Previous Issue
Volume 2, March
 
 

Blockchains, Volume 2, Issue 2 (June 2024) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
23 pages, 1877 KiB  
Review
Blockchain for Organ Transplantation: A Survey
by Elif Calik and Malika Bendechache
Blockchains 2024, 2(2), 150-172; https://doi.org/10.3390/blockchains2020008 - 9 May 2024
Viewed by 228
Abstract
As blockchain becomes more widely used, a growing number of application fields are becoming interested in blockchain to benefit from its decentralised nature, invariability, security, transparency, quick transaction capabilities, and cost-effectiveness. Blockchain has a wide range of applications and uses in healthcare. Distributed [...] Read more.
As blockchain becomes more widely used, a growing number of application fields are becoming interested in blockchain to benefit from its decentralised nature, invariability, security, transparency, quick transaction capabilities, and cost-effectiveness. Blockchain has a wide range of applications and uses in healthcare. Distributed ledger technology facilitates the secure transfer of patient medical records, manages the medicine supply chain, and creates an efficient, transparent, safe, and effective way of communicating data across global healthcare. The organ transplantation process (OTP) is one of the healthcare areas that benefit from the use of such technology to make its process more secure and transparent. In this article, we put forward a systematic literature review analysis on the application of blockchain to the OTP. Additionally, we address and highlight the barriers and challenges that arise while using blockchain technology for the OTP. We also offer some suggestions for future developments that would enhance blockchain’s implementation in the OTP domain. Full article
(This article belongs to the Special Issue Feature Papers in Blockchains)
Show Figures

Figure 1

16 pages, 1268 KiB  
Article
Performance of PBFT Consensus under Voting by Groups
by Vojislav B. Mišić, Jelena Mišić and Xiaolin Chang
Blockchains 2024, 2(2), 134-149; https://doi.org/10.3390/blockchains2020007 - 26 Apr 2024
Viewed by 273
Abstract
Practical Byzantine Fault Tolerance (PBFT) is the protocol of choice for many applications that require distributed consensus between a number of participant nodes. While PBFT assumes a single voting committee, many applications recognize different groups of participants that need to reach a consensus [...] Read more.
Practical Byzantine Fault Tolerance (PBFT) is the protocol of choice for many applications that require distributed consensus between a number of participant nodes. While PBFT assumes a single voting committee, many applications recognize different groups of participants that need to reach a consensus separately before accepting a proposal. To this end, we propose to count the votes by separate groups or committees of participating nodes, instead of all together as in the original PBFT. We then investigate the performance impact of this approach on the mean time to accept a data block and the number of nodes involved in making the final decision. Our results indicate that the proposed solutions impose a slight performance penalty which may be countermanded by reducing the quorum numbers needed in different subsets of the original committee. Full article
(This article belongs to the Special Issue Feature Papers in Blockchains)
Show Figures

Figure 1

27 pages, 2820 KiB  
Article
Information Sharing in Land Registration Using Hyperledger Fabric Blockchain
by Reyan M. Zein and Hossana Twinomurinzi
Blockchains 2024, 2(2), 107-133; https://doi.org/10.3390/blockchains2020006 - 16 Apr 2024
Viewed by 463
Abstract
Blockchain technology is increasingly being recognized for its pivotal role in enhancing security, immutability, and transparency across government sectors, notably in land registration (LR) processes. This research emphasizes the need for contextually adapted blockchain technology solutions, particularly in resource-constrained and culturally diverse settings. [...] Read more.
Blockchain technology is increasingly being recognized for its pivotal role in enhancing security, immutability, and transparency across government sectors, notably in land registration (LR) processes. This research emphasizes the need for contextually adapted blockchain technology solutions, particularly in resource-constrained and culturally diverse settings. Utilizing the elaborated action design research method, this study presents a Hyperledger-based blockchain technology system tailored for Sudan’s LR, addressing technical challenges, evaluation frameworks, privacy measures, and deployment strategies. This system not only facilitates secure and transparent land transactions from planning to certificate issuance, but also integrates the management of land sales, significantly reducing the need for intermediaries. By providing a detailed exploration of the system’s goals, technical hurdles, and practical deployment insights, this research contributes valuable knowledge to the implementation of blockchain technology in LR, with findings that are applicable to similar contexts globally. This study underscores the importance of customizing blockchain solutions to meet the unique requirements of different environments, thereby advancing digital government in resource-constrained settings. Full article
Show Figures

Figure 1

28 pages, 1647 KiB  
Article
Decision Model to Design Trust-Focused and Blockchain-Based Health Data Management Applications
by Christina Erler, Ann-Marit Bauer, Friedrich Gauger and Wilhelm Stork
Blockchains 2024, 2(2), 79-106; https://doi.org/10.3390/blockchains2020005 - 9 Apr 2024
Viewed by 425
Abstract
Many Blockchain-based approaches have been published in the field of health data management applications (HDMAs). However, no comprehensive guideline exists to guide the multiple and interdependent design decisions to develop such systems. This paper aims to support the HDMA system design processes by [...] Read more.
Many Blockchain-based approaches have been published in the field of health data management applications (HDMAs). However, no comprehensive guideline exists to guide the multiple and interdependent design decisions to develop such systems. This paper aims to support the HDMA system design processes by introducing a novel decision model. The model considers all relevant requirements, from regulatory context to user needs and trust considerations. To generate the decision model, we define a taxonomy that organizes previously published approaches by their technical design features and combines it with the trust assumptions of the participating actors according to the STRIDE method. The model aims to support a cohesive overall system design by addressing Blockchain type, off-chain storage, identity and access management, security decisions, and the specific use case of data donation. A group of experts evaluated the decision tree and its utility is demonstrated in three representative use cases. Special attention is paid to the use case of data donation via a data trustee, which is examined in detail. Full article
(This article belongs to the Special Issue Feature Papers in Blockchains)
Show Figures

Figure 1

Previous Issue
Back to TopTop