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Abstract: Vector-valued electromagnetic waves for which the integral of the electric field over time
is zero at every location in space were characterized as “usual” by Bessonov several decades ago.
Otherwise, they were called “strange”. Recently, Popov and Vinogradov studied conditions leading
to usual waves using a spectral representation. Their main result is that pulses of finite energy in
free space are usual and, consequently, bipolar. However, they do not exclude the possibility of the
existence of finite-energy strange pulses, although quite exotic, in a vacuum. Our emphasis in this
article is to examine what the relevant necessary and sufficient conditions are for usual and strange
waves, particularly for scalar pulses. Illustrative examples are provided, including spherical symmet-
ric collapsing pulses, propagation-invariant, and the so-called almost undistorted spatiotemporally
localized waves. Finally, source-generated strange electromagnetic fields are reported.

Keywords: space-time couplings; spatiotemporal; ultrafast optics; bipolar pulses; few-cycle pulses;
free-space wave equation; space-time wave packets; nondiffracting localized waves

1. Introduction

Progress in the generation and application of femtosecond and attosecond electro-
magnetic (EM) pulses have stimulated theoretical research of few-cycle and near-cycle
localized exact solutions of the free-space wave equation (see, e.g., [1,2] and references
therein). A strong space-time coupling, inherent to such pulses in focusing, makes the
classical well-known approximations inapplicable. Moreover, with the decrease in the
duration of optical pulses, there is a growing need to go beyond the quasi-monochromatic
limit, and spectral representations of fields lose their advantages over direct time-domain
ones. There is an ultimate milestone on the road away from the narrow-band limit—where
the temporal spectrum of the pulse extends to the frequency scale origin. This causes a
merging of positive-frequency and negative-frequency Fourier components, and as a result,
the concept of analytic signal with its Hilbert-transform-related real and imaginary parts
remains the only sound alternative for determining the envelope of a pulse.

If the spectrum vanishes at the frequency ω = 0, the pulse is bipolar. Several decades
ago Bessonov [3] introduced the term “strange” for waves whose electric field does not
obey the equality

→
S E

(→
r
)
≡

∞∫
−∞

→
E(
→
r , t)dt = 0 (1)

and called “usual” all waves satisfying Equation (1) at every location
→
r . It is obvious that

usual waves are necessarily bipolar.
In a recent paper [4], Popov and Vinogradov studied conditions leading to Equation (1)

using a spectral representation. Their main result is that pulses of finite energy in free
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space are usual and, consequently, bipolar. However, they do not exclude the possibility of
the existence of finite-energy strange pulses, although quite exotic, in a vacuum. In other
words, they have not proved that the finiteness of pulse energy is a sufficient condition for
a pulse to be usual (not strange). Of course, it is not a necessary condition, as a bipolar
plane wave pulse can already readily be a usual one.

We will neither question the results of the paper [4] nor prove the sufficiency of the
energy condition. Instead, our aims here are to analyze what the relevant necessary and
sufficient conditions are and to study the problem with several sample waves.

Specifically, we first consider spherically symmetric pulses converging to and there-
after, at positive times, diverging from a focus at the origin, i.e., pulses described by
a wavefunction

ψ
(→

r , t
)
=

1
r
[ f (t + r/c)− f (t− r/c)], (2)

where f (s) is an arbitrary nonsingular function depending on the spherical radial coordi-
nate r =

√
x2 + y2 + z2 and time t, with c being the speed of light in a vacuum.

Second, we consider axially symmetric propagation-invariant pulses [5–10] whose
wavefunction and/or energy density depend on the axial coordinate and time solely
through the propagation variable ζ = z− vt, where v is the group velocity of the pulse.
These fields exhibit pronounced space-time coupling. From a theoretical point of view it is
interesting that the second type of pulses can be obtained from spherically symmetric ones
via relativistic boosts and/or complexifying the axis z [5,6,8]. Finally, we study some exotic
pulses described by sophisticated solutions of the wave equation.

2. Methods

We primarily analyze scalar waves for the following reasons:

1. Every component of the electric (and magnetic) field is a scalar-valued field that

obeys the wave equation. Hence, in order to judge for a chosen wavefunction ψ
(→

r , t
)

whether the corresponding EM pulse is strange or not, it is sufficient to evaluate
the integral

Sψ

(→
r
)
=

∞∫
−∞

ψ(
→
r , t)dt. (3)

2. If EM field vectors are derived by the standard procedure of constructing the magnetic

vector potential or the Hertz vector from ψ
(→

r , t
)

, even simple expressions of ψ
(→

r , t
)

may result in too cumbersome ones for the EM field vectors, and the integral of
Equation (1) may be difficult to evaluate. Moreover, as the procedure involves taking
derivatives with respect to time and/or spatial coordinates, a strange ψ

(→
r , t
)

, i.e.,

one with property Sψ

(→
r
)
6= 0, generally results in a usual EM field, i.e.,

→
S E

(→
r
)
= 0.

3. The notion of strangeness also applies to wave fields that are scalar valued by their
physical nature, e.g., sound waves.

It should be pointed out that our approach does not mean resorting to a scalar approx-
imation for EM fields.

In order to determine whether an electric field is strange or not, one can avoid inte-
gration according to Equation (1), which in most cases is a computationally difficult task.

Instead, one can make use of the expression
→
E
(→

r , t
)
= −∂

→
A
(→

r , t
)

/∂t of the electric field
derived from a magnetic vector potential in the Coulomb gauge and consider the vector
potential at t = ±∞ instead of evaluation the integral of the electric field. It is convenient

to derive the vector potential from a scalar wavefunction as
→
A
(→

r , t
)
= ∇×

[
ψ
(→

r , t
)→

a z

]
,

where
→
a z is the unit vector along the z-axis. In the case of cylindrical symmetry, only the

azimuthal component remains, and it takes the simple form Aϕ(ρ, z, t) = −∂ψ(ρ, z, t)/∂ρ.
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In the case of spherical symmetry, the unit vector
→
a z needs to first be expressed in a spheri-

cal coordinate system, and then for the curl, only the azimuthal component remains, taking
a similar simple form Aϕ(r, θ, t) = − sin θ∂ψ(r, θ, t)/∂r. Hence, if one of the following
equalities is fulfilled at every location, in the case of cylindrical or spherical symmetry,
respectively,

lim
t→∞

∂

∂ρ
[ψ(ρ, z, t)− ψ(ρ, z,−t)] = 0, lim

t→∞

∂

∂r
[ψ(r, θ, t)− ψ(r, θ,−t)] sin θ = 0, (4)

the corresponding electric field is not strange. Equation (4) has been successfully applied
for the examples in Section 3.

2.1. Evaluation of the Wave Pulse Energy

The (total) energy of a physically realizable pulse is a time-independent spatial integral
(over the whole space) of the energy density, which in the case of an EM wave is given
by the well-known expression with squares of strengths of electric and magnetic fields.
Energy density of a scalar field is frequently defined as the square of the wavefunction (or
modulus squared for complex-valued fields). However, the spatial integral of the latter
will not be used below for establishing whether the EM pulse corresponding to a given
wavefunction has finite or infinite energy.

For scalar-valued wave fields, another definition of the energy density exists [11],
which is consistent with the energy conservation law and the Poynting theorem. It is given
by Equation (5) below. We will call the spatial integral of W the Mandel-Wolf total energy for
brevity. Conditions in the spectral domain—analogous to those in [4]—for a scalar field to
have finite energy and be usual are discussed in Appendix A.

W =
1
2

[
1
c2

(
∂

∂t
ψ

)2
+∇ψ·∇ψ

]
. (5)

In order to establish whether a chosen wavefunction gives a pulse of finite energy or
not, we used two different packages of scientific calculation for symbolic integration—or, if
it turned out to be impossible—numerical integration.

2.2. Time-Domain Representation

As an alternative to using the Fourier expansion of the field as done in [4], for the
constituents of the field one may take the singular propagator D(r, t) (sometimes called the
Riemann or Schwinger function)

D(r, t) =
1

4πrc2 [δ(r/c− t)− δ(r/c + t)] ≡ G+(r, t)− G−(r, t), (6)

where δ(.) denotes the Dirac delta and G± are the causal (retarded) and anticausal (ad-
vanced) Green functions, respectively. The function D(r, t) represents a spherically sym-
metric delta-shaped pulse wave, first (at negative times t) collapsing to the origin (the right
term) and then (at positive times t) expanding from it.

With this propagator as an elementary constituent, any solution to the three-dimensional
homogeneous wave equation can be expressed as the following convolution integral over
the whole 3D space:

ψ
(→

r , t
)
=
∫ [

D(R, t)h
(→

r
′)

+
∂

∂t
D(R, t)g

(→
r
′)]

d
→
r
′
. (7)

Here, R =
∣∣∣→r −→r ′∣∣∣ and the distributions g(.) and h(.) are determined by the ini-

tial conditions—the field “snapshot” at the time origin moment g
(→

r
)

= ψ
(→

r , 0
)

and
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h
(→

r
)
= ∂/∂t ψ

(→
r , t
)∣∣∣

t=0
. However, unlike the solution of a radiation problem, since

D contains not only the retarded Green function but the advanced one as well, g and h
describe a distribution of fictitious Huygens-type sources, i.e., sources coupled with sinks
of the same strength.

3. Results
3.1. General Conditions for a Pulse to Be “Usual”
3.1.1. Sufficient Conditions

With the help of Equation (7), we can easily find conditions under which the field is
not “strange”, i.e., conditions of vanishing of the time integral in Equation (3), or—keeping
in view the text before it—also conditions for fulfillment of Equation (1). Since D(R, t) is an
odd function with respect to time, the first term of the integrand in Equation (7) in any case
does not contribute to Sψ

(→
r
)

. As the δ-function equals zero at infinity, the time integral of

the second term vanishes if R =
∣∣∣→r −→r ′∣∣∣ remains finite in the spatial integration. Hence,

any wave field that is spatially bounded at a certain instant of time (when the pulse is
focused) cannot be “strange”. Any such pulse, if it has no unphysical singularities, has finite
energy irrespective of which of the abovementioned definitions of the pulse energy has
been taken. Hence, the sufficient condition formulated here is consistent with the one found
by Popov and Vinogradov [4]. The second term also vanishes if g

(→
r
)
= ψ

(→
r , 0
)
= 0 in

the whole space. This condition means that any nontrivial ψ
(→

r , t
)

must be an odd function
of time. Therefore, such oddness is another sufficient condition for a pulse to be “usual”.
The results of the next subsection demonstrate accordance with this condition.

3.1.2. Necessary and Sufficient Conditions

For a field to be usual (not strange), the integral in Equation (1) or (3) must vanish
everywhere. Therefore, we obtain the necessary condition that it must vanish at the

origin
→
r = 0. In this case, we write R =

∣∣∣→r ′∣∣∣ ≡ r, omitting the prime for simplicity.
After integration from t = −T to t = T and subsequently taking the limit T → ∞ in
accordance with Equation (3), the second term in Equation (7) can be transformed in
spherical coordinates as follows:[∫

D(R, t)g(r, θ, ϕ)R2 sin θdRdθdϕ
]T
−T =

= 1
4πc2

{∫
r−1
[

δ(r/c− T)− δ(r/c + T)−
−δ(r/c + T) + δ(r/c− T)

]
g(r, θ, ϕ)r2 sin θdrdθdϕ

}
=

= 2 1
4π

∫
g(cT, θ, ϕ)T sin θdθdϕ = 2T〈g〉cT .

Here, gcT denotes the average value of the function g on the surface of a sphere with
radius cT and center at the origin. Therefore, a necessary condition for a wave field to be
usual is lim

T→∞
T〈g〉cT = 0.

Generally, this means that g(r, θ, ϕ) must asymptotically vanish as r → ∞ faster than
1/r. Of course, the surface average might be zero irrespective to such asymptotic behavior
of g(r, θ, ϕ) if the latter is bipolar on the surface, and due to some symmetry the regions
of opposite sign cancel each other. However, if applying the condition for a sphere whose
center is shifted from the origin, the symmetry would disappear and the condition would
be fulfilled due to only the aforementioned asymptotic behavior of g(r, θ, ϕ).

The transformation of the integral carried out above remains valid for an arbitrary
point

→
r 6= 0 in Equation (7). The reason for this is that whatever the point in the field

is, its radial vector is fixed while
→
|r| runs together with cT to infinity. Therefore,

→
r can

be neglected in the expression R =
∣∣∣→r −→r ′∣∣∣. Consequently, the necessary and sufficient

condition for a wavefield to be “usual” can be stated as follows. The wavefunction g(r, θ, ϕ)
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at t = 0 must vanish asymptotically as r → ∞ faster than 1/r; in other words, the following
equality must be fulfilled:

lim
r→∞

rψ(r, θ, ϕ, 0) = 0. (8)

Application of the criterion in Equation (8) is especially appropriate when ψ
(→

r , t
)

contains multivalued complex functions and direct temporal integration according to
Equation (3) may be hampered due to crossing the branch-cut lines.

3.2. Spherically Symmetric Pulses: Some Examples

Such pulses, the general form of the wavefunction of which is given by Equation (2),
are the simplest to analyze. If ψ

(→
r , t
)

in the form of Equation (2) is used to construct a
vector magnetic potential, simple relations between f (s) and EM field vectors and EM
pulse energy have been derived in [12] and references therein.

3.2.1. Even and Odd Lorentzians

We studied the functions fe(s) = 1/
(
1 + s2n) and fo(s) = s/

(
1 + s2n) (see Equation (2))

where n = 1, 2, . . .. Results concerning the strangeness of such fields are as follows:

(a) If f (s) is an even function, ψ
(→

r , t
)

is odd with respect to time (hence, automatically

not strange) and
→
E(
→
r , t) is even, but nevertheless not strange. The magnetic field is

odd and, hence, not strange.
(b) If f (s) is odd, ψ

(→
r , t
)

is even with respect to time (but nevertheless not strange) and
→
E(
→
r , t) is odd, i.e., automatically is not strange. The magnetic field is even, but still

not strange.

For these pulses the Mandel–Wolf energy and EM energy are both finite.

3.2.2. Error Function

The function f (s) = erf(s) is odd, and consequently, ψ
(→

r , t
)

is even. However, it
is strange and it is not square-integrable. Nevertheless, its Mandel–Wolf energy and EM

energy are both finite. In accordance with point (b) above,
→
E(
→
r , t) is odd, i.e., automatically

not strange. The magnetic field is an even function of time but still not strange.

3.3. Propagation-Invariant Pulses: Some Examples
3.3.1. Superluminal X-Waves

Inspired by the quotation “Therefore, the possibility of the existence of strange and
unipolar pulses in a vacuum, although quite exotic, remains” from [4], we turned to the
so-called X-waves, which were first intruduced in [5,13] and then studied in numerous
papers; see [6–9] and references therein.

The so-called fundamental axisymmetric X-wave is given by

ψ(ρ, z, t) =
a√

[a + i(z− vt)]2 + ρ2γ−2
, (9)

where γ =
(
v2/c2 − 1

)−1/2 is the superluminal version of the Lorentz factor, including
the velocity v > c of the pulse; a is a positive parameter that determines the width of the
pulse; and ρ =

√
x2 + y2. This wavefunction is commonly considered as a white-spectrum

superposition of Bessel beams.
Referring to Equation (7), it can be also derived as Liénard–Wiechert potentials for

Lorentzian distributions of fictitous “charges” (sources and sinks) flying with the constant

velocity v along the axis z, i.e., the distributions being a
[
(z− vt)2 + a2

]−1
δ(x)δ(y) (for
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the imaginary part of ψ(.) and (z− vt)
[
(z− vt)2 + a2

]−1
δ(x)δ(y) (for the real part) [14].

The real part of Equation (9) respresents a strange scalar field and the imaginary part an
ordinary (usual) scalar field. At the origin, ψ(0, 0, t) = a/(a− ivt), the temporal spectrum
of the real part is proportional to exp(−a|ω|/v) while that of the imaginary part is propor-
tional to signum(ω) exp(−a|ω|/v). Hence, although both spectra have their maxima at
infinitesimally small frequencies, the spectrum of the imaginary part lacks the constituent
at ω = 0 exactly, which is in accordance with the established difference in strangeness of
the real and imaginary parts.

If the EM vector fields are derived from Equation (9) by standard procedures involving
the vector magnetic potential or the Hertz vector, then, due to taking derivatives in the
course of these procedures, the EM field turns out to be usual.

A specific procedure to obtain an EM field avoiding the derivatives is to derive the
following complex-valued Riemann–Silberstein vector

→
F
(→

r , t
)
= ic2

√
(v/c)2−1

v2Q
(→

r ,t
) P−

(→
r ,t
)

P+
(→

r ,t
)→a x − c

√
(v/c)2−1

vQ
(→

r ,t
) P−

(→
r ,t
)

P+
(→

r ,t
)→a x + c2 (v/c)2−1

v2Q
(→

r ,t
)→a z;

Q
(→

r , t
)
=

√(
(v/c)2 − 1

)
ρ2 + (a + i(z− vt))2;

P±
(→

r , t
)
=
√

1± a+i(z−vt)

Q
(→

r ,t
)

(10)

which arises from a superposition of vector-valued Bessel beams. It can be expressed as
→
F
(→

r , t
)
=
√

ε0/2
(→

E + ic
→
B
)

, where ε0 is the permittivity of free space and
→
E and

→
B are

real fields obeying the homogeneous Maxwell equations. The z-component of
→
F
(→

r , t
)

is essentially the infinite-energy superluminal fundamental X wave, as one can see by
inspection of Equations (9) and (10). Hence, the real part of the electric field is a strange
field, whereas the magnetic field is a usual field. The EM wave pulse energy is infinite quite
analogously to the case of plane waves. This is understandable because the X wave can be
thought of as a superposition of plane wave pulses directed along a conical surface.

3.3.2. Subluminal Arctan-Wave

The expression in Reference [6]

ψ
(→

r , t
)
= 1√

ρ2+γ2(z−vt)2
tan−1

( √
ρ2+γ2(z−vt)2

a+iγ(v/c)
(

z− c2
v t
)
)

;

γ = 1/
√

1− (v/c)2, v < c,

(11)

where again ρ is the polar radial coordinate, is a subluminal localized wave that is relatively
undistorted upon propagation depending on the value of the positive free parameter
a. The real part of ψ

(→
r , t
)

has a finite Mandel–Wolf total energy and is a strange field;
however, its imaginary part is normal (usual). Additionally, the finite-energy corresponding
electromagnetic fields, constructed within the framework of either a Coulomb gauge or a
vector Hertz potential, are usual fields.

3.3.3. Luminal Localized Wave

In cylindrical coordinates, the azimuthally symmetric expression

ψ
(→

r , t
)
=

1√
4b2ρ2 + [−b2 + (a1 + iς)(a2 − iη) + ρ2]

2
, (12)

where ζ = z− ct, η = z + ct are the characteristic variables of the one-dimensional scalar
wave equation in vacuum and a1,2 and b are positive free parameters, is a spatiotemporally
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localized extended splash-mode nonsingular solution to the (3 + 1)-dimensional scalar
wave equation under the condition a1a2 − b2 > 0. It can be derived from a superposition of
Bessel–Gauss focus wave modes (FWM). For b = 0, it reduces to the ordinary first-order
splash-mode first derived by Ziolkowski (see, e.g., [5,6]); the latter is not strange. The scalar
wave field in Equation (12) is not strange, and the Wolf–Mandel total energy of its real

part is finite. The electric and magnetic fields arising from a vector potential
→
A
(→

r , t
)
=

∇×
[
ψ
(→

r , t
)→

a z

]
within the framework of a Coulomb gauge have been examined. The

electric and magnetic fields are usual. The total electromagnetic energy is finite.
The reason why the “strangeness” integral of Equation (3) turns out to be zero can be

understood from Figure 1.
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Figure 1. Dependencies of the real part (red) and imaginary part (blue) of the wavefunction in
Equation (12) on time (for specificity—in the optical femtosecond domain) along the propagation axis
(where ρ = 0). Ordinate scales are normalized to Reψ(0, 0) (see (a)), but notice the change of the scale
in (b–d). Spatial locations: (a) z = 0 µm; (b) z = 0.4 µm; (c) z = 0.8 µm; (d) z = −0.8 µm. Values of
the parameters: a1 = 0.1 µm, a2 = 0.2 µm, b = 0.1 µm.

At first glance, the real part is unipolar (à la that of the X wave); i.e., the real field
seems to be strange. However, closer inspection of Figure 1a indicates that the peak appears
on the negative-polarity background, which makes the area under the curve equal to zero,
as is the case with the imaginary part. Plots (a) and (b) show that outside the origin, the
pulse splits into two counterpropagating ones. Comparison of plots (c) and (d) shows
that the real part of the wavefunction is even with respect to simultaneous inversion
of the sign of the variables z, t and the imaginary part is odd with respect to the same
inversion. It should be mentioned that neither numerical computation of the “strangeness”
integral Equation (3) nor plotting of the wavefunction can be properly accomplished by
straightforward application of Equation (12) due to presence of a brach cut in the square
root function of a complex-valued argument.
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3.4. Strange Fields Generated by Sources
3.4.1. Bonnor Fields

In cylindrical coordinates, we identify two regions of space: ρ ≥ a (outside) and ρ ≤ a
(inside). Motivated by Bonnor’s work [15], we specify scalar and vector potentials in the
two regions:

Φ0(ρ, φ, z, t) = e−(t−z)2
cos φ/ρ, A0(ρ, φ, z, t) = Φ0(ρ, φ, z, t)

→
a z;

Φi(ρ, φ, z, t) = e−(t−z)2
(

4ρ2

a3 −
3ρ3

a4

)
cos φ, Ai(ρ, φ, z, t) = Φi(ρ, φ, z, t)

→
a z.

(13)

Here, normalization with the speed of light in a vacuum equal to unity has been
used. These potential fields satisfy the Lorentz condition. Additionally, the continuity
Φ0(a, φ, z, t) = Φi(a, φ, z, t) should be noted.

In the region ρ ≤ a, the electric volume charge and current densities are determined
as follows:

ρvi = −
(
∇2 − ∂2

∂t2

)
Φi = −

12e−(t−z)2 (a−2ρ) cos φ

a4 ,
→
J vi = −

(
∇2 − ∂2

∂t2

)→
Ai = ρvi

→
a z.

(14)

The total charge in this region equals zero. No charges exist for ρ ≥ a.
The electric and magnetic fields in the two regions are given by the expressions

→
E0 = −∇Φ0 − ∂

→
A0/∂t = e−(t−z)2 cos φ

ρ2
→
a ρ +

e−(t−z)2 sin φ

ρ2
→
a φ;

→
B0 = ∇×

→
A0 = − e−(t−z)2 sin φ

ρ2
→
a ρ +

e−(t−z)2 cos φ

ρ2
→
a φ;

→
E i =

e−(t−z)2 ρ(−8a+9ρ) cos φ

a4
→
a ρ +

e−(t−z)2 ρ(4a−3ρ) sin φ

a4
→
a φ;

→
B i = −

e−(t−z)2 ρ(4a−3ρ) sin φ

a4
→
a ρ − e−(t−z)2 ρ(8a−9ρ) cos φ

a4
→
a φ;

(15)

These are transverse electromagnetic (TEM) structures propagating along the z-direction
with the normalized speed of light in vacuum. Both the electric and magnetic fields are
strange. The total energy associated with these fields is finite.

3.4.2. Single-Cycle Dipole Electromagnetic Fields

Wang et al. [16] have derived single-cylce electromagnetic fields generated by an
oscillating elecric dipole oriented along the x-direction. We examined these fields for
“strangeness”. The electric field is strange but not the magnetic field.

4. Conclusions

Motivated by the recent work of Popov and Vinogradov [4], we have examined the
relevant conditions for usual and strange waves, particularly for scalar pulses. General
necessary and sufficient conditions for scalar and electromagnetic field pulses possessing
spatiotemporal coupling to be “usual” or “strange” have been derived in the time domain,
and their application has been illustrated. For various examples of luminal and rather
peculiar subluminal and superluminal scalar waves, it has been shown that even if they
are strange, the corresponding finite-energy electromagnetic fields constructed from the
scalar fields from either a magnetic potential within the framework of a Coulomb gauge or
a vector Hertz potential are usual. Finally, source-generated strange electromagnetic fields
have been reported.

Author Contributions: Investigation, P.S. and I.M.B.; writing—original draft preparation, P.S. and
I.M.B.; writing—review and editing, P.S. and I.M.B. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.



Foundations 2022, 2 207

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Let ψ
(→

r , t
)

be a real function satisfying the homogeneous scalar wave equation in
free space. The energy transport equation for such a wavefunction is given by

∇ ·
→
S +

∂

∂t
W = 0, (A1)

where

W =
1
2

[
1
c2

(
∂

∂t
ψ

)2
+∇ψ · ∇ψ

]
,
→
S = − ∂

∂t
ψ ∇ψ (A2)

are, respectively, the real energy density in units J/m3 and the real energy flow vector
(W/m2).

Let the real field ψ
(→

r , t
)

be expressed in terms of its spatial Fourier spectrum
as follows:

ψ
(→

r , t
)
=

1

(2π)3

∫
d
→
k Ψ
(→

k , t
)

ei
→
k ·→r . (A3)

Then, the total energy density can be written as follows:

Wtotal =
∫

d
→
r W

(→
r , t
)
=

1
2

1

(2π)3

∫
d
→
k
[

1
c2

.
Ψ
(→

k , t
)

.
Ψ
∗
(→

k , t
)
+ k2Ψ

(→
k , t
)

Ψ∗
(→

k , t
)]

, (A4)

where the dot indicates differentiation with respect of time. Bearing in mind the dispersion
relationship −k2 + ω2/c2 = 0, we assume, next, the form

Ψ
(→

k , t
)
= Ψ−

(→
k
)

eikct + Ψ+

(→
k
)

e−ikct. (A5)

Then, we have

Wtotal =
1
2

1

(2π)3

∫
d
→
k k2

[∣∣∣∣Ψ−(→k)∣∣∣∣2 + ∣∣∣∣Ψ+

(→
k
)∣∣∣∣2
]

. (A6)

Next, let the wavefunction ψ
(→

r , t
)

be defined as ψ
(→

r , t
)
= ∂φ

(→
r , t
)

/∂t and consider
the integral

Sψ

(→
r
)
=
∫ ∞
−∞ ψ

(→
r , t
)

dt = Lim|T→∞
∫ T
−T ψ

(→
r , t
)

dt

= Lim|T→∞

[
φ
(→

r , T
)
− φ

(→
r ,−T

)] (A7)

The wavefunction φ
(→

r , T
)

is expressed as

φ
(→

r , T
)
=
∫

d
→
k ei

→
k ·→r
[

Φ−

(→
k
)

eikcT + Φ+

(→
k
)

e−ikcT
]

. (A8)

According to the Riemann–Lebesgue theorem, Sψ

(→
r
)

vanishes provided that

∫ ∞

0
dk k2

∣∣∣∣∫ d
_
Ω Φ±

(→
k
)

ei
→
k ·→r
∣∣∣∣ (A9)
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converges. However, Φ±

(→
k
)
= ∓Φ±

(→
k
)

/ck. Therefore, Sψ

(→
r
)

vanishes and the field

is usual provided that the integral∫ ∞

0
dk k

∣∣∣∣∫ d
_
Ω Ψ±

(→
k
)

ei
→
k ·→r
∣∣∣∣ (A10)

converges.
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