Insect Vectors of Human and Zoonotic Diseases

A special issue of Insects (ISSN 2075-4450). This special issue belongs to the section "Medical and Livestock Entomology".

Deadline for manuscript submissions: 15 May 2024 | Viewed by 5179

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory of Entomology, Institute of Biology, Federal University of Rio de Janeiro—UFRJ, Rio de Janeiro, Brazil
Interests: molecular ecology; insect vectors

Special Issue Information

Dear Colleagues,

Insect vectors can transmit infectious pathogens between humans and animals, or from animals to humans. Vector-borne diseases burden human and animal populations, particularly in tropical and subtropical developing countries. In addition to the direct action of physical suffering, these diseases hinder economic development. These diseases currently account for 17% of the global burden of reported infectious human diseases around the world, such as malaria, dengue, schistosomiasis, human African trypanosomiasis, leishmaniasis, Chagas disease, yellow fever, Japanese encephalitis, and onchocerciasis. Therefore, we are pleased to invite research articles and review articles to this Special Issue of Insects. Papers that consider the effects of the above factors on harmful arthropods (e.g., flies, mosquitoes, phlebotomies, ticks, triatomines, etc.) are welcome.

Dr. Carlos Eduardo Almeida
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • insect vectors
  • bloodsucking insects
  • vector control
  • tropical infectious diseases
  • arbovirus
  • vector-borne diseases

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 6266 KiB  
Article
Combinations of Lemongrass and Star Anise Essential Oils and Their Main Constituent: Synergistic Housefly Repellency and Safety against Non-Target Organisms
by Mayura Soonwera, Jirisuda Sinthusiri, Hataichanok Passara, Tanapoom Moungthipmalai, Cheepchanok Puwanard, Sirawut Sittichok and Kouhei Murata
Insects 2024, 15(3), 210; https://doi.org/10.3390/insects15030210 - 20 Mar 2024
Viewed by 876
Abstract
The present study evaluated the housefly repellency of single-component formulations and combinations of lemongrass and star anise essential oils (EOs) and their main constituents. The efficacies of the combinations were compared against those of single-component formulations and DEET. Safety bioassays of all formulations [...] Read more.
The present study evaluated the housefly repellency of single-component formulations and combinations of lemongrass and star anise essential oils (EOs) and their main constituents. The efficacies of the combinations were compared against those of single-component formulations and DEET. Safety bioassays of all formulations and DEET on non-target species—guppy, molly, dwarf honeybee, and stingless bee—were conducted. GC–MS analysis showed that the main constituent of lemongrass EO was geranial (46.83%) and that of star anise EO was trans-anethole (92.88%). All combinations were highly synergistic compared to single-component formulations, with an increased repellent value (IR) of 34.6 to 51.2%. The greatest synergistic effect was achieved by 1.0% lemongrass EO + 1.0% trans-anethole combination, with an IR of 51.2%. The strongest, 100% repellent rate at 6 h was achieved by 1.0% geranial + 1.0% trans-anethole. They were twice as effective as DEET and caused obvious damage to housefly antennae under microscopic observation. All single-component formulations and combinations were benign to the four tested non-target species. In contrast, DEET was highly toxic to them. The synergistic repellency and biosafety of these two combinations are compellingly strong support for developing them into an effective green repellent. Full article
(This article belongs to the Special Issue Insect Vectors of Human and Zoonotic Diseases)
Show Figures

Graphical abstract

15 pages, 2474 KiB  
Article
In Vitro Evaluation of Essential Oils and Saturated Fatty Acids for Repellency against the Old-World Sand Fly, Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae)
by Kevin B. Temeyer, Kristie G. Schlechte, Joel R. Coats, Charles L. Cantrell, Rodrigo Rosario-Cruz, Kimberly H. Lohmeyer, Adalberto A. Pérez de León and Andrew Y. Li
Insects 2024, 15(3), 155; https://doi.org/10.3390/insects15030155 - 24 Feb 2024
Viewed by 1181
Abstract
The sand fly, Phlebotomus papatasi (Scopoli, 1786), is a major vector for Leishmania major in the Middle East, which has impacted human health and US military operations in the area, demonstrating the need to develop effective sand fly control and repellent options. Here, [...] Read more.
The sand fly, Phlebotomus papatasi (Scopoli, 1786), is a major vector for Leishmania major in the Middle East, which has impacted human health and US military operations in the area, demonstrating the need to develop effective sand fly control and repellent options. Here, we report the results of spatial repellency and avoidance experiments in a static air olfactometer using the female P. papatasi testing essential oils of Lippia graveolens (Mexican oregano), Pimenta dioica (allspice), Amyris balsamifera (amyris), Nepeta cataria (catnip), Mentha piperita (peppermint), and Melaleuca alternifolia (tea tree); the 9–12 carbon saturated fatty acids (nonanoic acid, decanoic acid, undecanoic acid, and dodecanoic acid); and the synthetic repellents DEET and IR3535. The materials applied at 1% exhibited varying activity levels but were not significantly different in mean repellency and avoidance from DEET and IR3535, except in regards to nonanoic acid. Some materials, particularly nonanoic and undecanoic acids, produced sand fly mortality. The observed trends in mean repellency over exposure time included the following: (1) P. dioica oil, M. alternifolia oil, decanoic acid, undecanoic acid, DEET, and IR3535 exhibited increasing mean repellency over time; (2) oils of N. cataria, A. balsamifera, M. piperita, and dodecanoic acid exhibited relatively constant mean repellency over time; and (3) L. graveolens oil and nonanoic acid exhibited a general decrease in mean repellent activity over time. These studies identified the essential oils of N. cataria and A. balsamifera as effective spatial repellents at reduced concentrations compared to those of DEET. Additional research is required to elucidate the modes of action and potential synergism of repellents and essential oil components for enhanced repellency activity. Full article
(This article belongs to the Special Issue Insect Vectors of Human and Zoonotic Diseases)
Show Figures

Figure 1

17 pages, 1484 KiB  
Article
Diversity, Distribution and Host Blood Meal Analysis of Adult Black Flies (Diptera: Simuliidae) from Thailand
by Bhuvadol Gomontean, Waraporn Jumpato, Komgrit Wongpakam, Ubon Tangkawanit, Wannachai Wannasingha, Isara Thanee, Zubaidah Ya’cob and Pairot Pramual
Insects 2024, 15(1), 74; https://doi.org/10.3390/insects15010074 - 21 Jan 2024
Cited by 1 | Viewed by 1379
Abstract
Understanding the factors associated with the species diversity and distribution of insect vectors is critically important for disease epidemiology. Black flies (Diptera: Simuliidae) are significant hematophagous insects, as many species are pests and vectors that transmit pathogens to humans and other animals. Ecological [...] Read more.
Understanding the factors associated with the species diversity and distribution of insect vectors is critically important for disease epidemiology. Black flies (Diptera: Simuliidae) are significant hematophagous insects, as many species are pests and vectors that transmit pathogens to humans and other animals. Ecological factors associated with black fly species distribution have been extensively examined for the immature stages but are far less well explored for the adult stage. In this study, we collected a total of 7706 adult black fly specimens from various locations in forests, villages and animal shelters in Thailand. The integration of morphology and DNA barcoding revealed 16 black fly taxa, including Simulium yvonneae, a species first found in Vietnam, which is a new record for Thailand. The most abundant species was the Simulium asakoae complex (n = 5739, 74%), followed by S. chumpornense Takaoka and Kuvangkadilok (n = 1232, 16%). The Simulium asakoae complex was dominant in forest (3786 of 4456; 85%) and village (1774 of 2077; 85%) habitats, while S. chumpornense predominated (857 of 1175; 73%) in animal shelter areas. The Simulium asakoae complex and S. nigrogilvum Summers, which are significant pests and vectors in Thailand, occurred at a wide range of elevations, although the latter species was found mainly in high (>1000 m) mountain areas. Simulium chumpornense, S. nodosum Puri and the S. siamense Takaoka and Suzuki complex occurred predominately in low (<800 m)-elevation areas. Simulium furvum Takaoka and Srisuka; S. phurueaense Tangkawanit, Wongpakam and Pramual; and S. nr. phurueaense were only found in high (>1000 m) mountain areas. A host blood meal analysis revealed that the S. asakoae; S. chamlongi Takaoka and Suzuki; S. nigrogilvum; S. chumpornense; and the S. striatum species group were biting humans. This is the first report of the latter two species biting humans. We also found that S. chumpornense was biting turkeys, and S. chamlongi was biting chickens, which are new host blood sources recorded for these species. In addition, we found that the S. feuerborni Edwards complex was biting water buffalo, which is the first report on the biting habits of this species. Full article
(This article belongs to the Special Issue Insect Vectors of Human and Zoonotic Diseases)
Show Figures

Graphical abstract

17 pages, 761 KiB  
Article
Mosquito (Diptera: Culicidae) Fauna of a Zoological Park in an Urban Setting: Analysis of Culex pipiens s.l. and Their Biotypes
by Sara Madeira, Rui Bernardino, Hugo Costa Osório and Fernando Boinas
Insects 2024, 15(1), 45; https://doi.org/10.3390/insects15010045 - 09 Jan 2024
Viewed by 1213
Abstract
Mosquito-borne diseases (MBDs) are important emerging diseases that affect humans and animals. Zoological parks can work as early warning systems for the occurrence of MBDs. In this study, we characterized the mosquito fauna captured inside Lisbon Zoo from May 2018 to November 2019. [...] Read more.
Mosquito-borne diseases (MBDs) are important emerging diseases that affect humans and animals. Zoological parks can work as early warning systems for the occurrence of MBDs. In this study, we characterized the mosquito fauna captured inside Lisbon Zoo from May 2018 to November 2019. An average of 2.4 mosquitos per trap/night were captured. Five mosquito species potentially causing MBDs, including Culex pipiens biotypes, were found in the zoo. The sympatric occurrence of Culex pipiens biotypes represents a risk factor for the epizootic transmission of West Nile virus and Usutu virus. The mosquito occurrence followed the expected seasonality, with the maximum densities during summer months. However, mosquito activity was detected in winter months in low numbers. The minimum temperature and the relative humidity (RH) on the day of capture showed a positive effect on Culex pipiens abundance. Contrary, the RH the week before capture and the average precipitation the week of capture had a negative effect. No invasive species were identified, nor have flaviviruses been detected in the mosquitoes. The implementation of biosecurity measures regarding the hygiene of the premises and the strict control of all the animals entering the zoo can justify the low prevalence of mosquitoes and the absence of flavivirus-infected mosquitoes. Full article
(This article belongs to the Special Issue Insect Vectors of Human and Zoonotic Diseases)
Show Figures

Graphical abstract

Back to TopTop