Pituitary Tumors: Molecular Insights, Diagnosis, and Targeted Therapy (2nd Edition)

A special issue of Cancers (ISSN 2072-6694). This special issue belongs to the section "Cancer Therapy".

Deadline for manuscript submissions: 1 June 2024 | Viewed by 1670

Special Issue Editors


E-Mail Website
Guest Editor
Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
Interests: Cushing’s disease; hypopituitarism; pituitary tumor; proopiomelanocortin; stress
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
Health Care Center, Kochi University, 1-5-2 Akebono-cho, Kochi 780-8520, Japan
Interests: corticotropin-releasing hormone; Cushing’s disease; glucocorticoid; hypopituitarism; proopiomelanocortin
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is the second edition of "Pituitary Tumors: Molecular Insights, Diagnosis, and Targeted Therapy" (https://www.mdpi.com/journal/cancers/special_issues/PTMDT).

Pituitary tumors present a variety of hormonal activities and clinical features, from overt to subtle. Functioning pituitary tumors are defined by the autonomous/dysregulated secretion of pituitary hormones. In this Special Issue, we explore recent advances in the molecular insights, diagnosis, and targeted therapy of pituitary tumors. For example, Cushing’s disease is defined by the autonomous secretion of ACTH and excess cortisol production, with their obvious manifestation of the clinical features of Cushing’s disease. Mutations in the ubiquitin-specific protease (USP) 8 or USP48 genes have been detected in Cushing’s disease. Hormones produced from pituitary tumors sometimes induce severe complications such as hypertension, hyperglycemia, osteoporosis, infections, atherosclerosis, and mental disorders. The pathophysiological characteristics of hormone production and pituitary adenoma cells should be elucidated. In addition, the usefulness and accuracy of the recent diagnostic criteria for pituitary tumors also need to be evaluated. The primary treatment for some types of pituitary tumors may be surgical excision of the adenoma from the pituitary; however, curative surgery is still challenging, and additional therapies are required to treat the resulting hypersecretion of hormones and tumor growth. This Special Issue will include original basic/translational/clinical research articles and reviews on aspects related to the pathophysiology, diagnosis, and potential treatment of pituitary tumors.

We look forward to receiving your contributions.

Sincerely,

Dr. Kazunori Kageyama
Dr. Mitsuru Nishiyama
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cancers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • acromegaly
  • adrenocorticotropic hormone
  • Cushing’s disease
  • diagnosis
  • growth hormone
  • pituitary tumor
  • proliferation
  • transcriptional factor
  • treatment

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 1740 KiB  
Article
Alternations of Blood Pressure Following Surgical or Drug Therapy for Prolactinomas
by Yijun Cheng, Dapeng Wang, Hao Tang, Debing Tong, Weiguo Zhao, Shaojian Lin, Hong Yao, Wenwen Lv, Xun Zhang, Li Xue, Hanbing Shang and Zhe Bao Wu
Cancers 2024, 16(4), 726; https://doi.org/10.3390/cancers16040726 - 09 Feb 2024
Viewed by 650
Abstract
Several subtypes of pituitary neuroendocrine tumors (PitNETs), such as acromegaly and Cushing’s disease, can result in hypertension. However, whether prolactinoma is associated with this complication remains unknown. Moreover, the effect of treatment with surgery or drugs on blood pressure (BP) is unknown. Herein, [...] Read more.
Several subtypes of pituitary neuroendocrine tumors (PitNETs), such as acromegaly and Cushing’s disease, can result in hypertension. However, whether prolactinoma is associated with this complication remains unknown. Moreover, the effect of treatment with surgery or drugs on blood pressure (BP) is unknown. Herein, a retrospective study reviewed 162 patients with prolactinoma who underwent transsphenoidal surgery between January 2005 and December 2022. BP measurements were performed 1 day before and 5 days after surgery. Accordingly, patients’ medical characteristics were recorded. In addition, in situ rat and xenograft nude-mice prolactinoma models have been used to mimic prolactinoma. In vivo BP and serum prolactin (PRL) levels were measured after cabergoline (CAB) administration in both rats and mice. Our data suggest that surgery can effectively decrease BP in prolactinoma patients with or without hypertension. The BP-lowering effect was significantly associated with several variables, including age, sex, disease duration, tumor size, invasion, dopamine agonists (DAs)-resistance, recurrence, and preoperative PRL levels. Moreover, in situ and xenograft prolactinomas induced BP elevation, which was alleviated by CAB treatment without and with a statistical difference in rats and mice, respectively. Thus, surgery or CAB can decrease BP in prolactinoma, indicating that pre- and postoperative BP management becomes essential. Full article
Show Figures

Figure 1

20 pages, 1425 KiB  
Article
The Influence of Telomere-Related Gene Variants, Serum Levels, and Relative Leukocyte Telomere Length in Pituitary Adenoma Occurrence and Recurrence
by Greta Gedvilaite, Loresa Kriauciuniene, Arimantas Tamasauskas and Rasa Liutkeviciene
Cancers 2024, 16(3), 643; https://doi.org/10.3390/cancers16030643 - 02 Feb 2024
Viewed by 600
Abstract
In this study, we examined 130 patients with pituitary adenomas (PAs) and 320 healthy subjects, using DNA samples from peripheral blood leukocytes purified through the DNA salting-out method. Real-time polymerase chain reaction (RT-PCR) was used to assess single nucleotide polymorphisms (SNPs) and relative [...] Read more.
In this study, we examined 130 patients with pituitary adenomas (PAs) and 320 healthy subjects, using DNA samples from peripheral blood leukocytes purified through the DNA salting-out method. Real-time polymerase chain reaction (RT-PCR) was used to assess single nucleotide polymorphisms (SNPs) and relative leukocyte telomere lengths (RLTLs), while enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of TERF1, TERF2, TNKS2, CTC1, and ZNF676 in blood serum. Our findings reveal several significant associations. Genetic associations with pituitary adenoma occurrence: the TERF1 rs1545827 CT + TT genotypes were linked to 2.9-fold decreased odds of PA occurrence. Conversely, the TNKS2 rs10509637 GG genotype showed 6.5-fold increased odds of PA occurrence. Gender-specific genetic associations with PA occurrence: in females, the TERF1 rs1545827 CC + TT genotypes indicated 3.1-fold decreased odds of PA occurrence, while the TNKS2 rs10509637 AA genotype was associated with 4.6-fold increased odds. In males, the presence of the TERF1 rs1545827 T allele was associated with 2.2-fold decreased odds of PA occurrence, while the TNKS2 rs10509637 AA genotype was linked to a substantial 10.6-fold increase in odds. Associations with pituitary adenoma recurrence: the TNKS2 rs10509637 AA genotype was associated with 4.2-fold increased odds of PA recurrence. On the other hand, the TERF1 rs1545827 CT + TT genotypes were linked to 3.5-fold decreased odds of PA without recurrence, while the TNKS2 rs10509637 AA genotype was associated with 6.4-fold increased odds of PA without recurrence. Serum TERF2 and TERF1 levels: patients with PA exhibited elevated serum TERF2 levels compared to the reference group. Conversely, patients with PA had decreased TERF1 serum levels compared to the reference group. Relative leukocyte telomere length (RLTL): a significant difference in RLTL between the PA group and the reference group was observed, with PA patients having longer telomeres. Genetic associations with telomere shortening: the TERF1 rs1545827 T allele was associated with 1.4-fold decreased odds of telomere shortening. In contrast, the CTC1 rs3027234 TT genotype was linked to 4.8-fold increased odds of telomere shortening. These findings suggest a complex interplay between genetic factors, telomere length, and pituitary adenoma occurrence and recurrence, with potential gender-specific effects. Furthermore, variations in TERF1 and TNKS2 genes may play crucial roles in telomere length regulation and disease susceptibility. Full article
Show Figures

Figure 1

Back to TopTop