to evaluate the natural compounds’ biological activity in vitro. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Figure 1

18 pages, 2155 KiB  
Review
The Fight against Infection and Pain: Devil’s Claw (Harpagophytum procumbens) a Rich Source of Anti-Inflammatory Activity: 2011–2022
by Nomagugu Gxaba and Madira Coutlyne Manganyi
Molecules 2022, 27(11), 3637; https://doi.org/10.3390/molecules27113637 - 06 Jun 2022
Cited by 6 | Viewed by 7303
Abstract
Harpagophytum procumbens subsp. procumbens (Burch.) DC. ex Meisn. (Sesame seed Family—Pedaliaceae) is a popular medicinal plant known as Devil’s claw. It is predominantly distributed widely over southern Africa. Its impressive reputation is embedded in its traditional uses as an indigenous herbal plant for [...] Read more.
Harpagophytum procumbens subsp. procumbens (Burch.) DC. ex Meisn. (Sesame seed Family—Pedaliaceae) is a popular medicinal plant known as Devil’s claw. It is predominantly distributed widely over southern Africa. Its impressive reputation is embedded in its traditional uses as an indigenous herbal plant for the treatment of menstrual problems, bitter tonic, inflammation febrifuge, syphilis or even loss of appetite. A number of bioactive compounds such as terpenoids, iridoid glycosides, glycosides, and acetylated phenolic compounds have been isolated. Harpagoside and harpagide, iridoid glycosides bioactive compounds have been reported in countless phytochemical studies as potential anti-inflammatory agents as well as pain relievers. In-depth studies have associated chronic inflammation with various diseases, such as Alzheimer’s disease, obesity, rheumatoid arthritis, type 2 diabetes, cancer, and cardiovascular and pulmonary diseases. In addition, 60% of chronic disorder fatalities are due to chronic inflammatory diseases worldwide. Inflammation and pain-related disorders have attracted significant attention as leading causes of global health challenges. Articles published from 2011 to the present were obtained and reviewed in-depth to determine valuable data findings as well as knowledge gaps. Various globally recognized scientific search engines/databases including Scopus, PubMed, Google Scholar, Web of Science, and ScienceDirect were utilized to collect information and deliver evidence. Based on the literature results, there was a dramatic decrease in the number of studies conducted on the anti-inflammatory and analgesic activity of Devil’s claw, thereby presenting a potential research gap. It is also evident that currently in vivo clinical studies are needed to validate the prior massive in vitro studies, therefore delivering an ideal anti-inflammatory and analgesic agent in the form of H. procumbens products. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Figure 1

36 pages, 4153 KiB  
Review
Plant-Derived Natural Products as Lead Agents against Common Respiratory Diseases
by Ayodeji Oluwabunmi Oriola and Adebola Omowunmi Oyedeji
Molecules 2022, 27(10), 3054; https://doi.org/10.3390/molecules27103054 - 10 May 2022
Cited by 8 | Viewed by 4438
Abstract
Never has the world been more challenged by respiratory diseases (RDs) than it has witnessed in the last few decades. This is evident in the plethora of acute and chronic respiratory conditions, ranging from asthma and chronic obstructive pulmonary disease (COPD) to multidrug-resistant [...] Read more.
Never has the world been more challenged by respiratory diseases (RDs) than it has witnessed in the last few decades. This is evident in the plethora of acute and chronic respiratory conditions, ranging from asthma and chronic obstructive pulmonary disease (COPD) to multidrug-resistant tuberculosis, pneumonia, influenza, and more recently, the novel coronavirus (COVID-19) disease. Unfortunately, the emergence of drug-resistant strains of pathogens, drug toxicity and side effects are drawbacks to effective chemotherapeutic management of RDs; hence, our focus on natural sources because of their unique chemical diversities and novel therapeutic applications. This review provides a summary on some common RDs, their management strategies, and the prospect of plant-derived natural products in the search for new drugs against common respiratory diseases. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Figure 1

19 pages, 278 KiB  
Review
Cranberry: Chemical Composition, Antioxidant Activity and Impact on Human Health: Overview
by Boris V. Nemzer, Fadwa Al-Taher, Alexander Yashin, Igor Revelsky and Yakov Yashin
Molecules 2022, 27(5), 1503; https://doi.org/10.3390/molecules27051503 - 23 Feb 2022
Cited by 46 | Viewed by 9212
Abstract
Cranberries are a rich source of bioactive compounds that comprise a healthy diet. Cranberry is abundant in nutritional components and many bioactive compounds that have antioxidant properties. Both American (Vaccinium macrocarpon) and European (Vaccinium oxycoccus) cranberry species are rich [...] Read more.
Cranberries are a rich source of bioactive compounds that comprise a healthy diet. Cranberry is abundant in nutritional components and many bioactive compounds that have antioxidant properties. Both American (Vaccinium macrocarpon) and European (Vaccinium oxycoccus) cranberry species are rich in polyphenols such as phenolic acids, anthocyanins and flavonoids, and is one of the few fruits that is high in proanthocyanidins, which is linked to many health benefits. The review systematizes information on the chemical composition of cranberry, its antioxidant effect, and the beneficial impact on human health and disease prevention after cranberry consumption, and in particular, its effect against urinary tract inflammation with both adults and children, cardiovascular, oncology diseases, type 2 diabetes, metabolic syndrome, obesity, tooth decay and periodontitis, Helicobacter pylori bacteria in the stomach and other diseases. Additional research needs to study cranberry proteomics profiling, polyphenols interaction and synergism with other biologically active compounds from natural ingredients and what is important in formulation of new functional foods and supplements. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
32 pages, 973 KiB  
Review
Berberine, a Herbal Metabolite in the Metabolic Syndrome: The Risk Factors, Course, and Consequences of the Disease
by Anna Och, Marek Och, Renata Nowak, Dominika Podgórska and Rafał Podgórski
Molecules 2022, 27(4), 1351; https://doi.org/10.3390/molecules27041351 - 17 Feb 2022
Cited by 23 | Viewed by 7940
Abstract
In recent years, the health of patients exposed to the consequences of the metabolic syndrome still requires the search for new solutions, and plant nutraceuticals are currently being intensively investigated. Berberine is a plant alkaloid possessing scientifically determined mechanisms of the prevention of [...] Read more.
In recent years, the health of patients exposed to the consequences of the metabolic syndrome still requires the search for new solutions, and plant nutraceuticals are currently being intensively investigated. Berberine is a plant alkaloid possessing scientifically determined mechanisms of the prevention of the development of atherosclerosis, type 2 diabetes, and obesity, as well as cardiovascular complications and cancer. It positively contributes to elevated levels of fasting, postprandial blood glucose, and glycosylated hemoglobin, while decreasing insulin resistance. It stimulates glycolysis, improving insulin secretion, and inhibits gluconeogenesis and adipogenesis in the liver; by reducing insulin resistance, berberine also improves ovulation. The anti-obesity action of berberine has been also well-documented. Berberine acts as an anti-sclerotic, lowering the LDL and testosterone levels. The alkaloid exhibits an anti-inflammatory property by stalling the expression of cyclooxygenase 2 (COX-2) and prostaglandin E2. Berberine is neuroprotective and acts as an antidepressive. However, the outcomes in psychiatric patients are nonspecific, as it has been shown that berberine improves metabolic parameters in schizophrenic patients, acting as an adjuvant during antipsychotic treatment. Berberine acts as an anticancer option by inducing apoptosis, the cell cycle arrest, influencing MAPK (mitogen-activated protein kinase), and influencing transcription regulation. The inhibition of carcinogenesis is also combined with lipid metabolism. Full article
(This article belongs to the Special Issue Bioactive Compounds from Natural Resources)
Show Figures

Figure 1

Back to TopTop