Current Advances in Coordination and Bioinorganic Chemistry

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Coordination Chemistry".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 2462

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic
Interests: infrared spectroscopy; transition metal chemistry; copper and cobalt complexes
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Inorganic Chemistry, Technology and Materials, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovak Republic
Interests: computational chemistry; spin crossover; single molecule magnets
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We hereby invite you to share your current advances in coordination and bioinorganic chemistry, two fields which fascinated the brilliant mind of our former colleague—Professor Ján Gažo. Starting exactly sixty years ago as a satellite symposium associated with the International Conference on Coordination Chemistry (ICCC), Professor Ján Gažo founded what later became known as the International Conference on Coordination and Bioinorganic Chemistry (ICCBIC). Since then, ICCBIC has established its reputation as the only scientific event in the field organized regularly at the same place (Castle of Smolenice, Slovakia). As the number of participants at the castle is very limited, we are pleased to extend this wonderful tradition into the electronic space of the journal Inorganics.

Prof. Dr. Peter Segľa
Dr. Ján Pavlik
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electronic, molecular and crystal structures
  • solution and solid-state reactivity
  • applied inorganic and coordination chemistry
  • complexes in human medicine and the environment

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 4202 KiB  
Article
The “Periodic Table” of 1-methylbenzotriazole: Zinc(II) Complexes
by Christina Stamou, Eleftheria Barouni, John C. Plakatouras, Michael M. Sigalas, Catherine P. Raptopoulou, Vassilis Psycharis, Evangelos G. Bakalbassis and Spyros P. Perlepes
Inorganics 2023, 11(9), 356; https://doi.org/10.3390/inorganics11090356 - 29 Aug 2023
Viewed by 1162
Abstract
In an attempt to fill in the empty Zn position in the “Periodic Table” of 1-methylbenzotriazole (Mebta), reactions between Zn(II) sources and this ligand were carried out. The detailed synthetic studies provided access to complexes [ZnX2(Mebta)2] (X = Cl, [...] Read more.
In an attempt to fill in the empty Zn position in the “Periodic Table” of 1-methylbenzotriazole (Mebta), reactions between Zn(II) sources and this ligand were carried out. The detailed synthetic studies provided access to complexes [ZnX2(Mebta)2] (X = Cl, 1; X = Br, 3; X = I, 4), (MebtaH)2[ZnCl4] (2), tet-[Zn(NO3)2(Mebta)2] (5), oct-[Zn(NO3)2(Mebta)2] (6), and [Zn(Mebta)4](Y)2 [Y = ClO4, 7; Y = PF6, 8]. Solid-state thermal decomposition of 2 leads to 1 in quantitative yield. The structures of 3, 4, 5, 6, and 7 were determined by single-crystal crystallography. The structures of the remaining complexes were proposed based on spectroscopic evidence. In all compounds, Mebta behaves as monodentate ligand using the nitrogen of the position 3 as donor. Complexes 14, 7, and 8 are tetrahedral. Complexes 5 and 6 are isostoichiometric and their preparation in pure forms depends on the reaction conditions; in the former the ZnII atom has a tetrahedral geometry, whereas in the latter the metal ion is octahedral. This case of rare isomerism arises from the monodentate (in 5) vs. bidentate (in 6) coordination of the nitrato groups. Extensive π–π stacking interactions and non-classical H bonds build interesting 3D architectures in the structurally characterized complexes. The compounds were characterized by IR, far-IR, and Raman spectroscopies in the solid state, and the data were interpreted in terms of the structures (known or proposed) of the complexes and the coordination modes of the organic and inorganic ligands involved. The solid-state structures of the complexes are not retained in solution, as proven by NMR (1H, 13C[1H]) spectroscopy and molar conductivity data. The thermal decomposition study of 1 and 3 leads to stable intermediates with 1:1 stoichiometry, i.e., ZnX2(Mebta). Based on far-IR spectra, polymeric tetrahedral structures are possible with simultaneous presence of terminal and bridging X groups. Liquid-phase ab initio (MP2) and gas-phase DFT calculations, performed on Mebta and the nitrato complexes, respectively, shed light on the tendency of Mebta for N3-coordination, and the existence and relative stabilities of 5 and 6. Full article
(This article belongs to the Special Issue Current Advances in Coordination and Bioinorganic Chemistry)
Show Figures

Graphical abstract

14 pages, 4988 KiB  
Article
Synthesis, X-ray Structure, and Hirshfeld Analysis of [Ag(3-amino-5,6-dimethyl-1,2,4-triazine)(NO3)]n: A Potent Anticancer and Antimicrobial Agent
by Mostafa A. El-Naggar, Morsy A. M. Abu-Youssef, Matti Haukka, Assem Barakat, Mona M. Sharaf and Saied M. Soliman
Inorganics 2023, 11(9), 350; https://doi.org/10.3390/inorganics11090350 - 25 Aug 2023
Cited by 1 | Viewed by 1029
Abstract
The [Ag(3ADMT)(NO3)]n complex was synthesized by the self-assembly of 3-amino-5,6-dimethyl-1,2,4-triazine (3ADMT) and AgNO3. Its molecular structure was analyzed utilizing FTIR spectra, elemental analysis, and single crystal X-ray diffraction (SC-XRD). There is one crystallographically independent Ag atom, which is [...] Read more.
The [Ag(3ADMT)(NO3)]n complex was synthesized by the self-assembly of 3-amino-5,6-dimethyl-1,2,4-triazine (3ADMT) and AgNO3. Its molecular structure was analyzed utilizing FTIR spectra, elemental analysis, and single crystal X-ray diffraction (SC-XRD). There is one crystallographically independent Ag atom, which is tetra-coordinated by two nitrogen atoms from two 3ADMT and two oxygen atoms from two nitrate anions where all ligand groups are acting as connectors between the Ag1 sites. The geometry around the Ag(I) center is a distorted tetrahedron with a AgN2O2 coordination sphere augmented by strong argentophilic interactions between Ag atoms, which assist the aggregation of the complex units in a wavy-like and coplanar pattern to form a one-dimensional polymeric chain. The O...H (37.2%) and N...H (18.8%) intermolecular interactions contributed significantly to the molecular packing based on Hirshfeld surface analysis. The [Ag(3ADMT)(NO3)]n complex demonstrates promising cytotoxicity against lung (IC50 = 2.96 ± 0.31 μg/mL) and breast (IC50 = 1.97 ± 0.18 μg/mL) carcinoma. This remarkable cytotoxicity exceeds those of 3ADMT, AgNO3, and the anticancer medication cis-platin towards the tested cancer cell lines. In addition, the complex has a wide-spectrum antimicrobial action where the high antibacterial potency of the [Ag(3ADMT)(NO3)]n complex against P. vulgaris (MIC = 6.1 µg/mL) and B. subtilis (MIC = 17.2 µg/mL) could be comparable to the commonly used drug Gentamycin (MIC = 4.8 µg/mL). These results confirm that the components of the [Ag(3ADMT)(NO3)]n complex work together synergistically, forming a powerful multifunctional agent that could be exploited as an effective antimicrobial and anticancer agent. Full article
(This article belongs to the Special Issue Current Advances in Coordination and Bioinorganic Chemistry)
Show Figures

Figure 1

Back to TopTop