Previous Issue
Volume 3, March
 
 

Grasses, Volume 3, Issue 2 (June 2024) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 2910 KiB  
Review
Research Progress in the Application of Google Earth Engine for Grasslands Based on a Bibliometric Analysis
by Zinhle Mashaba-Munghemezulu, Lwandile Nduku, Cilence Munghemezulu and George Johannes Chirima
Grasses 2024, 3(2), 69-83; https://doi.org/10.3390/grasses3020006 (registering DOI) - 26 Apr 2024
Viewed by 193
Abstract
Grasslands cover approximately 40% of the Earth’s surface. Thus, they play a pivotal role in supporting biodiversity, ecosystem services, and human livelihoods. These ecosystems provide crucial habitats for specialized plant and animal species, act as carbon sinks to mitigate climate change, and are [...] Read more.
Grasslands cover approximately 40% of the Earth’s surface. Thus, they play a pivotal role in supporting biodiversity, ecosystem services, and human livelihoods. These ecosystems provide crucial habitats for specialized plant and animal species, act as carbon sinks to mitigate climate change, and are vital for agriculture and pastoralism. However, grasslands face ongoing threats from certain factors, like land use changes, overgrazing, and climate change. Geospatial technologies have become indispensable to manage and protect these valuable ecosystems. This review focuses on the application of Google Earth Engine (GEE) in grasslands. The study presents a bibliometric analysis of research conducted between 2016–2023. Findings from the analysis reveal a significant growth in the use of GEE and different remote sensing products for grassland studies. Most authors reported grassland degradation in most countries. Additionally, China leads in research contributions, followed by the United States and Brazil. However, the analysis highlights the need for greater involvement from developing countries, particularly in Africa. Furthermore, it highlights the global distribution of research efforts, emphasizes the need for broader international participation. Full article
Show Figures

Figure 1

24 pages, 8190 KiB  
Article
Improved Production of Marandu Palisade Grass (Brachiaria brizantha) with Mixed Gelatin Sludge Fertilization
by Eduardo André Ferreira, Joadil Gonçalves de Abreu, Wininton Mendes da Silva, Danielle Helena Müller, Dalilhia Nazaré dos Santos, Cassiano Cremon, Oscarlina Lúcia dos Santos Weber, Aaron Kinyu Hoshide, Daniel Carneiro de Abreu, Maybe Lopes Gonçalves and José Advan Pereira Pedrosa Júnior
Grasses 2024, 3(2), 45-68; https://doi.org/10.3390/grasses3020005 - 04 Apr 2024
Viewed by 403
Abstract
Gelatin industry residues are increasingly used as fertilizer and soil conditioner. However, correct residue dosage is critical for grass development and minimizing environmental impacts. This randomized block design study determined adequate dosage of mixed gelatin sludge (MGS) for Marandu grass production in wet/dry [...] Read more.
Gelatin industry residues are increasingly used as fertilizer and soil conditioner. However, correct residue dosage is critical for grass development and minimizing environmental impacts. This randomized block design study determined adequate dosage of mixed gelatin sludge (MGS) for Marandu grass production in wet/dry seasons in Brazil. Five MGS levels (0–200% of required nitrogen) were compared to mineral fertilizer. Agronomic/productivity characteristics, bromatological composition, macro/micronutrient composition of leaves, and soil chemical attributes were evaluated. Agronomic/productivity characteristics were influenced by MGS dose in both dry/rainy seasons, except for leaf blade pseudostem ratio and percentage of leaves/pseudostem. Bromatological composition was influenced by MGS doses in dry/rainy seasons except for dry/mineral material quantities. Marandu leaf tissue chemical composition was significantly influenced by MGS dose, except for potassium, boron, and iron. Chemical composition of four soil layers between 0 and 50 cm influenced MGS dose, except for pH, organic matter, magnesium, copper, manganese, and zinc. GMS dose for Marandu production should be 200% of nitrogen requirement. MGS application increased productivity/quality of Marandu grass. Macronutrients (nitrogen, phosphorus) and micronutrients (calcium, magnesium, sulfur, copper, and zinc) increased in Marandu grass and in the soil (calcium, sulfur, and sodium). The increased sodium level was not limiting. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop