Metal Complexes Diversity: Synthesis, Conformations, and Bioactivity

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Coordination Chemistry".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 1352

Special Issue Editors


E-Mail Website
Guest Editor
NMR Centre, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
Interests: NMR spectroscopy; conformations in solution; metal coordination chemistry; NMR of small organic molecules; NMR of natural compounds
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
Interests: ferrocene; conformational analysis; intramolecular hydrogen bonds; peptidomimetics; structure–activity relationship
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Metal complexes occupy a pivotal position across diverse fields, including catalysis, material science, and medicine. The rich diversity in their architecture stems from the intricate combinations of metal ions, ligands, and their distinct coordination modes. This variety not only shapes the conformational properties of these complexes but also profoundly impacts their biological activities.

The synthesis of metal complexes is a meticulous process that requires the careful selection of metal ions and ligands, along with the precise control of reaction conditions, to yield desired structures. The conformational properties of metal complexes are influenced by multiple factors, including the coordination geometry of metal ions, ligand flexibility, and intermolecular interactions. On the other hand, the biological activities of these complexes are intricately linked to their interactions with biological systems, such as enzymes, receptors, and nucleic acids.

In conclusion, this Special Issue delves into the fascinating realm of metal complex diversity, encompassing their architecture, synthesis, conformational properties, and biological activities. This comprehensive exploration holds immense promise for the advancement of new catalysts, materials, and drugs, offering enhanced performance and specificity.

Dr. Sunčica Roca
Dr. Monika Kovačević
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metal complexes
  • synthesis and conformation
  • SAR studies
  • biological evaluation
  • conformational analysis
  • spectroscopic methods
  • DFT calculations
  • bioactivity

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 1952 KiB  
Article
Synthesis, Properties, and Electrochemistry of bis(iminophosphorane)pyridine Iron(II) Pincer Complexes
by Nicolás Sánchez López, Erick Nuñez Bahena, Alexander D. Ryabov, Pierre Sutra, Alain Igau and Ronan Le Lagadec
Inorganics 2024, 12(4), 115; https://doi.org/10.3390/inorganics12040115 - 16 Apr 2024
Viewed by 547
Abstract
Iron derivatives have emerged as valuable catalysts for a variety of transformations, as well as for biological and photophysical applications, and iminophosphorane can be considered an ideal ligand scaffold for modulating electronic and steric parameters in transition metal complexes. In this report, we [...] Read more.
Iron derivatives have emerged as valuable catalysts for a variety of transformations, as well as for biological and photophysical applications, and iminophosphorane can be considered an ideal ligand scaffold for modulating electronic and steric parameters in transition metal complexes. In this report, we aimed to synthesize dichloride and dibromide iron(II) complexes supported by symmetric bis(iminophosphorane)pyridine ligands, starting from readily available ferrous halides. The ease of synthesis of this class of ligands served to access several derivatives with distinct electronic and steric properties imparted by the phosphine moiety. The ligands and the resulting iron(II) complexes were characterized by 31P and 1H NMR spectroscopy and DART or ESI mass spectrometry. While none of these iron(II) complexes could be characterized by single-crystal X-ray diffraction, suitable crystals of a µ-O bridged dinuclear iron complex bearing an iminophosphorane ligand were obtained, confirming a κ3 binding motif. The bis(iminophosphorane)pyridine ligands in the obtained iron(II) complexes are labile, as demonstrated by their facile substitution by terpyridine. Cyclic voltammetry studies revealed that the oxidation of bis(iminophosphorane)pyridine iron(II) complexes to iron(III) species is quasi-reversible, suggesting the strong thermodynamic stabilization of the iron(III) center imparted by the σ-donating iminophosphorane ligands. Full article
(This article belongs to the Special Issue Metal Complexes Diversity: Synthesis, Conformations, and Bioactivity)
Show Figures

Graphical abstract

15 pages, 3237 KiB  
Article
Synthesis, Spectral Characterization, and Structural Modelling of Di- and Trinuclear Iron(III) Monensinates with Different Bridging Patterns
by Nikolay Petkov, Alia Tadjer, Svetlana Simova, Zara Cherkezova-Zheleva, Daniela Paneva, Radostina Stoyanova, Rositsa Kukeva, Petar Dorkov and Ivayla Pantcheva
Inorganics 2024, 12(4), 114; https://doi.org/10.3390/inorganics12040114 - 15 Apr 2024
Viewed by 660
Abstract
In the present study, we report the solid-state isolation and structural characterization of novel iron(III) complexes of the veterinary antibiotic monensin. Monensic acid (MonH × H2O) forms a dinuclear complex of composition with FeCl3 [FeCl(Mon)2]2 (1 [...] Read more.
In the present study, we report the solid-state isolation and structural characterization of novel iron(III) complexes of the veterinary antibiotic monensin. Monensic acid (MonH × H2O) forms a dinuclear complex of composition with FeCl3 [FeCl(Mon)2]2 (1), while its interaction with FeSO4 leads to the isolation of a triangular oxo-ferric coordination species [Fe3O(Mon × H2O)6(H2O)2(OH)] (2). During the procedure resulting in 2, oxidation of the Fe(II) ions by atmospheric oxygen was observed. In the presence of organic bases, both complexation reactions proceeded to successfully deprotonate the carboxylic function of the ligand. Iron(III) complexes 1 and 2 were characterized by IR, EPR, NMR, and Mössbauer spectroscopies as well as with thermal (TG-DTA/MS) and elemental analyses. In addition, the structures of the two coordination compounds were modelled and selected calculated parameters were compared with the experimental results. The biological assay revealed the enhanced antibacterial potential of the newly obtained complexes against the Gram-positive aerobic microorganisms Bacillus cereus and Bacillus subtilis. Full article
(This article belongs to the Special Issue Metal Complexes Diversity: Synthesis, Conformations, and Bioactivity)
Show Figures

Graphical abstract

Back to TopTop