Surface Science of Degradation and Surface Protection

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Surface Characterization, Deposition and Modification".

Deadline for manuscript submissions: 15 October 2024 | Viewed by 285

Special Issue Editors


E-Mail Website
Guest Editor
Sustainable Magnets and Recycling Group, Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH (MPIE), Max-Planck-Str. 1, D-40237 Düsseldorf, Germany
Interests: metal coatings; modified metallic surfaces; degradation; mechanical failure; delamination; microstructure; corrosion; biocorrosion; tribology; wear; magnetism
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Surface Science for Future Materials Group, Department of Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH (MPIE), Max-Planck-Str. 1, D-40237 Düsseldorf, Germany
Interests: modified metallic surfaces; mechanical properties; microstructure; isotope analysis; wear; oxidation of metallic surfaces; corrosion; chemical characterization of surfaces
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Bánki Donát Faculty of Mechanical and Safety Engineering, Institute of Materials and Manufacturing Sciences, Óbuda University, Népszínház u.8., 1081 Budapest, Hungary
Interests: heat treatment; metallic materials; material sciences; mechanical properties; microstructure; wear; surface properties; coatings; biomaterials; corrosion
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Different types of coatings and metal surfaces are a broad material group that impacts many aspects of everyday life. Due to their unique combination of properties, metallic surfaces, and organic/inorganic/self-healing coatings, which are used in various industries as protective elements (mechanical and corrosive), catalyzing media, optical materials, substrates, electrical conductors, magnetic media, biomaterials, etc. However, their applicability is often limited and plagued by degradation, which is a key factor for long-lasting material usage from both economic and sustainability perspectives. Degradation is a crude label for the deterioration of the material and/or its properties in exposed environments and/or conditions, ranging from static and dynamic mechanical loading to corrosive media and biological factors down to cyclic grinding and surface interaction with other materials. As such, it is vital to understand how the individual properties of the used metal coatings and metallic surfaces temporally evolve and are modified within their used environments and conditions.

For this reason, we are launching a new Special Issue in MDPI’s journal Coatings that aims to collect original research articles and review papers on the degradation of coatings and modified metallic surfaces. Contributions should focus on the fundamental characterization and understanding of the degradation processes under specific conditions, which are relevant for applying selected coatings/a modified surface. Both theoretical and experimental papers, as well as papers combining both aspects, are welcomed.

We look forward to receiving your contribution.

Dr. Matic Jovičević-Klug
Dr. Patricia Jovičević-Klug
Dr. László Tóth
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • organic and inorganic coatings
  • self-healing coatings
  • modified metallic surfaces
  • degradation
  • mechanical failure
  • delamination
  • corrosion
  • biocorrosion
  • tribology
  • wear

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2646 KiB  
Article
Optimization and Mechanism Study of Bonding Properties of CFRP/Al7075 Single-Lap Joints by Low-Temperature Plasma Surface Treatment
by Liwei Wen, Ruozhou Wang and Entao Xu
Coatings 2024, 14(5), 541; https://doi.org/10.3390/coatings14050541 - 26 Apr 2024
Viewed by 178
Abstract
This paper studied favorable low-temperature plasma (LTP) surface treatment modes for Carbon Fiber Reinforced Polymer (CFRP)/Al7075 single-lap joints using complex experimental methods and analyzed the failure modes of the joints. The surface physicochemical properties of CFRP after LTP surface treatment were characterized using [...] Read more.
This paper studied favorable low-temperature plasma (LTP) surface treatment modes for Carbon Fiber Reinforced Polymer (CFRP)/Al7075 single-lap joints using complex experimental methods and analyzed the failure modes of the joints. The surface physicochemical properties of CFRP after LTP surface treatment were characterized using scanning electron microscopy (SEM), contact angle tests, and X-ray photoelectron spectroscopy (XPS). The influence mechanism of LTP surface treatment on the bonding properties of CFRP/Al7075 single-lap Joint was studied. The results of the complex experiment and range analysis showed that the favorable LTP surface treatment parameters were a speed of 10 mm/s, a distance of 10 mm, and three repeat scans. At these parameters, the shear strength of the joints reached 30.76 MPa, a 102.8% improvement compared to the untreated group. The failure mode of the joints shifted from interface failure to substrate failure. After low-temperature plasma surface treatment with favorable parameters, the CFRP surface exhibited gully like textures, which enhanced the mechanical interlocking between the CFRP surface and the adhesive. Additionally, the surface free energy of CFRP significantly increased, reaching a maximum of 78.77 mJ/m2. XPS results demonstrated that the low-temperature plasma surface treatment led to a significant increase in the content of oxygen-containing functional groups, such as C-O, C=O, and O-C=O, on the CFRP surface. Full article
(This article belongs to the Special Issue Surface Science of Degradation and Surface Protection)
Back to TopTop