# Hybrid Finite-Discrete Element Modeling of the Mode I Tensile Response of an Alumina Ceramic

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Computational Approach

#### 2.1. The Cohesive Law

#### 2.2. The Microscopic Stochastic Fracture Model

## 3. The Hybrid Finite-Discrete Element Method

#### 3.1. Modeling Mode I Failure Considering Distributed Flaws

#### 3.2. The Effect of Flaw Distribution

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Swab, J.J.; Lasalvia, J.C.; Gilde, G.A.; Patel, P.J.; Motyka, M.J. Transparent armor ceramics: Alon and spinel. In Proceedings of the 23rd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings; Wiley Online Library: Hoboken, NJ, USA, 1999; pp. 79–84. [Google Scholar]
- Willmann, G. Ceramic femoral head retrieval data. Clin. Orthop. AndRelated Res.
**2000**, 379, 22–28. [Google Scholar] [CrossRef] - Subhash, G.; Maiti, S.; Geubelle, P.H.; Ghosh, D. Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics. J. Am. Ceram. Soc.
**2008**, 91, 2777–2791. [Google Scholar] [CrossRef] - Medvedovski, E. Ballistic performance of armour ceramics: Influence of design and structure. part 2. Ceram. Int.
**2010**, 36, 2117–2127. [Google Scholar] [CrossRef] - Medvedovski, E. Ballistic performance of armour ceramics: Influence of design and structure. part 1. Ceram. Int.
**2010**, 36, 2103–2115. [Google Scholar] [CrossRef] - Anglada, M. Assessment of Mechanical Properties of Ceramic Materials. In Advances in Ceramic Biomaterials; Elsevier: Amsterdam, The Netherlands, 2017; pp. 83–109. [Google Scholar]
- Suh, M.-S.; Chae, Y.-H.; Kim, S.-S. Friction and wear behavior of structural ceramics sliding against zirconia. Wear
**2008**, 264, 800–806. [Google Scholar] [CrossRef] - Woodward, R.; Gooch Jr, W.; O’donnell, R.; Perciballi, W.; Baxter, B.; Pattie, S. A study of fragmentation in the ballistic impact of ceramics. Int. Impact Eng.
**1994**, 15, 605–618. [Google Scholar] [CrossRef] - Kaufmann, C.; Cronin, D.; Worswick, M.; Pageau, G.; Beth, A. Influence of material properties on the ballistic performance of ceramics for personal body armour. Shock Vib.
**2003**, 10, 51–58. [Google Scholar] [CrossRef] - Toussaint, G.; Martinez-Rubi, Y.; Noormohammed, S.; Li, C. Novel alternative multi-hit ballistic testing method developed to evaluate bonding technologies performance. Tech. rep., DRDC-RDDC-2020-R045.
- Arrowood, R.; Lankford, J. Compressive fracture processes in an alumina-glass composite. J. Mater. Sci.
**1987**, 22, 3737–3744. [Google Scholar] [CrossRef] - Swab, J.J.; Wereszczak, A.A.; Strong, K.T., Jr.; Danna, D.; LaSalvia, J.C.; Ragan, M.E.; Ritt, P.J. Knoop hardness–apparent yield stress relationship in ceramics. Int. J. Appl. Ceram. Technol.
**2012**, 9, 650–655. [Google Scholar] [CrossRef] - Hogan, J.D.; Farbaniec, L.; Sano, T.; Shaeffer, M.; Ramesh, K. The effects of defects on the uniaxial compressive strength and failure of an advanced ceramic. Acta Mater.
**2016**, 102, 263–272. [Google Scholar] [CrossRef] - Lo, C.; Sano, T.; Hogan, J.D. Microstructural and mechanical characterization of variability in porous advanced ceramics using x-ray computed tomography and digital image correlation. Mater. Charact.
**2019**, 158, 109929. [Google Scholar] [CrossRef] - DeVries, M.; Subhash, G. Influence of carbon nanotubes as secondary phase addition on the mechanical properties and amorphization of boron carbide. J. Eur. Ceram. Soc.
**2019**, 39, 1974–1983. [Google Scholar] [CrossRef] - MUNRO, M. Evaluated material properties for a sintered alpha-alumina. J. Am. Ceram. Soc.
**1997**, 80, 1919–1928. [Google Scholar] [CrossRef] - Nohut, S. Influence of sample size on strength distribution of advanced ceramics. Ceram. Int.
**2014**, 40, 4285–4295. [Google Scholar] [CrossRef] - Hogan, J.D.; Farbaniec, L.; Shaeffer, M.; Ramesh, K. The effects of microstructure and confinement on the compressive fragmentation of an advanced ceramic. J. Am. Ceram. Soc.
**2015**, 98, 902–912. [Google Scholar] [CrossRef] - Hogan, J.D.; Farbaniec, L.; Daphalapurkar, N.; Ramesh, K. On compressive brittle fragmentation. J. Am. Ceram. Soc.
**2016**, 99, 2159–2169. [Google Scholar] [CrossRef] - Hogan, J.D.; Farbaniec, L.; Mallick, D.; Domnich, V.; Kuwelkar, K.; Sano, T.; McCauley, J.W.; Ramesh, K.T. Fragmentation of an advanced ceramic under ballistic impact: Mechanisms and microstructure. Int. J. Impactengineering
**2017**, 102, 47–54. [Google Scholar] [CrossRef] - Langford, J.; Perras, M.A. Obtaining reliable estimates of intact tensile strength. In Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, MA, USA, 1–4 June 2014. [Google Scholar]
- Swab, J.J.; Tice, J.; Wereszczak, A.A.; Kraft, R.H. Fracture toughness of advanced structural ceramics: Applying astm c1421. J. Am. Soc.
**2015**, 98, 607–615. [Google Scholar] [CrossRef] - Dai, Y.; Li, Y.; Xu, X.; Zhu, Q.; Yan, W.; Jin, S.; Harmuth, H. Fracture behaviour of magnesia refractory materials in tension with the brazilian test. J. Eur. Ceram. Soc.
**2019**, 39, 5433–5441. [Google Scholar] [CrossRef] - Lo, C.; Li, H.; Toussaint, G.; Hogan, J.D. On the evaluation of mechanical properties and ballistic performance of two variants of boron carbide. Int. J. Impact Eng.
**2021**, 152, 103846. [Google Scholar] [CrossRef] - Swab, J.; Chen, W.; Hogan, J.; Liao, H.; Lo, C.; Mates, S.; Meredith, C.; Pittari, J.; Rhorer, R.; Quinn, G. Dynamic compression strength of ceramics: What was learned from an interlaboratory round robin exercise? J. Dyn. Behav. Mater.
**2021**, 7, 34–47. [Google Scholar] [CrossRef] - Subhash, G.; Awasthi, A.; Ghosh, D. Dynamic Response of Advanced Ceramics; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Zhang, L.; Townsend, D.; Petrinic, N.; Pellegrino, A. Loading mode and lateral confinement dependent dynamic fracture of a glass ceramic macor. J. Dynamic Behav. Mater.
**2022**, 8, 255–272. [Google Scholar] [CrossRef] - Bavdekar, S.; Subhash, G. Failure mechanisms of ceramics under quasi-static and dynamic loads: Overview. In Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures; Springer: Berlin/Heidelberg, Germany, 2022; pp. 579–607. [Google Scholar]
- Zheng, J.; Li, H.; Hogan, J.D. Strain-rate-dependent tensile response of an alumina ceramic: Experiments and modelling. Int. J. Impact Eng.
**2022**, 173, 104487. [Google Scholar] [CrossRef] - Brace, W.; Bombolakis, E. A note on brittle crack growth in compression. J. Geophys. Res.
**1963**, 68, 3709–3713. [Google Scholar] [CrossRef] - Bradley, W.; Kobayashi, A. An investigation of propagating cracks by dynamic photoelasticity. Exp. Mech.
**1970**, 10, 106–113. [Google Scholar] [CrossRef] - Nemat-Nasser, S.; Horii, H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. J. Geophys. Solid Earth
**1982**, 87, 6805–6821. [Google Scholar] [CrossRef] - Nemat-Nasser, S.; Horii, H. Rock failure in compression. Int. J. Eng. Sci.
**1984**, 22, 999–1011. [Google Scholar] [CrossRef] [Green Version] - Horii, H.; Nemat-Nasser, S. Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure. J. Geophys. Res. Earth
**1985**, 90, 3105–3125. [Google Scholar] [CrossRef] - Appleby-Thomas, G.J.; Jaansalu, K.; Hameed, A.; Painter, J.; Shackel, J.; Rowley, J. A comparison of the ballistic behaviour of conventionally sintered and additively manufactured alumina. Def. Technol.
**2020**, 16, 275–282. [Google Scholar] [CrossRef] - Nieto, A.; Huang, L.; Han, Y.-H.; Schoenung, J.M. Sintering behavior of spark plasma sintered alumina with graphene nanoplatelet reinforcement. Ceram. Int.
**2015**, 41, 5926–5936. [Google Scholar] [CrossRef] - Schwentenwein, M.; Homa, J. Additive manufacturing of dense alumina ceramics. Int. J. Appl. Ceram. Technol.
**2015**, 12, 1–7. [Google Scholar] [CrossRef] - Biesuz, M.; Sglavo, V.M. Flash sintering of alumina: Effect of different operating conditions on densification. J. Eur. Ceram.
**2016**, 36, 2535–2542. [Google Scholar] [CrossRef] - Andreev, G. A review of the brazilian test for rock tensile strength determination. part i: Calculation formula. Min. Sci. Technol.
**1991**, 13, 445–456. [Google Scholar] [CrossRef] - Graham-Brady, L. Statistical characterization of meso-scale uniaxial compressive strength in brittle materials with randomly occurring flaws. Int. J. Solids Struct.
**2010**, 47, 2398–2413. [Google Scholar] [CrossRef] [Green Version] - Hu, G.; Liu, J.; Graham-Brady, L.; Ramesh, K. A 3D mechanistic model for brittle materials containing evolving flaw distributions under dynamic multiaxial loading. J. Mech. Phys. Solids
**2015**, 78, 269–297. [Google Scholar] [CrossRef] - Ahmadi, M.H.; Molladavoodi, H. A micromechanical sliding-damage model under dynamic compressive loading. Period. Polytech. Civ. Eng.
**2019**, 63, 168–183. [Google Scholar] [CrossRef] - Moës, N.; Gravouil, A.; Belytschko, T. Non-planar 3d crack growth by the extended finite element and level sets—Part i: Mechanical model. Int. J. Numer. Methods Eng.
**2002**, 53, 2549–2568. [Google Scholar] [CrossRef] - Sun, L.; Ma, D.; Wang, L.; Shi, X.; Wang, J.; Chen, W. Determining indentation fracture toughness of ceramics by finite element method using virtual crack closure technique. Eng. Fract. Mech.
**2018**, 197, 151–159. [Google Scholar] [CrossRef] - Wang, H.; Dong, H.; Cai, Z.; Li, Y.; Wang, W.; Liu, Y. Peridynamic-based investigation of the cracking behavior of multilayer thermal barrier coatings. Ceram. Int.
**2022**, 48, 23543–23553. [Google Scholar] [CrossRef] - Cao, P.; Tang, C.; Liu, Z.; Shi, F.; Wang, Z.; Wang, X.; Zhou, C. Study on fracture behaviour of basalt fibre reinforced asphalt concrete with plastic coupled cohesive model and enhanced virtual crack closure technique model. Int. J. Pavement Eng.
**2022**, 384, 135585. [Google Scholar] [CrossRef] - Falk, M.L.; Needleman, A.; Rice, J.R. A critical evaluation of cohesive zone models of dynamic fractur. Le J. Phys. IV
**2001**, 11, Pr5-43–Pr5-50. [Google Scholar] [CrossRef] - Munjiza, A.A. The Combined Finite-Discrete Element Method; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Williams, C.; Love, B. Dynamic Failure of Materials: A Review. Tech. rep., Army Research Lab Aberdeen Proving Ground Md Weapons and Materials Research 2010-ADA528764. Available online: https://apps.dtic.mil/sti/pdfs/ADA528764.pdf (accessed on 1 February 2023).
- Rena, C.Y.; Ruiz, G.; Pandolfi, A. Numerical investigation on the dynamic behavior of advanced ceramics. Eng. Fract. Mech.
**2004**, 71, 897–911. [Google Scholar] - Zhou, F.; Molinari, J.-F.; Ramesh, K. A cohesive model based fragmentation analysis: Effects of strain rate and initial defects distribution. Int. J. Solids Struct.
**2005**, 42, 5181–5207. [Google Scholar] [CrossRef] - Arias, I.; Knap, J.; Chalivendra, V.B.; Hong, S.; Ortiz, M.; Rosakis, A.J. Numerical modelling and experimental validation of dynamic fracture events along weak planes. Comput. Methods Appl. Mech. Eng.
**2007**, 196, 3833–3840. [Google Scholar] [CrossRef] [Green Version] - Espinosa, H.D.; Zavattieri, P.D.; Dwivedi, S.K. A finite deformation continuum∖discrete model for the description of fragmentation and damage in brittle materials. J. Mech. Phys. Solids
**1998**, 46, 1909–1942. [Google Scholar] [CrossRef] - Zhou, W.; Yuan, W.; Chang, X. Combined finite-discrete element method modeling of rock failure problems. In International Conference on Discrete Element Methods; Springer: Berlin/Heidelberg, Germany, 2016; pp. 301–309. [Google Scholar]
- An, H.; Shi, J.; Zheng, X.; Wang, X. Hybrid finite-discrete element method modelling of brazilian disc tests. In Proceedings of the 2016 International Conference on Civil, Transportation and Environment, Guangzhou, China, 30–31 January 2016; Atlantis Press: Paris, France, 2016; pp. 371–377. [Google Scholar]
- Jaini, Z.M.; Feng, Y.T.; Mokhatar, S.N.; Seman, M.A. Numerical homogenization of protective ceramic composite layers using the hybrid finite-discrete element methods. Int. J. Integr. Eng.
**2013**, 5, 15–22. [Google Scholar] - Mahabadi, O.; Lisjak, A.; Munjiza, A.; Grasselli, G. Y-geo: New combined finite-discrete element numerical code for geomechanical applications. Int. J. Geomech.
**2012**, 12, 676–688. [Google Scholar] [CrossRef] - Liu, H.; Kang, Y.; Lin, P. Hybrid finite–discrete element modeling of geomaterials fracture and fragment muck-piling. Int. J. Geotech. Eng.
**2015**, 9, 115–131. [Google Scholar] [CrossRef] - Miglietta, P.C. Application of the Hybrid Finite/Discrete Element Method to the Numerical Simulation of Masonry Structures. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2017. [Google Scholar]
- Mahabadi, O.; Kaifosh, P.; Marschall, P.; Vietor, T. Three-dimensional fdem numerical simulation of failure processes observed in opalinus clay laboratory samples. J. Rock Mech. Geotech. Eng.
**2014**, 6, 591–606. [Google Scholar] [CrossRef] [Green Version] - Camacho, G.T.; Ortiz, M. Computational modelling of impact damage in brittle materials. Int. J. Solids Struct.
**1996**, 33, 2899–2938. [Google Scholar] [CrossRef] - Warner, D.; Molinari, J. Micromechanical finite element modeling of compressive fracture in confined alumina ceramic. Acta Mater.
**2006**, 54, 5135–5145. [Google Scholar] [CrossRef] - Lisjak, A.; Figi, D.; Grasselli, G. Fracture development around deep underground excavations: Insights from fdem modelling. J. Rock Mech. And Geotech. Eng.
**2014**, 6, 493–505. [Google Scholar] [CrossRef] [Green Version] - Lisjak, A.; Liu, Q.; Zhao, Q.; Mahabadi, O.; Grasselli, G. Numerical simulation of acoustic emission in brittle rocks by two-dimensional finite-discrete element analysis. Geophys. J. Int.
**2013**, 195, 423–443. [Google Scholar] [CrossRef] [Green Version] - Walter, M.; Owen, D.; Ravichandran, G. Static and dynamic tension testing of ceramics and ceramic composites. Asme Appl. Mech.-Publ.
**1994**, 197, 13. [Google Scholar] - Wang, Z.; Li, P. Voronoi cell finite element modelling of the intergranular fracture mechanism in polycrystalline alumina. Ceram. Int.
**2017**, 43, 6967–6975. [Google Scholar] [CrossRef] [Green Version] - Zhou, F.; Molinari, J.-F. Stochastic fracture of ceramics under dynamic tensile loading. Int. J. Solids Struct.
**2004**, 41, 6573–6596. [Google Scholar] [CrossRef] - Daphalapurkar, N.P.; Ramesh, K.; Graham-Brady, L.; Molinari, J.-F. Predicting variability in the dynamic failure strength of brittle materials considering pre-existing flaws. J. Mech. Phys. Solids
**2011**, 59, 297–319. [Google Scholar] [CrossRef] - Zou, Z.; Reid, S.; Li, S. A continuum damage model for delaminations in laminated composites. J. Mech. Phys. Solids
**2003**, 51, 333–356. [Google Scholar] [CrossRef] - Tikare, V.; Choi, S.R. Combined mode i and mode ii fracture of monolithic ceramics. J. Am. Ceram. Soc.
**1993**, 76, 2265–2272. [Google Scholar] [CrossRef] - Shetty, D.; Rosenfield, A.; Duckworth, W. Mixed-mode fracture of ceramics in diametral compression. J. Am. Ceram. Soc.
**1986**, 69, 437–443. [Google Scholar] [CrossRef] - Bazant, Z.P.; Planas, J. Fracture and Size Effect in Concrete and Other Quasibrittle Materials; CRC Press: Boca Raton, FL, USA, 1997; Volume 16. [Google Scholar]
- KMW, K. Ceramic Materials for Light-Weight Ceramic Polymer Armor Systems. Available online: https://www.ceramtec.com/files/et_armor_systems.pdf (accessed on 1 February 2023).
- Zheng, J.; Ji, M.; Zaiemyekeh, Z.; Li, H.; Hogan, J.D. Strain-rate-dependent compressive and compression-shear response of an alumina ceramic. J. Eur. Ceram. Soc.
**2022**, 42, 7516–7527. [Google Scholar] [CrossRef] - Ji, M.; Li, H.; Zheng, J.; Yang, S.; Zaiemyekeh, Z.; Hogan, J.D. An experimental study on the strain-rate-dependent compressive and tensile response of an alumina ceramic. Ceram. Int.
**2022**, 48, 28121–28134. [Google Scholar] [CrossRef] - Molinari, J.-F.; Gazonas, G.; Raghupathy, R.; Rusinek, A.; Zhou, F. The cohesive element approach to dynamic fragmentation: The question of energy convergence. Int. J. Numer. Methods Eng.
**2007**, 69, 484–503. [Google Scholar] [CrossRef] [Green Version] - Zhou, F.; Molinari, J.-F. Dynamic crack propagation with cohesive elements: A methodology to address mesh dependency. Int. J. Numer. Eng.
**2004**, 59, 1–24. [Google Scholar] [CrossRef] - Heizler, S.I.; Kessler, D.A.; Levine, H. Propagating mode-i fracture in amorphous materials using the continuous random network model. Phys. Rev. E
**2011**, 84, 026102. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ren, X.; Li, J. Dynamic fracture in irregularly structured systems. Phys. Rev. E
**2012**, 85, 055102. [Google Scholar] [CrossRef] [PubMed] - Freiman, S.W.; Mecholsky, J.J., Jr. The Fracture of Brittle Materials: Testing and Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Weibull, W. A Statistical Theory of Strength of Materials; Generalstabens Litografiska Anstalts Förlag: Stockholm, Sweden, 1939. [Google Scholar]
- Savchenko, N.; Sevostyanova, I.; Sablina, T.; Gömze, L.; Kulkov, S. The influence of porosity on the elasticity and strength of alumina and zirconia ceramics. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2014; Volume 1623, pp. 547–550. [Google Scholar]
- Sapozhnikov, S.; Kudryavtsev, O.; Dolganina, N.Y. Experimental and numerical estimation of strength and fragmentation of different porosity alumina ceramics. Mater. Des.
**2015**, 88, 1042–1048. [Google Scholar] [CrossRef] - Hristopulos, D.T.; Demertzi, M. A semi-analytical equation for the young’s modulus of isotropic ceramic materials. J. Eur. Ceram.
**2008**, 28, 1111–1120. [Google Scholar] [CrossRef] - Paliwal, B.; Ramesh, K. An interacting micro-crack damage model for failure of brittle materials under compression. J. Mech. Phys. Solids
**2008**, 56, 896–923. [Google Scholar] [CrossRef]

**Figure 1.**The mode I constitutive behavior of the cohesive element with ${K}_{1}=4.6$ × ${10}^{7}$ N/mm${}^{3}$, ${\sigma}_{0}$ = 440 MPa, and ${G}_{1}^{c}=0.04$ N/mm. In the inset figure, a cohesive (crack) element is interspersed throughout two tetrahedral elements.

**Figure 2.**The green line is Weibull’s statistical strength distribution of cohesive elements obtained from Equation (8) with ${m}_{0}=11.0$, ${m}_{a}=-11.0$, ${\sigma}_{0}=440.0$, $A=0.01268$ and ${A}_{0}=0.013$. The orange bar is the statistics of the facet strength of the cohesive element with random flaws generated by Monte Carlo simulations. The percentage of low-strength cohesive elements (below 350 MPa) is around 7.9%, which is associated with the big flaws in the material. The rest of the cohesive elements (around 92.1%) have strong strength (between 350 and 530 MPa), which corresponds to the material with smaller flaws.

**Figure 3.**(

**a**) Variation of engineering stress-strain response of the CeramTec 98% alumina during the direct tension simulations with four kinds of mesh sizes. (

**b**) The shaded region is the tensile strength of the CeramTec 98% obtained by Brazilian disk experiments [29], and the dots are the simulation results with four kinds of mesh sizes.

**Figure 4.**The failure pattern of the samples with different mesh sizes. The legends in the figure correspond to the displacement of the samples in the z-direction (U${}_{3}$). It is observed that a horizontal crack perpendicular to the loading direction is generated during the loading process. The single main crack causes catastrophic failure. In some cases, the main crack may split into multiple branches. Some fragments appear near the crack surfaces due to crack branching.

**Figure 5.**Microscopic strength distributions with different Weibull modulus (${m}_{0}$ = 9, 10, 11, 12, and 13).

**Figure 6.**(

**a**) The engineering stress-strain response of the CeramTec 98% alumina during the direct tension simulations with different Weibull modulus (${m}_{0}$ = 9, 10, 11, 12, and 13). (

**b**) The full dots are the tensile strength and the hollow dots are the elastic modulus obtained by simulation with five different Weibull modulus.

**Figure 7.**The failure pattern of the simulation results with different Weibull modulus (${m}_{0}=$ 9, 10, 11, 12, and 13). The U${}_{3}$ legend in the figure indicates the displacement of the samples in the z-direction. The failure pattern is consistent with Figure 4, a horizontal crack forms perpendicularly to the loading direction during the loading process, ultimately leading to a catastrophic failure caused by the single main crack. In certain instances, the main crack can divide into multiple branches, resulting in fragments near the crack surfaces due to crack branching.

The Mechanical Properties of the CeramTec 98% Alumina | |
---|---|

Porosity | <2% |

Hardness | 13.5 (GPa) |

Density | 3.8 (g/cm${}^{3}$) |

Young’s modulus | 335 (GPa) |

Poisson’s ratio | 0.23 |

The Properties for the Microscopic Stochastic Fracture Model | |

Weibull modulus of the strength distribution | 11 |

Weibull modulus for the effective area modification | −11 |

Weibull characteristic strength | 440 (MPa) |

Characteristic area | 0.013 (mm${}^{2}$) |

Mode I fracture energy | 0.04 (N/mm) |

Validation Models | Average Mesh Size (mm) | Average Facet Area (mm${}^{2}$) |
---|---|---|

Case 1 | 0.25 | 0.038 |

Case 2 | 0.15 | 0.01268 |

Case 3 | 0.1 | 0.00611 |

Case 4 | 0.075 | 0.00336 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zheng, J.; Li, H.; Hogan, J.D.
Hybrid Finite-Discrete Element Modeling of the Mode I Tensile Response of an Alumina Ceramic. *Modelling* **2023**, *4*, 87-101.
https://doi.org/10.3390/modelling4010007

**AMA Style**

Zheng J, Li H, Hogan JD.
Hybrid Finite-Discrete Element Modeling of the Mode I Tensile Response of an Alumina Ceramic. *Modelling*. 2023; 4(1):87-101.
https://doi.org/10.3390/modelling4010007

**Chicago/Turabian Style**

Zheng, Jie, Haoyang Li, and James D. Hogan.
2023. "Hybrid Finite-Discrete Element Modeling of the Mode I Tensile Response of an Alumina Ceramic" *Modelling* 4, no. 1: 87-101.
https://doi.org/10.3390/modelling4010007