Previous Issue
Volume 4, March
 
 

Crops, Volume 4, Issue 2 (June 2024) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 3462 KiB  
Article
A Genome-Wide Association Study of Seed Morphology-Related Traits in Sorghum Mini-Core and Senegalese Lines
by Ezekiel Ahn, Sunchung Park, Zhenbin Hu, Vishnutej Ellur, Minhyeok Cha, Yoonjung Lee, Louis K. Prom and Clint Magill
Crops 2024, 4(2), 156-171; https://doi.org/10.3390/crops4020012 - 11 Apr 2024
Viewed by 468
Abstract
Sorghum (Sorghum bicolor L.) ranks fifth as the most crucial cereal crop globally, yet its seed morphology remains relatively unexplored. This study investigated seed morphology in sorghum based on 115 mini-core and 130 Senegalese germplasms. Eight seed morphology traits encompassing size, shape, [...] Read more.
Sorghum (Sorghum bicolor L.) ranks fifth as the most crucial cereal crop globally, yet its seed morphology remains relatively unexplored. This study investigated seed morphology in sorghum based on 115 mini-core and 130 Senegalese germplasms. Eight seed morphology traits encompassing size, shape, and color parameters were assessed. Statistical analyses explored potential associations between these traits and resistance to three major sorghum diseases: anthracnose, head smut, and downy mildew. Furthermore, genome-wide association studies (GWAS) were conducted using phenotypic data from over 24,000 seeds and over 290,000 publicly available single nucleotide polymorphisms (SNPs) through the Genome Association and Prediction Integrated Tool (GAPIT) R package. Significant SNPs associated with various seed morphology traits were identified and mapped onto the reference sorghum genome to identify novel candidate defense genes. Full article
Show Figures

Figure 1

11 pages, 3652 KiB  
Article
Hemp Seed Yield Responses to Nitrogen Fertility Rates
by Swarup Podder, Sanaz Shafian, Wade E. Thomason, T. Bain Wilson and John H. Fike
Crops 2024, 4(2), 145-155; https://doi.org/10.3390/crops4020011 - 11 Apr 2024
Viewed by 426
Abstract
Industrial hemp (Cannabis sativa L.) holds promise as a crop for more sustainable supply chains given its potential as a source of high-strength fibers, adsorbents, and nutrient-dense feedstuffs. Developing nutrient management guidelines for hemp will be an important part of optimizing the [...] Read more.
Industrial hemp (Cannabis sativa L.) holds promise as a crop for more sustainable supply chains given its potential as a source of high-strength fibers, adsorbents, and nutrient-dense feedstuffs. Developing nutrient management guidelines for hemp will be an important part of optimizing the crop’s sustainability attributes. This study measured hemp seed yield in response to N fertilization rate (0, 60, 120, 180, and 240 kg N ha−1). Treatments were tested with four hemp cultivars (‘Joey’ and ‘Grandi’ in 2020, 2021, and 2022 and ‘NWG 2463’ and ‘NWG 4113’ in 2023) in Virginia. Nitrogen input influenced (p ≤ 0.0177) seed yield in all four experimental years, although the pattern of response varied substantially. In 2020, following delayed seeding, hemp showed a weak quadratic (p = 0.0113) response to N inputs, with peak yield (1640 kg ha−1) occurring with 120 kg N ha−1. In 2021, hemp displayed a strong linear (p < 0.0001) response to N inputs, with the highest seed yield (2510 kg ha−1) at 240 kg N ha−1. In 2022, a season characterized by low precipitation and high weed pressure, a weak, linear (p = 0.0111) response to the N rate was observed. The greatest seed yield (380 kg ha−1) was again observed with 240 kg N ha−1. In 2023, weed pressure remained an issue, but the response to N was strong and linear (p < 0.0001), with the greatest seed yield (831 kg ha−1) again measured at 240 kg N ha−1. These findings indicate hemp can be quite responsive to N inputs but that the magnitude of response is sensitive to other factors such as available soil moisture, weed pressure, and growing period. Full article
Show Figures

Figure 1

11 pages, 4341 KiB  
Article
Development of Algorithm for Determining N Fertiliser Requirements of Winter Wheat Based on N Status Using APSIM Modelling
by Iris Vogeler, Uttam Kumar, Leif Knudsen, Elly M. Hansen, Val Snow and Ingrid K. Thomsen
Crops 2024, 4(2), 134-144; https://doi.org/10.3390/crops4020010 - 03 Apr 2024
Viewed by 610
Abstract
The determination of optimum nitrogen (N) fertilisation rates, which maximise yields and minimise N losses, remains problematic due to unknown upcoming crop requirements and near-future supply by the soil. Remote sensing can be used for determining the crop N status and to assess [...] Read more.
The determination of optimum nitrogen (N) fertilisation rates, which maximise yields and minimise N losses, remains problematic due to unknown upcoming crop requirements and near-future supply by the soil. Remote sensing can be used for determining the crop N status and to assess the spatial variability within a field or between fields. This can be used to improve N fertilisation, provided that the optimal fertilisation rate at the time of fertiliser application for an expected yield is known. Using the APSIM-wheat model, we developed an algorithm that relates the N status of the plants at early development stages to the yield response to N. Simulations were performed for winter wheat under growth conditions in Denmark. To obtain a range of different N status in the biomass at early growth stages, the soil N in autumn was varied from 20 to 180 kg N ha−1, and at BBCH23, fertiliser was applied at a rate of 50 kg N ha−1. In a full factorial setup, additional N fertiliser was applied ranging from 0 to 150 kg N ha−1 during three different development stages (BBCH30, 32, and 37). The algorithm was evaluated by comparing model outputs with a standard N application of 50 kg N ha−1 at BBCH23 and 150 kg N ha−1 at BBCH30. The evaluation showed that, depending on the N status of the soil, the algorithm either provided higher or lower optimal N fertilisation rates when targeting 95% of the maximum yield, and these affected the grain yield and the grain N, as well as the amount of N leaching. Split application of fertiliser into three applications was generally beneficial, with decreased product-related N leaching of up to nearly 30%. Further testing of the model under different environmental conditions is needed before such an algorithm can be used to guide N fertilisation. Full article
Show Figures

Figure 1

19 pages, 18241 KiB  
Article
Analyzing Winter Wheat (Triticum aestivum) Growth Pattern Using High Spatial Resolution Images: A Case Study at Lakehead University Agriculture Research Station, Thunder Bay, Canada
by María V. Brenes Fuentes, Muditha K. Heenkenda, Tarlok S. Sahota and Laura Segura Serrano
Crops 2024, 4(2), 115-133; https://doi.org/10.3390/crops4020009 - 28 Mar 2024
Viewed by 366
Abstract
Remote sensing technology currently facilitates the monitoring of crop development, enabling detailed analysis and monitoring throughout the crop’s growing stages. This research analyzed the winter wheat growth dynamics of experimental plots at the Lakehead University Agricultural Research Station, Thunder Bay, Canada using high [...] Read more.
Remote sensing technology currently facilitates the monitoring of crop development, enabling detailed analysis and monitoring throughout the crop’s growing stages. This research analyzed the winter wheat growth dynamics of experimental plots at the Lakehead University Agricultural Research Station, Thunder Bay, Canada using high spatial and temporal resolution remote sensing images. The spectral signatures for five growing stages were prepared. NIR reflectance increased during the growing stages and decreased at the senescence, indicating healthy vegetation. The space–time cube provided valuable insight into how canopy height changed over time. The effect of nitrogen treatments on wheat did not directly influence the plant count (spring/autumn), and height and volume at maturity. However, the green and dry weights were different at several treatments. Winter wheat yield was predicted using the XGBoost algorithm, and moderate results were obtained. The study explored different techniques for analyzing winter wheat growth dynamics and identified their usefulness in smart agriculture. Full article
(This article belongs to the Special Issue Fertigation and Nutrient Management in Crops)
Show Figures

Figure 1

Previous Issue
Back to TopTop