# Nonlinear Coupling of Alfvén and Slow Magnetoacoustic Waves in Partially Ionized Solar Plasmas: The Effect of Thermal Misbalance

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Method and Basic Equations

#### 2.1. Background Model

#### 2.2. First-Order Equations

#### 2.3. Second-Order Equations

## 3. Results

#### 3.1. $\gamma =5/3$, $a=b=0$ (Constant Heating per Unit Volume)

#### 3.2. $\gamma =5/3$, $a=2,b=4$

#### 3.3. $\gamma =5/3$, $a=2,b=6.25$

#### 3.4. $\gamma =5/3$, $a=4$, $b=2$ or $a=6.25,b=2$

#### 3.5. $\gamma =5/3$, ${\tau}_{\mathrm{r}1}={\tau}_{\mathrm{r}2}$

#### 3.6. LTE ${\mathsf{\Gamma}}_{1}$ and NLTE ${\mathsf{\Gamma}}_{1}$

#### 3.7. $\gamma =5/3$, LTE ${\mathsf{\Gamma}}_{1}$ and NLTE ${\mathsf{\Gamma}}_{1}$, $a=2,b=4$ or $a=2,b=6.25$

## 4. CHIANTI7 Radiative Loss Function

## 5. Discussion

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

## References

- Tomczyk, S.; McIntosh, S.W.; Keil, S.L.; Judge, P.G.; Schad, T.; Seeley, D.H.; Edmondson, J. Alfvén waves in the solar corona. Science
**2007**, 317, 1192–1196. [Google Scholar] [CrossRef] [PubMed] - Jess, D.B.; Mathioudakis, M.; Erdélyi, R.; Crockett, P.J.; Keenan, F.P.; Christian, D.J. Alfvén waves in the lower solar atmosphere. Science
**2009**, 323, 1582–1585. [Google Scholar] [CrossRef] [PubMed][Green Version] - Mathioudakis, M.; Jess, D.B.; Erdélyi, R. Alfvén waves in the solar atmosphere. From theory to observations. Space Sci. Rev.
**2013**, 175, 1–27. [Google Scholar] [CrossRef][Green Version] - Srivastava, A.K.; Shetye, J.; Murawski, K.; Doyle, J.G.; Stangalini, M.; Scullion, E.; Ray, T.; Wójcik, D.P.; Dwivedi, B.N. High-frequency torsional Alfvén waves as an energy source for coronal heating. Sci. Rep.
**2017**, 7, 43147. [Google Scholar] [CrossRef] - Grant, S.D.T.; Jess, D.B.; Zaqarashvili, T.V.; Beck, C.; Socas-Navarro, H.; Aschwanden, M.J.; Keys, P.H.; Christian, D.J.; Houston, S.J.; Hewitt, R.L. Alfvén wave dissipation in the solar chromosphere. Nat. Phys.
**2018**, 14, 480–483. [Google Scholar] [CrossRef][Green Version] - Kohutova, P.; Verwichte, E.; Froment, C. First direct observation of a torsional Alfvén oscillation at coronal heights. Astron. Astrophys.
**2020**, 633, L6. [Google Scholar] [CrossRef][Green Version] - Cramer, N.F. The Physics of Alfvén Waves; WILEY-VCH Verlag Berlin GmbH: Berlin, Germany, 2001. [Google Scholar] [CrossRef]
- Hollweg, J.V. Density fluctuations driven by Alfvén waves. J. Geophys. Res.
**1971**, 76, 5155–5161. [Google Scholar] [CrossRef] - Rankin, R.; Frycz, P.; Tikhonchuk, V.T.; Samson, J.C. Nonlinear standing shear Alfvén waves in the Earth’s magnetosphere. J. Geophys. Res.
**1994**, 99, 21291–21302. [Google Scholar] [CrossRef] - Tikhonchuk, V.T.; Rankin, R.; Frycz, P.; Samson, J.C. Nonlinear dynamics of standing shear Alfvén waves. Phys. Plasmas
**1995**, 2, 501–515. [Google Scholar] [CrossRef] - Terradas, J.; Ofman, L. Loop density enhancement by nonlinear magnetohydrodynamic waves. Astrophys. J.
**2004**, 610, 523–531. [Google Scholar] [CrossRef] - Zaqarashvili, T.V.; Carbonell, M.; Ballester, J.L.; Khodachenko, M.L. Cut-off wavenumber of Alfvén waves in partially ionized plasmas of the solar atmosphere. Astron. Astrophys.
**2012**, 544, A143. [Google Scholar] [CrossRef] - Soler, R.; Carbonell, M.; Ballester, J.L. On the Spatial scales of wave heating in the solar chromosphere. Astrophys. J.
**2015**, 810, 146. [Google Scholar] [CrossRef][Green Version] - Soler, R.; Ballester, J.L.; Zaqarashvili, T.V. Overdamped Alfvén waves due to ion-neutral collisions in the solar chromosphere. Astron. Astrophys.
**2015**, 573, A79. [Google Scholar] [CrossRef] - Soler, R.; Terradas, J.; Oliver, R.; Ballester, J.L. The role of Alfvén wave heating in solar prominences. Astron. Astrophys.
**2016**, 592, A28. [Google Scholar] [CrossRef][Green Version] - Cally, P.S.; Khomenko, E. Fast-to-Alfvén mode conversion in the presence of ambipolar diffusion. Astrophys. J.
**2018**, 856, 20. [Google Scholar] [CrossRef] - González-Morales, P.A.; Khomenko, E.; Cally, P.S. Fast-to-Alfvén mode conversion mediated by hall current. II. Application to the solar atmosphere. Astrophys. J.
**2019**, 870, 94. [Google Scholar] [CrossRef][Green Version] - Khomenko, E.; Cally, P.S. Fast-to-Alfvén mode conversion and ambipolar heating in structured media. II. Numerical simulation. Astrophys. J.
**2019**, 883, 179. [Google Scholar] [CrossRef] - Cally, P.S.; Khomenko, E. Fast-to-Alfvén mode conversion and ambipolar heating in Structured media. I. Simplified old plasma model. Astrophys. J.
**2019**, 885, 58. [Google Scholar] [CrossRef] - Ballester, J.L.; Soler, R.; Terradas, J.; Carbonell, M. Nonlinear coupling of Alfvén and slow magnetoacoustic waves in partially ionized solar plasmas. Astron. Astrophys.
**2020**, 641, A48. [Google Scholar] [CrossRef] - Zavershinskii, D.I.; Kolotkov, D.Y.; Nakariakov, V.M.; Molevich, N.E.; Ryashchikov, D.S. Formation of quasi-periodic slow magnetoacoustic wave trains by the heating/cooling misbalance. Phys. Plasmas
**2019**, 26, 082113. [Google Scholar] [CrossRef][Green Version] - Kolotkov, D.Y.; Nakariakov, V.M.; Zavershinskii, D.I. Damping of slow magnetoacoustic oscillations by the misbalance between heating and cooling processes in the solar corona. Astron. Astrophys.
**2019**, 628, A133. [Google Scholar] [CrossRef][Green Version] - Kolotkov, D.Y.; Duckenfield, T.J.; Nakariakov, V.M. Seismological constraints on the solar coronal heating function. Astron. Astrophys.
**2020**, 644, A33. [Google Scholar] [CrossRef] - Belov, S.; Molevich, N.; Zavershinskii, D. Thermal misbalance influence on the nonlinear shear Alfvén waves under solar atmosphere conditions. Sol. Phys.
**2020**, 295, 160. [Google Scholar] [CrossRef] - Prasad, A.; Srivastava, A.K.; Wang, T.J. Role of compressive viscosity and thermal conductivity on the damping of slow waves in coronal loops with and without heating-cooling imbalance. Sol. Phys.
**2021**, 296, 20. [Google Scholar] [CrossRef] - Prasad, A.; Srivastava, A.K.; Wang, T. Effect of thermal conductivity, compressive viscosity and radiative cooling on the phase shift of propagating slow waves with and without heating-cooling imbalance. Sol. Phys.
**2021**, 296, 105. [Google Scholar] [CrossRef] - Belov, S.; Vasheghani Farahani, S.; Molevich, N.; Zavershinskii, D. Longitudinal plasma motions generated by shear Alfvén waves in plasma with thermal misbalance. Sol. Phys.
**2021**, 296, 98. [Google Scholar] [CrossRef] - Zavershinskii, D.; Kolotkov, D.; Riashchikov, D.; Molevich, N. Mixed properties of slow magnetoacoustic and entropy waves in a plasma with heating/cooling misbalance. Sol. Phys.
**2021**, 296, 96. [Google Scholar] [CrossRef] - Belov, S.A.; Molevich, N.E.; Zavershinskii, D.I. Dispersion of slow magnetoacoustic waves in the active region fan loops introduced by thermal misbalance. Sol. Phys.
**2021**, 296, 122. [Google Scholar] [CrossRef] - Prasad, A.; Srivastava, A.K.; Wang, T.; Sangal, K. Role of non-ideal dissipation with heating-cooling misbalance on the phase shifts of standing slow magnetohydrodynamic waves. Sol. Phys.
**2022**, 297, 5. [Google Scholar] [CrossRef] - Kolotkov, D.Y.; Zavershinskii, D.I.; Nakariakov, V.M. The solar corona as an active medium for magnetoacoustic waves. Plasma Phys. Control. Fusion
**2021**, 63, 124008. [Google Scholar] [CrossRef] - Ibañez, M.H.; Ballester, J.L. The effect of thermal misbalance on slow magnetoacoustic waves in a partially ionized prominence-like plasma. Sol. Phys.
**2022**, 297, 144. [Google Scholar] [CrossRef] - Ballester, J.L.; Soler, R.; Carbonell, M.; Terradas, J. The first adiabatic exponent in a partially ionized prominence plasma: Effect on the period of slow waves. Astron. Astrophys.
**2021**, 656, A159. [Google Scholar] [CrossRef] - Anzer, U.; Heinzel, P. The energy balance in solar prominences. Astron. Astrophys.
**1999**, 349, 974–984. Available online: https://adsabs.harvard.edu/full/1999A%26A...349..974A (accessed on 3 March 2023). - Heinzel, P.; Anzer, U.; Gunár, S. Solar quiescent prominences. Filamentary structure and energetics. Mem. Soc. Astron. Ital.
**2010**, 81, 654–661. Available online: https://ui.adsabs.harvard.edu/abs/2010MmSAI..81..654H (accessed on 3 March 2023). - Heinzel, P.; Anzer, U. Radiative equilibrium in solar prominences reconsidered. Astron. Astrophys.
**2012**, 539, A49. [Google Scholar] [CrossRef][Green Version] - Labrosse, N.; Heinzel, P.; Vial, J.C.; Kucera, T.; Parenti, S.; Gunár, S.; Schmieder, B.; Kilper, G. Physics of solar prominences: I—Spectral diagnostics and non-LTE modelling. Space Sci. Rev.
**2010**, 151, 243–332. [Google Scholar] [CrossRef][Green Version] - Heinzel, P. Radiative Transfer in Solar Prominences. In Solar Prominences; Vial, J.-C., Engvold, O., Eds.; Springer International Publishing Switzerland: Cham, Switzerland, 2015; pp. 103–130. [Google Scholar] [CrossRef]
- Parenti, S.; Vial, J.C. Prominence and quiet-Sun plasma parameters derived from FUV spectral emission. Astron. Astrophys.
**2007**, 469, 1109–1115. [Google Scholar] [CrossRef][Green Version] - Parenti, S. Solar prominences: Observations. Living Rev. Sol. Phys.
**2014**, 11, 1. [Google Scholar] [CrossRef] - Ballester, J.L.; Alexeev, I.; Collados, M.; Downes, T.; Pfaff, R.F.; Gilbert, H.; Khodachenko, M.; Khomenko, E.; Shaikhislamov, I.F.; Soler, R.; et al. Partially ionized plasmas in astrophysics. Space Sci. Rev.
**2018**, 214, 58. [Google Scholar] [CrossRef][Green Version] - Hildner, E. The Formation of solar quiescent prominences by condensation. Sol. Phys.
**1974**, 35, 123–136. [Google Scholar] [CrossRef] - Dere, K.P.; Landi, E.; Mason, H.E.; Monsignori Fossi, B.C.; Young, P.R. CHIANTI—An atomic database for emission lines. Astron. Astrophys. Suppl.
**1997**, 125, 149–173. [Google Scholar] [CrossRef][Green Version] - Landi, E.; Del Zanna, G.; Young, P.R.; Dere, K.P.; Mason, H.E. CHIANTI—An atomic database for emission lines. XII. Version 7 of the database. Astrophys. J.
**2012**, 744, 99. [Google Scholar] [CrossRef][Green Version] - Soler, R.; Ballester, J.L.; Parenti, S. Stability of thermal modes in cool prominence plasmas. Astron. Astrophys.
**2012**, 540, A7. [Google Scholar] [CrossRef][Green Version] - Heinzel, P.; Vial, J.C.; Anzer, U. On the formation of Mg II h and k lines in solar prominences. Astron. Astrophys.
**2014**, 564, A132. [Google Scholar] [CrossRef] - Nakariakov, V.M.; Kolotkov, D.Y. Magnetohydrodynamic waves in the solar corona. Annu. Rev. Astron. Astrophys.
**2020**, 58, 441–481. [Google Scholar] [CrossRef] - Duckenfield, T.J.; Kolotkov, D.Y.; Nakariakov, V.M. The effect of the magnetic field on the damping of slow waves in the solar corona. Astron. Astrophys.
**2021**, 646, A155. [Google Scholar] [CrossRef] - Soler Juan, R. Damping of Magnetohydrodynamic Waves in Solar Prominence Fine Structures. Ph.D. Thesis, Departament de Fisica, Universitat de les Illes Balears, Palma de Mallorca, Spain, 2010. Available online: http://dfs.uib.es/Solar/thesis_robertosoler.pdf (accessed on 3 March 2023).
- Rosner, R.; Tucker, W.H.; Vaiana, G.S. Dynamics of the quiescent solar corona. Astrophys. J.
**1978**, 220, 643–645. [Google Scholar] [CrossRef] - Dahlburg, R.B.; Mariska, J.T. Influence of heating rate on the condensational instability. Sol. Phys.
**1988**, 117, 51–56. [Google Scholar] [CrossRef] - Ibañez, S.; Miguel, H.; Sanchez, D.; Nestor, M. Propagation of sound and thermal waves in a plasma with solar abundances. Astrophys. J.
**1992**, 396, 717. [Google Scholar] [CrossRef] - Ibañez, S.; Miguel, H.; Escalona, T.; Orlando, B. Propagation of hydrodynamic waves in optically thin plasmas. Astrophys. J.
**1993**, 415, 335. [Google Scholar] [CrossRef] - Clayton, D.D. Principles of Stellar Evolution and Nucleosynthesis; The University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Prialnik, D. An Introduction to the Theory of Stellar Structure and Evolution; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Hansen, C.J.; Kawaler, S.D.; Trimble, V. Stellar Interiors: Physical Principles, Structure, and Evolution; Springer Science+Business Media: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Priest, E. Magnetohydrodynamics of the Sun; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Dimensionless longitudinal velocity perturbations versus dimensionless time computed (

**left**) at $z=0.5$ for T = 12,000 K (red curve), $T=8000$ K (blue curve), $T=6000$ K (black curve) and $T=4000$ K (brown curve); $a=0$, $b=0$, ${k}_{z}=\frac{\pi}{2}$; and (

**right**) at $z=0.5$ for T = 12,000 K, ${\eta}_{\mathrm{C},0}=0.022$ (red curve), $T=8000$ K, ${\eta}_{\mathrm{C},0}=0.026$ (blue curve), $T=6000$ K, ${\eta}_{\mathrm{C},0}=0.03$ (black curve) and $T=4000$ K, ${\eta}_{\mathrm{C},0}=0.036$ (brown curve). $a=0$, $b=0$, ${k}_{z}=\frac{\pi}{2}$. The characteristic length, ${L}_{0}={10}^{5}$ m, and the Hildner [42] radiative function are used. See text for details.

**Figure 2.**

**Left**: Comparison between the numerical solution for the longitudinal velocity perturbation (red curve) and the analytical solution (blue curve) ($T=4000$ K, $a=b=0$, ${\eta}_{\mathrm{C},0}=0.036$).

**Right**: Temporal behavior of the longitudinal velocity perturbations for different heating mechanisms, with $a=1/2,b=-1/2$ (red curve), $a=1,b=0$ (blue curve), $a=b=1$ (black curve), and $a=b=7/6$ (brown curve); $T=8000$ K, ${\eta}_{\mathrm{C},0}=0.026$. ${L}_{0}={10}^{5}$ m and the Hildner [42] radiative function are used as needed. See text for details.

**Figure 3.**Dimensionless longitudinal velocity perturbations versus dimensionless time computed (

**left**) at $z=0.5$ for T = 12,000 K, ${\eta}_{\mathrm{C},0}=0.022$ (red curve), $T=8000$ K, ${\eta}_{\mathrm{C},0}=0.026$ (blue curve), $T=6000$ K, ${\eta}_{\mathrm{C},0}=0.03$ (black curve) and $T=4000$ K, ${\eta}_{\mathrm{C},0}=0.036$ (brown curve), with ${L}_{0}={10}^{5}$ m; and (

**right**) at $z=0.5$ for T = 12,000 K, ${\eta}_{\mathrm{C},0}=0.00022$ (red curve), $T=8000$ K, ${\eta}_{\mathrm{C},0}=0.00026$ (blue curve), $T=6000$ K, ${\eta}_{\mathrm{C},0}=0.0003$ (black curve) and $T=4000$ K, ${\eta}_{\mathrm{C},0}=0.00036$ (brown curve); $a=2$, $b=4$, ${k}_{z}=\frac{\pi}{2}$, with ${L}_{0}={10}^{7}$ m. The Hildner [42] radiative function is used. See text for details.

**Figure 4.**Dimensionless longitudinal velocity perturbations versus dimensionless time computed (

**left**) at $z=0.5$ for T = 12,000 K, ${\eta}_{\mathrm{C},0}=0.022$ (red curve), $T=8000$ K, ${\eta}_{\mathrm{C},0}=0.026$ (blue curve), $T=6000$ K, ${\eta}_{\mathrm{C},0}=0.03$ (black curve) and $T=4000$ K, ${\eta}_{\mathrm{C},0}=0.036$ (brown curve), with ${L}_{0}={10}^{5}$ m; and (

**right**) at $z=0.5$ for T = 12,000 K, ${\eta}_{\mathrm{C},0}=0.00022$ (red curve), $T=8000$ K, ${\eta}_{\mathrm{C},0}=0.00026$ (blue curve), $T=6000$ K, ${\eta}_{\mathrm{C},0}=0.0003$ (black curve) and $T=4000$ K, ${\eta}_{\mathrm{C},0}=0.00036$ (brown curve) with $a=2$, $b=6.25$, ${k}_{z}=\frac{\pi}{2}$, and ${L}_{0}={10}^{7}$ m. The Hildner [42] radiative function is used. See text for details.

**Figure 5.**Dimensionless longitudinal velocity perturbations versus dimensionless time computed at $z=0.5$ for ${L}_{0}={10}^{7}$ m (red curve), ${\eta}_{\mathrm{C},0}=0.00026$, ${L}_{0}={10}^{6}$ m (blue curve), ${\eta}_{\mathrm{C},0}=0.0026$, ${L}_{0}={10}^{5}$ m (black curve), ${\eta}_{\mathrm{C},0}=0.026$. $T=8000$ K; $a=2$, $b=6.25$. The Hildner [42] radiative function is used.

**Figure 6.**Dimensionless longitudinal velocity perturbations versus dimensionless time computed (

**left**) at $z=0.5$ for T = 12,000 K, ${\eta}_{\mathrm{C},0}=0.022$, $a=2,b=4$ (red curve) and $a=4,b=2$ (blue curve), and (

**right**) at $z=0.5$ for T = 12,000 K, ${\eta}_{\mathrm{C},0}=0.022$, $a=2,b=6.25$ (red curve) and $a=6.25,b=2$ (blue curve); ${k}_{z}=\frac{\pi}{2}$. ${L}_{0}={10}^{5}$ m, and the Hildner [42] radiative function are used.

**Figure 7.**

**Left**: thermal misbalance times versus b exponent: ${\tau}_{\mathrm{r}1}$ (red curve), ${\tau}_{\mathrm{r}2}$ (blue curve).

**Right**: $\left(\frac{1}{{\tau}_{\mathrm{r}2}}\right.$ − $\left.\frac{1}{{\tau}_{\mathrm{r}1}}\right)$ versus b exponent, T = 12,000 K, $a=2$, ${k}_{z}=\frac{\pi}{2}$. ${L}_{0}={10}^{5}$ m and the Hildner [42] radiative function are used. See text for details.

**Figure 8.**The threshold values for (

**left**) the b exponent versus the a exponent and for (

**right**) the a exponent versus the b exponent. $\gamma =5/3$ and the Hildner [42] radiative function are used. See text for details.

**Figure 9.**(

**Left**): $\left(\frac{1}{{\tau}_{\mathrm{r}2}}\right.$ − $\left.\frac{1}{{\tau}_{\mathrm{r}1}}\right)$ versus a and b exponents. (

**Right**): ${\omega}_{\mathrm{i}}$ versus a and b exponents. T = 12,000 K. The Hildner [42] radiative function is used. See text for details.

**Figure 10.**Thermal time, ${\tau}_{\mathit{T}}$ (

**left**), and (

**right**) ${\tau}_{\mathit{T}}$ (red) and ambipolar diffusion time, ${\tau}_{\mathrm{AD}}$ (blue), versus a and b exponents. T = 12,000 K. The Hildner [42] radiative function is used. See text for details.

**Figure 11.**

**Left**: dimensionless longitudinal velocity perturbations versus dimensionless time, computed at $z=0.5$ for ${L}_{0}={10}^{5}$ m, $T=4000$ K, ${\eta}_{\mathrm{C},0}=0.036$, $a=2$, and $b=5.9$. The Hildner [42] radiative function is used.

**Right**: LTE first adiabatic exponent, ${\mathsf{\Gamma}}_{1}$ (blue curve) and NLTE ${\mathsf{\Gamma}}_{1}$ (red curve) versus temperature. See text for details.

**Figure 12.**Dimensionless longitudinal velocity perturbations versus dimensionless time computed (

**left**) at $z=0.5$ for $T=8000$ K, ${\eta}_{\mathrm{C},0}=0.026$, $\gamma =5/3$ (red curve), ${\eta}_{\mathrm{C},0}=0.028$, LTE ${\mathsf{\Gamma}}_{1}=1.38$ (blue curve), ${\eta}_{\mathrm{C},0}=0.026$, NLTE ${\mathsf{\Gamma}}_{1}=1.15$ (black curve), $a=2$, $b=4$, and (

**right**) at $z=0.5$ for $T=8000$ K, ${\eta}_{\mathrm{C},0}=0.026$, $\gamma =5/3$ (red curve), ${\eta}_{\mathrm{C},0}=0.026$, LTE ${\mathsf{\Gamma}}_{1}=1.38$ (blue curve), ${\eta}_{\mathrm{C},0}=0.026$, NLTE ${\mathsf{\Gamma}}_{1}=1.15$ (black curve), $a=2$, $b=6.25$. ${k}_{z}=\frac{\pi}{2}$. ${L}_{0}={10}^{5}$ m and the Hildner [42] radiative function are used.

**Figure 13.**Dimensionless longitudinal velocity perturbations versus dimensionless time computed (

**left**) at $z=0.5$ for T = 12,000 K, ${\eta}_{\mathrm{C},0}=0.022$ (red curve), $T=8000$ K, ${\eta}_{\mathrm{C},0}=0.026$ (blue curve), $T=6000$ K, ${\eta}_{\mathrm{C},0}=0.03$ (black curve) and $T=4000$ K, ${\eta}_{\mathrm{C},0}=0.036$ (brown curve), with $a=2$ and $b=4$, and (

**right**) at $z=0.5$ for T = 12,000 K, ${\eta}_{\mathrm{C},0}=0.022$ (red curve), $T=8000$ K, ${\eta}_{\mathrm{C},0}=0.026$ (blue curve), $T=6000$ K, ${\eta}_{\mathrm{C},0}=0.03$ (black curve) and $T=4000$ K, ${\eta}_{\mathrm{C},0}=0.036$ (brown cirve), with $a=2$ and $b=6.25$. The CHIANTI7 radiative function [43,44,45] is used.

**Figure 14.**The threshold values of (

**left**) the b exponent versus ${\mathsf{\Gamma}}_{1}$ for $\alpha =7.4$ Hildner [42] (red curve) and $\alpha =8.06$ CHIANT7 (blue curve) radiative loss functions with $a=2$, and (

**right**) of the b exponent versus the exponent a for ${\mathsf{\Gamma}}_{1}=5/3$ (red curve), $1.38$ (blue curve), $1.15$ (black curve) using the CHIANTI7 radiative loss function.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ballester, J.L.
Nonlinear Coupling of Alfvén and Slow Magnetoacoustic Waves in Partially Ionized Solar Plasmas: The Effect of Thermal Misbalance. *Physics* **2023**, *5*, 331-351.
https://doi.org/10.3390/physics5020025

**AMA Style**

Ballester JL.
Nonlinear Coupling of Alfvén and Slow Magnetoacoustic Waves in Partially Ionized Solar Plasmas: The Effect of Thermal Misbalance. *Physics*. 2023; 5(2):331-351.
https://doi.org/10.3390/physics5020025

**Chicago/Turabian Style**

Ballester, José Luis.
2023. "Nonlinear Coupling of Alfvén and Slow Magnetoacoustic Waves in Partially Ionized Solar Plasmas: The Effect of Thermal Misbalance" *Physics* 5, no. 2: 331-351.
https://doi.org/10.3390/physics5020025