# Conditions for Scalar and Electromagnetic Wave Pulses to Be “Strange” or Not

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

- Every component of the electric (and magnetic) field is a scalar-valued field that obeys the wave equation. Hence, in order to judge for a chosen wavefunction $\psi \left(\overrightarrow{r},t\right)$ whether the corresponding EM pulse is strange or not, it is sufficient to evaluate the integral$${S}_{\psi}\left(\overrightarrow{r}\right)=\underset{-\infty}{\overset{\infty}{{\displaystyle \int}}}\psi (\overrightarrow{r},t)dt.$$
- If EM field vectors are derived by the standard procedure of constructing the magnetic vector potential or the Hertz vector from $\psi \left(\overrightarrow{r},t\right)$, even simple expressions of $\psi \left(\overrightarrow{r},t\right)$ may result in too cumbersome ones for the EM field vectors, and the integral of Equation (1) may be difficult to evaluate. Moreover, as the procedure involves taking derivatives with respect to time and/or spatial coordinates, a strange $\psi \left(\overrightarrow{r},t\right)$, i.e., one with property ${S}_{\psi}\left(\overrightarrow{r}\right)\ne 0$, generally results in a usual EM field, i.e., ${\overrightarrow{S}}_{E}\left(\overrightarrow{r}\right)=0$.
- The notion of strangeness also applies to wave fields that are scalar valued by their physical nature, e.g., sound waves.

#### 2.1. Evaluation of the Wave Pulse Energy

#### 2.2. Time-Domain Representation

## 3. Results

#### 3.1. General Conditions for a Pulse to Be “Usual”

#### 3.1.1. Sufficient Conditions

#### 3.1.2. Necessary and Sufficient Conditions

#### 3.2. Spherically Symmetric Pulses: Some Examples

#### 3.2.1. Even and Odd Lorentzians

- (a)
- If $f\left(s\right)$ is an even function, $\psi \left(\overrightarrow{r},t\right)$ is odd with respect to time (hence, automatically not strange) and $\overrightarrow{E}(\overrightarrow{r},t$) is even, but nevertheless not strange. The magnetic field is odd and, hence, not strange.
- (b)
- If $f\left(s\right)$ is odd, $\psi \left(\overrightarrow{r},t\right)$ is even with respect to time (but nevertheless not strange) and $\overrightarrow{E}(\overrightarrow{r},t$) is odd, i.e., automatically is not strange. The magnetic field is even, but still not strange.

#### 3.2.2. Error Function

#### 3.3. Propagation-Invariant Pulses: Some Examples

#### 3.3.1. Superluminal X-Waves

#### 3.3.2. Subluminal Arctan-Wave

#### 3.3.3. Luminal Localized Wave

#### 3.4. Strange Fields Generated by Sources

#### 3.4.1. Bonnor Fields

#### 3.4.2. Single-Cycle Dipole Electromagnetic Fields

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

## References

- Lekner, J. Theory of Electromagnetic Pulses; Morgan & Claypool Publishers: San Rafael, CA, USA, 2018. [Google Scholar]
- Kiselev, A.P. Localized Light Waves: Paraxial and Exact Solutions of the Wave Equation (a Review). Opt. Spectrosc.
**2007**, 102, 603–622. [Google Scholar] [CrossRef] - Bessonov, E.G. On a class of electromagnetic waves. Zh. Eksp. Teor. Fiz.
**1981**, 80, 852–858. [Google Scholar] - Popov, N.L.; Vinogradov, A.V. Free Space Strange and Unipolar EM Pulses: Yes or No? Foundations
**2021**, 1, 169–174. [Google Scholar] [CrossRef] - Ziolkowski, R.W.; Besieris, I.M.; Shaarawi, A.M. Aperture realizations of exact solutions to homogeneous-wave equations. Opt. Soc. Am. A
**1993**, 10, 75–87. [Google Scholar] [CrossRef] - Besieris, I.; Abdel-Rahman, M.; Shaarawi, A.; Chatzipetros, A. Two fundamental representations of localized pulse solutions to the scalar wave equation. Prog. Electromagn. Res.
**1998**, 19, 1–47. [Google Scholar] [CrossRef][Green Version] - Salo, J.; Fagerholm, J.; Friberg, A.T.; Salomaa, M.M. Unified description of nondiffracting X and Y waves. Phys. Rev. E
**2000**, 62, 4261–4275. [Google Scholar] [CrossRef] [PubMed][Green Version] - Saari, P.; Reivelt, K. Generation and classification of localized waves by Lorentz transformations in Fourier space. Phys. Rev. E
**2004**, 69, 036612. [Google Scholar] [CrossRef] - Hernandez-Figueroa, H.E.; Recami, E.; Zamboni-Rached, M. (Eds.) Non-Diffracting Waves; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Kondakci, H.E.; Abouraddy, A.F. Diffraction-free space-time light sheets. Nat. Phot.
**2017**, 11, 733–740. [Google Scholar] [CrossRef][Green Version] - Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: New York, NY, USA, 1995; p. 288. [Google Scholar]
- Artyukov, I.A.; Dyachkov, N.V.; Feshchenko, R.M.; Vinogradov, A.V. Collapsing EM wave—A simple model for nonparaxial, quasi-monochromatic, single and half-cycle beams. Phys. Scr.
**2020**, 95, 064006. [Google Scholar] [CrossRef] - Lu, J.; Greenleaf, J.F. Nondiffracting X waves—Exact solutions to free-space scalar wave equation and their finite aperture realizations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control
**1992**, 39, 19–31. [Google Scholar] [CrossRef] [PubMed] - Saari, P. Localized waves in femtosecond optics. In Ultrafast Photonics; Miller, A., Reid, D.T., Finlayson, D.M., Eds.; Institute of Physics Publishing: Bristol, UK, 2004; pp. 317–340. [Google Scholar]
- Bonnor, W.B. Solutions of Maxwell’s equations for charge moving at the speed of light. Int. J. Theor. Phys.
**1969**, 2, 373–379. [Google Scholar] [CrossRef] - Wang, Z.; Lin, Q.; Wang, Z. Single-cycle electromagnetic pulses produced by oscillating electric dipoles. Phys. Rev. E
**2003**, 67, 016503. [Google Scholar] [CrossRef] [PubMed]

**Figure 1.**Dependencies of the real part (red) and imaginary part (blue) of the wavefunction in Equation (12) on time (for specificity—in the optical femtosecond domain) along the propagation axis (where $\rho =0$). Ordinate scales are normalized to $Re\psi \left(0,0\right)$ (see (

**a**)), but notice the change of the scale in (

**b**–

**d**). Spatial locations: (

**a**) $z=0\mathsf{\mu}\mathrm{m}$; (

**b**) $z=0.4\mathsf{\mu}\mathrm{m}$; (

**c**) $z=0.8\mathsf{\mu}\mathrm{m}$; (

**d**) $z=-0.8\mathsf{\mu}\mathrm{m}$. Values of the parameters: ${a}_{1}=0.1\mathsf{\mu}\mathrm{m}$, ${a}_{2}=0.2\mathsf{\mu}\mathrm{m}$, $b=0.1\mathsf{\mu}\mathrm{m}$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Saari, P.; Besieris, I.M.
Conditions for Scalar and Electromagnetic Wave Pulses to Be “Strange” or Not. *Foundations* **2022**, *2*, 199-208.
https://doi.org/10.3390/foundations2010012

**AMA Style**

Saari P, Besieris IM.
Conditions for Scalar and Electromagnetic Wave Pulses to Be “Strange” or Not. *Foundations*. 2022; 2(1):199-208.
https://doi.org/10.3390/foundations2010012

**Chicago/Turabian Style**

Saari, Peeter, and Ioannis M. Besieris.
2022. "Conditions for Scalar and Electromagnetic Wave Pulses to Be “Strange” or Not" *Foundations* 2, no. 1: 199-208.
https://doi.org/10.3390/foundations2010012